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One of the defining features of living systems is their adaptability to changing environ-

mental conditions. This requires organisms to extract temporal and spatial features of their

environment, and use that information to compute the appropriate response. In the last two

decades, a growing body or work, mainly coming from the machine learning and compu-

tational neuroscience fields, has shown that such complex information processing can be

performed by recurrent networks. Temporal computations arise in these networks through

the interplay between the external stimuli and the network’s internal state. In this article

we review our current understanding of how recurrent networks can be used by biological

systems, from cells to brains, for complex information processing. Rather than focusing

on sophisticated, artificial recurrent architectures such as long short-term memory (LSTM)

networks, here we concentrate on simpler network structures and learning algorithms that

can be expected to have been found by evolution. We also review studies showing evi-

dence of naturally occurring recurrent networks in living organisms. Lastly, we discuss

some relevant evolutionary aspects concerning the emergence of this natural computation

paradigm.
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I. INTRODUCTION

The survival of any living system depends on its capacity to sense multiple signals in its sur-

roundings, integrate those external signals, and activate an adequate response. Not only the spa-

tial, but also the temporal structure of these signals provide key information to the organisms1.

Temporal information, in particular, is crucial to anticipate changes in the environment. In these

cases, having some memory mechanism is clearly beneficial. In the mammalian brain, for in-

stance, processing the temporal structure of visual stimuli gives information on the direction and

speed of objects, as well as on the duration of and time between events2. In the somatosensory

system, the contribution of temporal encoding is not limited to dynamic aspects of the stimulus,

such as motion detection, but is also involved in stationary aspects such as object and texture

discrimination3. It has been postulated that recurrence due to extensive feedback can underlie the

temporal information-processing abilities of cortical neural networks2,4.

The importance of processing temporal information is not limited to neural systems. Non-

neural individual cells such as bacteria possess the capability to associate groups of events

that commonly co-occur or follow a particular sequence, thus exhibiting a form of associative

memory5. As an illustration, Escherichia coli anticipates itself for low oxygen environments upon

detecting an increase in temperature, which would signal ingestion by a mammal6. Similarly,

Candida albicans cells, a fungal pathogen, upregulates oxidative stress resistance genes upon

detection of an increase in glucose levels (which indicates they have entered a host), preemptively

reacting to its immune system7.

Apart from this associative memory capacity, recent studies indicate that microorganisms dis-

play both short- and long-term memory. For instance, the stress response of Bacillus subtilis relies

not solely on its present growth conditions but also on its past8. The integration and storage of

previous history, i.e. memory, in bacterial cells is a subject of considerable interest. It has been

suggested that this capability of bacteria is dependent on a complex network of transcriptional

interactions9,10. These types of networks are called gene regulatory networks.

Gene regulatory networks from multiple organisms have been found to possess a structured re-

current architecture reminiscent of the one underlying a computational paradigm known as reser-

voir computing (RC)11. In this scheme, temporal computations emerge from the inherent structure

and dynamics of the network a very efficient learning process12,13. This paradigm was also pro-

posed to underlie brain computations under the name of liquid-state machines (LSMs)14.

2



The main feature of RC is that memory encoding and prediction are handled by two separate

network substructures, as depicted in Fig. 1. First, a substructure with recurrent connections is

FIG. 1. Structural and functional organization of the gene regulatory network of Escherichia coli.

The genes depicted in green constitute a recurrent subgraph featuring cyclic paths (corresponding to the

reservoir) capable of storing the recent past within its dynamics. The nodes in red form a directed acyclic

subgraph (corresponding to the readout) responsible for interpreting the state of the reservoir. The network

architecture shown here was obtained from the Ecocyc database15. The representation is adapted from

Gabalda-Sagarra, Carey, and Garcia-Ojalvo 11 .

needed to encode history: the reservoir. The reservoir serves two functions simultaneously:

1. It performs a nonlinear expansion of the incoming signals (input) in a space of high dimen-

sionality.

2. It provides the system with memory by enabling it to retain information from its recent past.

The second substructure shown in Fig. 1 (red nodes) is the readout, located downstream of the

reservoir and exhibiting a strictly feedforward architecture. This substructure combines the record

of the immediate past encoded in the reservoir with the present input of the system, to generate

predictions or perform classifications. This separation of roles allows to focus the training process

(i.e. the modification of the network’s synaptic strengths so that the desired output is produced)

solely on the readout16.

In the classical RC approach, also known as an echo-state network (ESN), the reservoir is a

random network with fixed (randomly set) weights, and solely the readout is trained. Since feed-

forward architectures are much easier to train than recurrent ones, the RC framework combines

3



the computational power of a recurrent network with the training simplicity of a feedforward

network2. RC has demonstrated outstanding performance across various benchmark tasks17–19.

The simplicity of the network architecture underlying RC, and the evidence that natural gene

regulatory networks exhibit this structure, support the expectation that recurrent biological net-

works might underlie the notable information-processing capabilities of living systems. In the

following section we introduce a basic mathematical description of how recurrent networks can

compute. Next we discuss the potential application of this paradigm in biological systems. Finally

we look into the evolutionary aspects of this natural computation framework.

II. HOW RECURRENT BIOLOGICAL NETWORKS COMPUTE

A. Basic description

In what follows, we focus on gene regulatory networks as information-processing substrates,

although the same mathematical description can be applied to other biological networks (such as

neuronal networks, which in fact are the ones most commonly considered in the literature within

this context). The dynamics of a gene regulatory network can be represented mathematically

using models similar to those typically employed to describe artificial neural networks (ANNs).

Specifically, the expression level of a set of N genes at a given time t can be denoted by a vector

xt ∈ RN , where t = 1 . . .T are a set of discrete time points at which the network activity is being

monitored. The expression of a gene depends on the levels of the genes that regulate it, and

potentially on other inputs ut ∈RNin coming from outside the network. This can be represented by

the following update rule:

xt = f(Wxt−1 +W inut), (1)

where f is an element-wise activation function whose argument is a weigthed sum of the expression

level of the regulating genes and the external inputs. The effect of those regulating elements

is represented by the weight matrices W ∈ RN×N and W in ∈ RN×Nin , respectively. In the ANN

literature, the activation function f typically takes for the form of a sigmoid (e.g. a hyperbolic

tangent), which in fact is usually an excellent representation of the activation of a gene by its

inputs20,21.

There is no constraint in the architecture of the network represented by the connectivity matrix

W . In particular, there is no need for the network to be feedforward, as is commonly the case in
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basic ANN (including deep-network) architectures. In fact we consider here that the network un-

derlying W is recurrent, as in the ESN architectures used in RC16. The input signals ut correspond

to genes (or other biochemical elements) that are fully upstream of our network (orange nodes in

Fig. 2). In turn, the network output is given by a weighted sum of the states of the reservoir genes:

FIG. 2. An echo state network. The upstream genes (orange) send the external inputs (ut) to genes of

the reservoir (green) with strengths given by the input weight matrix W in. The reservoir genes are coupled

to each other by recurrent connections defined by the matrix W . Finally, the readout genes (blue) read the

information encoded in the reservoir to make decisions. Only the readout weights W out (red arrows) are

trained, and this in done in such a way that the output Y approximates the target output signal(s).

yt =W outxt (2)

where yt ∈ RNout is a vector of all predicted outputs, and W out ∈ RNout×N is the weight matrix for

the reservoir-readout connections, as schematized in Fig. 2.

The values of the readout weights W out determine the computational capabilities of the network.

In the artificial neural-network context those weights are trained in a supervised manner, to ensure

that the network output Y reproduces a given target output in the presence of the corresponding

input. This can be done very efficiently using a matrix operation such as ridge regression:

W out = Y targetXT (XXT + γ
2I)−1, (3)

where Y target ∈RNout×T is a matrix with all expected/target outputs over time, X ∈RN×T is a matrix

with the state of the reservoir nodes over time, XT is the transpose of X , I is the identity matrix,

and γ is a regularization coefficient, which helps avoid overfitting (see Sec. 8 of Lukoševičius and

Jaeger 22 for details).

It is worth noting that the ESN approach requires tuning the network appropriately. Specifi-

cally, the recurrent subgraph should comply with the echo state property: its state xt needs to be
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exclusively determined by the fading memory of the incoming signal ut
17. To put it differently,

the reservoir state xt should remain independent of the initial conditions that were present before

the input ut , if we consider a long enough ut signal. Empirically, it has been seen that if the

spectral radius (defined as the maximum absolute eigenvalue of the reservoir connectivity matrix

W ) is smaller than unity, then the echo state property is satisfied. For large enough spectral radii,

reservoirs exhibit multiple fixed points or periodic, even chaotic attractors (when the reservoir is

sufficiently nonlinear). This violates the echo state property and prevent efficient training.

B. Alternative training algorithms

The echo-state property described above implies that the reservoir is quiescent in the absence of

external inputs. However, biological networks usually display spontaneous activity characterized

by intricate and irregular patterns. In fact, recurrent networks with chaotic self-sustained dynam-

ics have been found to be highly effective for computational purposes23. In particular, chaotic

networks exhibit faster training times and generate outputs that are more accurate and robust com-

pared to non-chaotic networks. Given the inability of the RC paradigm to operate in these con-

ditions, a new training algorithm is needed. For that purpose Sussillo and Abbott 23 introduced a

learning algorithm, called FORCE (First-Order Reduced and Controlled Error), that enables train-

ing the network even when it operates in a chaotic regime. Interestingly, this algorithm is more

biologically realistic than the one used in ESNs16. Given the occurrence of self-sustained dynam-

ics in natural networks, and the relative realism of the FORCE algorithm for potentially training

those networks, we discuss it in some detail in what follows.

To be operational, the learning algorithm must induce in the network a transition from chaotic

to non-chaotic dynamics during training, and that is exactly what FORCE does. Specifically,

Sussillo and Abbott 23 show that the chaotic dynamics during training can be quenched by using

either external feedback loops (Fig. 3a) or internal synaptic modifications (Figs. 3b and 3c). All

three schemes lead to the generation of intricate yet controlled outputs. Driven by any of these

two strategies, the key for suppressing chaos is making strong and rapid synaptic modifications. In

this regard, FORCE learning works in a manner distinct from traditional neural network training.

Typically, conventional training involves a series of adjustments aimed at gradually diminishing

initially large errors in the network output. The FORCE algorithm, in turn, reduces significantly

the error’s size at the initial weight update, and maintains the errors small during the rest of the
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FIG. 3. Network architectures for the FORCE algorithm23. In all cases, a reservoir (green nodes) drives

a linear readout unit (red node). Weights are only changed for the connections highlighted in red. (a) The

readout feeds back into the reservoir. (b) A separate recurrent network (smaller circled network) feeds back

into the reservoir. (c) No additional feedback (beyond the recurrence in the reservoir) is needed, and all

connections are trained.

training procedure. In order to achieve this, the method makes use of the recursive least-squares

(RLS) algorithm24 as the update rule for the trained weights (see Sussillo and Abbott 23 for details).

Further modification becomes unnecessary upon completion of the training, and the network can

autonomously produce the desired output.

Finally, it is worth emphasizing that the FORCE algorithm allows us to train not only the

readout weights of the network, such as in the original RC framework (Fig. 3a), but also RNNs

with the architectures shown in Figs. 3b and 3c. In these architectures, training affects not only
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the readout weights but also the internal synaptic connections. These networks resemble are more

realistic biologically than that of Fig. 3a, where feedback is only mediated by the readout unit.

By enabling training of different architectures, the FORCE algorithm extends the original RC

framework, and gives more flexibility and biological feasibility to the concept of computation

through recurrence.

C. Using dynamical systems theory to understand recurrence-based computations

Since supervised training dictates the computation to be performed without constraining how

the network executes this computation, the exact method through which trained RNNs achieve

their intended functions remains an unanswered question. In essence, the resulting networks have

predominantly been regarded as black boxes. This differs from network models deliberately de-

signed to implement specific established mechanisms, such as those proposed, for instance, by

Hopfield 25 and Wang 26 . One way of “opening the black box”, proposed by Sussillo and Barak 27 ,

is to treat the network as a nonlinear dynamical system.

Sussillo and Barak 27 explored not only the existence of stable and unstable fixed points and

their linearized dynamics, but also the linearization in regions of phase space that are not genuine

fixed points, but rather points where the system transitions very slowly (slow points). They also

present a straightforward optimization algorithm for finding such areas. Linearization around

each one of the fixed and slow points provides a mechanistic description of how high-dimensional

RNNs implement their computations27. This final point is crucial for formulating hypotheses on

how the task could potentially be solved by the biological network. Therein lies the importance of

this dynamical-system based approach.

Optimization tools dependent on predefined analytic derivatives, such as those of the hyperbolic

tangent function, are needed in order to find fixed and slow points of a RNN (see e.g. Section 3.2 of

Sussillo and Barak 27 for details). Algorithms to find fixed points have been developed for simple

(Elman) RNNs28, and Hopfield-like RNN architectures27,29, but can be inconvenient for compli-

cated models, or for studies that involve a combination of different RNN models. In this sense,

a Tensorflow toolbox designed for determining fixed points and linearized dynamics in recurrent

networks was introduced by Golub and Sussillo 30 . This software profits from TensorFlow’s highly

efficient automatic differentiation back-end to execute the necessary optimizations and compute

Jacobians, essential for the identification and characterization of fixed points.
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III. RECURRENT NETWORKS IN BIOLOGY

A. The mammalian cerebral cortex

Cortical circuits were inspirational to Maass, Natschläger, and Markram 14 when conceiving

LSMs. It has been proposed that cortical networks are likely to operate following an RC paradigm,

or at least that they incorporate most RC principles. One indication of this is the observable

variation in both morphology and functionality among neurons across the cortex. Heterogeneity

in neural characteristics has been observed in cortical neurons, the visual cortex and the retina, as

well as in networks cultured in vitro31–36. In this direction, RC-like computation can make use

of a very heterogeneous dynamics, that would arise from this diversity of neural components. In

addition, cortical networks present a highly recursive nature37. It is unclear, however, to what

extent recurrence plays a role in computation by cortical circuits, and efforts are under way to

address this issue31,32. In what follows, we review current work in this direction.

Cortico-striatal system

Dominey, Arbib, and Joseph 38 developed a RC-based model of the cortico-striatal system

to shed light on the mechanisms underlying the behavior of the oculomotor system in different

contexts39. The model consists of two sub-networks, following the established organization of

the oculomotor system of primates in cortical and subcortical structures. The first sub-network

corresponds to the prefrontal cortex, which is responsible for a variety of cognitive tasks ranging

from decision making to the regulation of social behavior40. The second sub-network corresponds

to the striatum, which is a subcortical area.

In the model of Dominey, Arbib, and Joseph 38 , the prefrontal sub-network has fixed recur-

rent connections between its neurons; while synapses from this structure to the striatum are

modifiable41. The neural activity in the prefrontal network generates unique patterns of activ-

ity in response to the sequential visual inputs. These state-encoding patterns are then linked to the

appropriate outputs (representing the oculomotor movements) by the striatum.

Later, Dominey and Ramus 42 extended this model to the context of language processing in

infants. Specifically, the authors showed that the model described previously (which is also known

as a temporal recurrent network) simulates the capabilities of babies to learn the sequential and

rhythmic structure of language. For instance, the network can effectively encode sequential and
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temporal patterns, which can in turn be linked to specific behaviors in the presence of appropriate

stimuli. To reproduce the ability of babies to extract abstract structure from sequential inputs, the

authors added a second recurrent network with short-term memory. These works illustrate how

inherent representational abilities of the structure of language might emerge from a shared neural

architecture, separate from what is needed for representing abstract structures.

Augmenting the cortico-striatal model discussed above with a neurophysiologically grounded

language model enables the resulting system to learn grammatical structures43,44. Furthermore,

the efficacy of the learning algorithm can be increased by combining the model with an RC

framework45. The detailed history and the developments of the cortico-striatal model was re-

viewed by Dominey 46 .

Visual cortex

The visual system provides an excellent example of the need of processing time-dependent

information. Nikolić et al. 33 obtained experimental evidence showing that the primary visual

cortex of cats exhibits fading memory, which is one of the core features of ESNs. Specifically, in

vivo spiking activities of 60–100 neurons were obtained for a sequence of different visual stimuli

(letters). The authors demonstrated that the neuronal responses that they recorded at a given time

had information about the letter presented at that moment but also, interestingly, about the letters

presented right before. In other words, the population activity was shown to encode both the

present and the recent past. As further verification, the authors used a network of linear integrate-

and-fire neurons as a readout, to perform a basic linear classification that enabled them to identify

various visual stimuli reliably from the spike trains of the recorded neurons (representing reservoir

states)33.

The emerging viewpoint discussed above suggests that the visual cortex can process sequential

inputs by engaging in time-dependent computations that provide the cell with the ability to store its

recent past. This stands in stark contrast to the traditional belief that the brain process information

locally in time, on a frame-by-frame basis, through feedforward network architectures47 that are

not well suited to process dynamic visual scenes.
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B. Gene regulatory networks as reservoirs

Biological computation through recurrence does not necessarily need to arise in neural sub-

strates, but can be supported by other biological networks. In this section, we review two example

studies involving gene regulatory networks (GRNs). The first study looks into the ability of Es-

cherichia coli to discriminate between time-dependent series of external chemical signals. The

second one studies the memory capacities of the GRNs of five evolutionary distant organisms.

Classification of chemical inputs through E. coli’s GRN

Jones et al. 48 proposed that the gene regulatory network (GRN) of the bacterium Escherichia

coli can act as a computational reservoir, receiving input signals from a sequence of chemical stim-

uli and acting upon a set of target proteins as an output. Specifically, the authors exposed a liquid

culture of E. coli cells to sequences of inputs that represent different combinations of tempera-

ture and chemical conditions of the environment. Subsequently they studied the transcriptional

state of the GRN using microarrays, to test whether the network was capable of making complex

perceptual classification of the different inputs into desired classes. Numerical simulations of the

aforementioned experimental setup showed that the RC framework could classify inputs with good

performance, and perform logic operations such as XOR integration.

This work motivated an experimental study in which Didovyk et al. 49 employed genetic engi-

neering techniques to manipulate bacterial cell cultures, aiming to create a range of basic classifiers

capable of distinguishing between various chemical inputs. The outputs could be further combined

to solve more intricate classification problems.

Memory encoding through recurrence in GRNs

The recurrence in the previous example was mostly caused by sparse self-regulation of a few

genes, which was enough for the tasks proposed, which did not require memory. Fully recur-

rent topologies are necessary, however, for processing time-dependent information. In this sense,

Gabalda-Sagarra, Carey, and Garcia-Ojalvo 11 studied the GRNs of five different organisms (from

bacteria to humans) in standard memory-demanding tasks. Using public datasets, the authors

identified that all five GRNs contained a recurrent reservoir formed by a small number of genes,

while the majority of the genes in the networks were located downstream of the recurrent sub-
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graph, forming a feedforward network that can act as a readout, interpreting the high-dimensional

dynamical state of the reservoir. In that way, the structure of GRNs are consistent with the echo-

state network paradigm, providing the organism with a memory mechanism necessary to process

temporal information.

Another important remark is that the training schemes used traditionally in the RC paradigm

in the ANN context, such as ridge regression (Eq. 3), are not biologically realistic. To address

this issue Gabalda-Sagarra, Carey, and Garcia-Ojalvo 11 studied whether an evolutionary process

could successfully train the readouts. Their results showed that the output weights could indeed be

tuned through an evolutionary algorithm, mimicking the way in which evolution would act upon

the GRNs to enable computation.

IV. EVOLUTIONARY ASPECTS OF RECURRENCE-BASED COMPUTATIONS

Besides the role of evolutionary processes in the feasible training of the output readouts in the

RC framework, there are other relevant evolutionary aspects of RC that are worth highlighting

here. In particular, adequate design properties are needed to produce operating reservoirs, as

discussed by Seoane 50 . As for all biological strategies, it is expected that critical design decisions

are influenced by evolutionary constraints. In the following we review the evolutionary constraints

that underlie optimal operating reservoirs.

When RC was initially introduced, it was shown mathematically that the reservoir needs to have

two fundamental attributes for the proper implementation of the paradigm14. Firstly, the dynamics

of the reservoir needs to be sufficiently high-dimensional to effectively separate training inputs

across a variety of tasks. Secondly, the system should be able to generalize its classification

abilities to new examples. This would entail mapping similar inputs to nearby regions within the

dynamical reservoir’s phase space.

Legenstein and Maass 51 analyzed how reservoir dynamics contributes to those two require-

ments, showing that separability and generalization are anticorrelated with each other. Recurrent

networks with simple attractor dynamics, for instance, have substantial generalization capabili-

ties (because even under noise, many inputs give rise to similar dynamics in the reservoir’s phase

space), they exhibit low separability. When recurrent networks operate in the chaotic regime, in

contrast, the dynamics becomes highly sensitive to initial conditions, which strongly impairs gen-

eralization, while separability remains large due to the nonlinear and high-dimensional character
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of the system.

Consequently, to fulfill simultaneously the conditions of separability and generalization, recur-

rent networks need to operate near the so-called edge of chaos, at the boundary between order and

chaos. This critical region represents a compromise between attractor dynamics, in which per-

turbations (even relatively large ones) are washed away as the network approaches equilibrium,

providing generalization, and chaotic dynamics, where perturbations (even very small ones) are

amplified, providing separability. This requirement is consistent with the large amount of evidence

reported during the past two decades showing that the brain operates near criticality52–54.

Following this line of reasoning, criticality has been used in recent years as a global constraint

in the design of optimal reservoirs, employing quantifiers such as Lyapunov exponents51,55–58 and

Fisher information59 of reservoir dynamics. Taken together, these studies highlight the advantages

of criticality for information processing, and suggest powerful constraints that could have played

a relevant role in evolution of the computational capabilities of recurrent biological networks.

V. FINAL REMARKS

Living organisms are faced with the ongoing challenge of processing multiple simultaneous

signals coming from their dynamical environment. In spite of the ubiquity of this requirement,

a general conceptual framework of how biological systems process temporal information is still

lacking. The intrinsically dynamical nature of recurrent networks allows in a natural way the

integration of the present conditions faced by the living organism with its (recent) past, making

the concept of recurrence-based computation an appealing initial step towards a conceptual model

of temporal information processing in living beings.

In spite of their conceptual appeal, validating experimentally the role of recurrence-based com-

putations in biological systems is still challenging. For example, while the existence of recurrent

architectures in cortical brain regions has been thoroughly studied, as described above, research

linking systematically the dynamics of recurrent cortical networks with time-dependent tasks is

still needed. This will require a comprehensive analysis of cognitive systems at the structural,

dynamical, and functional levels.

Model animals could be a suitable starting point for that goal. For instance, the fully mapped

connectome of the roundworm C. elegans has been shown to be consistent with a network architec-

ture that supports recurrence-based computations. When the dynamics of this network is compared
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with experimental observations, the system is seen to function in an input-driven chaotic regime

that supports long-term memory via the phenomenon of generalized chaos synchronization60. Fu-

ture interdisciplinary research should bridge the existing substantial literature on dynamical sys-

tems with our emerging knowledge of human and animal brains, together with our increasing

understanding of the computational properties of recurrent neural networks. Given the fact that

adaptability to changing environments is one of the main defining characteristics of living sys-

tems, the synergistic interaction between applied mathematics, neuroscience and machine learn-

ing discussed in this review can be expected to provide us with a general principle of biological

information processing that has so far been elusive.
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