
 

NEUROMECHANICAL IMPLICATIONS OF POSTURAL CHANGES 
TO  MOTOR LEARNING AND PERFORMANCE 

 
1 Brian Cohn, 3 Kian Jalaleddini, and 2,3 Francisco J Valero-Cuevas 

 
1Department of Computer Science, 2Department of Biomedical Engineering, 3Division of Biokinesiology and 

Physical Therapy. University of Southern California, Los Angeles, CA, USA. 
email:  brian.cohn@usc.edu, web: https://valerolab.org/ 

 
 
INTRODUCTION 
 
There exist analytical formulations for the      
transmission of muscle force to endpoint force in        
tendon-driven limbs, and how it changes      
nonlinearly with posture [1]. However, how this       
information is encoded by the nervous system to        
control limbs remains unknown. The neuroscience      
literature proposes neural control based both on       
deterministic (e.g., internal models, optimal control,      
synergies, etc) and probabilistic (e.g., Bayesian)      
models of limb physics and environment. To       
evaluate the neuromechanical advantages of     
probabilistic control, we characterized the statistical      
structure of the transmission of muscle forces for        
multiple postures of a tendon-driven mechanical      
finger. 
 
METHODS 
 
We firmly connected the index fingertip of a        
Utah/M.I.T hand [2] to a 6-DOF load cell to         
produce static forces (Fig 1). The load cell was         
affixed to the endpoint of an AdeptSix300 robot that         
was moved to change finger posture. Seven index        
finger tendons were actuated by DC brushless       
motors [3], routed through pulleys. 
The robot moved the limb endpoint to 100        
randomly selected endpoint postures on an arc (Fig        
2). At each posture, the motors applied 100 force         
combinations across tendons uniformly at random      
(spanning 3 to 12N range). The duration of each         
trial was 0.8s— sufficient for forces to settle. We         
sampled fingertip and tendon forces at 1kHz. 

 
Figure 1: Forces at the tip of the mechanical finger          
were recorded as motors produced known tendon       
forces, at different postures. The resulting endpoint       
force vectors (red) were described in spherical       
coordinates (rho, theta, phi) in the common frame of         
reference of the fingertip and sensor. 
 
We calculated the force steady-state of each trial by         
averaging the last 0.2s. For each posture, we        
identified the linear static 3x7 model (Ai) that        
transforms tendon tensions to endpoint forces using       
linear regression: 

 
Note this mapping does not consider torques at the         
endpoint of the finger [1] and serves as a worst-case          
scenario for model performance. 
 
RESULTS AND DISCUSSION 
 
For all individual postures, a linear model Ai,        
accurately predicted endpoint force as a function of        
tendon forces, (i.e., high percentage of      
variance-accounted-for, %VAF, Fig 2). In addition,      
the negligible residual error did not have a structure         
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across posture (Fig 2a). 
As could be expected given the nonlinear changes        
in the finger’s Jacobian [1], posture had a profound         
effect on the Ai matrices that map tension to         
endpoint force. Interestingly, the effect of posture in        
fingertip force strength (rho, in N) and direction        
differed widely across muscles. While m2 had a        
consistent rho across all postures, m3 had higher        
variability (Fig 3, left). As for direction, m2’s        
direction in the zy plane (phi) was consistent across         
postures—m3 was more variable (Fig 3, right). 
 

Figure 2: For each of 100 postures, the color in (a)           
represents how each Ai matrix predicts endpoint       
force in the x direction (FX), while (b) shows the          
performance histogram across all postures. 
 
We conclude that linear models (i.e., Ai matrices) do         
not perform uniformly well across postures. Yet       

effective neural control of tendon driven limbs       
should work well across the workspace [4].       
Interestingly, our results suggest small changes in       
posture can lead to large changes in the mechanical         
actions of muscles—therefore Ai matrices likely do       
not generalize well across regions of the workspace.        
We speculate that the full mechanical output of the         
limb should be considered (i.e., endpoint torque       
output), and that exploration of the full workspace        
is preferable as interpolation will likely not work.        
Thus, the mechanical structure of the tendinous       
apparatus can influence motor learning. Moreover,      
disruption of learning or recall of these mappings        
can easily lead to motor pathologies. 
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Figure 3: Ai has a vector of force for each muscle at each posture—rho represents the muscle’s endpoint vector                   
strength (N), and phi is the angle in the Fz/Fy plane. This figure highlights 8 of the 42 visualizations. 

41st Annual Meeting of the American Society of Biomechanics, Boulder, CO, USA, August 8th – 11th, 2017 


