
Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 220

nature machine intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Parameter-efficient fine-tuning of large-scale
pre-trained language models

Ning Ding    1,2,4, Yujia Qin1,2,4, Guang Yang1, Fuchao Wei1, Zonghan Yang1,
Yusheng Su1,2, Shengding Hu1,2, Yulin Chen3, Chi-Min Chan1, Weize Chen1,2,
Jing Yi1,2, Weilin Zhao1,2, Xiaozhi Wang1, Zhiyuan Liu    1,2  , Hai-Tao Zheng    3  ,
Jianfei Chen1, Yang Liu1, Jie Tang1,2, Juanzi Li1 & Maosong Sun    1,2 

With the prevalence of pre-trained language models (PLMs) and the
pre-training–fine-tuning paradigm, it has been continuously shown that
larger models tend to yield better performance. However, as PLMs scale
up, fine-tuning and storing all the parameters is prohibitively costly and
eventually becomes practically infeasible. This necessitates a new branch
of research focusing on the parameter-efficient adaptation of PLMs, which
optimizes a small portion of the model parameters while keeping the rest
fixed, drastically cutting down computation and storage costs. In general,
it demonstrates that large-scale models could be effectively stimulated by
the optimization of a few parameters. Despite the various designs, here we
discuss and analyse the approaches under a more consistent and accessible
term ‘delta-tuning’, where ‘delta’ a mathematical notation often used to
denote changes, is borrowed to refer to the portion of parameters that are
‘changed’ during training. We formally describe the problem and propose a
unified categorization criterion for existing delta-tuning methods to explore
their correlations and differences. We also discuss the theoretical principles
underlying the effectiveness of delta-tuning and interpret them from the
perspectives of optimization and optimal control. Furthermore, we provide
a holistic empirical study on over 100 natural language processing tasks and
investigate various aspects of delta-tuning. With comprehensive study and
analysis, our research demonstrates the theoretical and practical properties
of delta-tuning in the adaptation of PLMs.

With the revolutionary development in computing hardware, tradi-
tional statistical methods for modelling natural language have yielded
their place to deep learning1 that heavily relies on tensor computation
and huge data volume. Modern natural language processing (NLP)
uses deep neural networks to implicitly model language distribution
and capture language representations2–4. A standard pipeline involves
encoding language into discrete tokens (tokenization) as model input,
choosing a proper model architecture, designing corresponding tasks

and training the network with the given corpora. Among these deep
neural architectures, the transformer neural network4 produces
state-of-the-art performances on a series of NLP applications. Sub-
sequently, the advancement in pre-trained language models (PLMs)
using deep transformers as their foundation has ushered in a new era
of NLP. PLMs typically use heavily over-parameterized transformers
as the base architecture and model natural language in bidirectional5,
autoregressive6,7 or sequence-to-sequence8 manners on large-scale

Received: 13 April 2022

Accepted: 2 February 2023

Published online: 2 March 2023

 Check for updates

1Department of Computer Science and Technology, Tsinghua University, Beijing, China. 2Beijing Academy of Artificial Intelligence, Beijing, China.
3Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. 4These authors contributed equally: Ning Ding, Yujia Qin.

 e-mail: liuzy@tsinghua.edu.cn; zheng.haitao@sz.tsinghua.edu.cn; sms@tsinghua.edu.cn

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00626-4
http://orcid.org/0000-0001-8758-9484
http://orcid.org/0000-0002-7709-2543
http://orcid.org/0000-0001-5128-5649
http://orcid.org/0000-0002-6011-6115
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00626-4&domain=pdf
mailto:liuzy@tsinghua.edu.cn
mailto:zheng.haitao@sz.tsinghua.edu.cn
mailto:sms@tsinghua.edu.cn

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 221

Analysis https://doi.org/10.1038/s42256-023-00626-4

such model adaptations. Compared with fine-tuning, delta-tuning
makes model adaptation a considerably low-cost process. For instance,
researchers find that the optimization problem of the adaptations for
big models could be reparameterized into a low-dimensional ‘intrinsic
subspace’16,17 and various NLP tasks could be handled by tuning only
very few parameters in the subspace. The empirical evidence takes us
one step closer to understanding how pre-trained models work and
may even spawn new theoretical questions that are worth exploring.

This Analysis attempts to comprehensively analyse recent
advances in delta-tuning to establish a deeper understanding of
this branch of methods (Methods). We formally describe the prob-
lem and categorize delta-tuning methods into addition-based,
specification-based and reparameterization-based methods as illus-
trated in Fig. 4, then we comprehensively introduce the technical
details and empirical conclusions of each method. To better under-
stand the inner connections among the delta-tuning methods and the
mechanisms of model adaptation, we develop theoretical analyses of
delta-tuning by proposing theoretical frameworks from two differ-
ent perspectives: optimization and optimal control. Our theoretical
discussion is summarized as follows.

	1.	 Optimization. Based on the knowledge of a low intrinsic dimen-
sion in a large PLM, we show that delta-tuning is essentially a
subspace-optimization method with respect to the solution
space or functional space. The discussion justifies the designs of
the existing delta-tuning methods and explains some phenom-
ena in the experiments.

	2.	 Optimal control. Inspired by the relationship between deep
learning and optimal control theories, we interpret delta-tuning
as seeking optimal controllers for PLMs. We propose an optimal
control framework that unifies different delta-tuning approach-
es. Our analysis provides theoretical references for the novel de-
sign of delta-tuning methods.
In terms of empirical studies, we carry out extensive and system-

atic experiments (Results) on over 100 NLP tasks to rigorously explore
the performances, combinability, the power of scale, transferability
and so on. Our main findings are summarized as follows.

	1.	 Performance. Delta-tuning yields consistent and non-trivial per-
formance on more than 100 NLP tasks, showing that it is an ef-
fective and lightweight alternative to conventional fine-tuning.
Among several representative delta-tuning methods, no single
algorithm predominantly outperforms the others.

	2.	 Convergence. Training stability is also one of our focuses. Al-
though the convergence of delta-tuning is generally not as fast
as that of full parameter fine-tuning, we find that it is more sensi-
tive to the delta structures than the number of tunable param-
eters. Meanwhile, the larger the model is, the faster the training
converges.

	3.	 Efficiency. In terms of computational efficiency, which is the
original motivation for the methods, delta-tuning could sub-
stantially improve computational and storage efficiency while
achieving decent results, highlighting the promising practical
value of adapting super-large PLMs.

	4.	 Combinability. Combining multiple delta-tuning methods is
more effective than a single method in most cases, despite that
the optimal combination may vary for different PLM backbones,
downstream tasks and data scales. This finding implies the ex-
istence of an optimal delta structure, and it is likely that such a
structure cannot be obtained artificially, but could be generated
automatically.

	5.	 Power of scale. The power of scale (that is, both the performance
and convergence are improved when the size of the PLM increas-
es) is observed in all of the delta-tuning methods, even in unregu-
lated neural modules. In other words, when the model size is large
enough, only optimizing a random portion of parameters can
achieve comparable performance to conventional fine-tuning.

unsupervised corpora. Then for downstream tasks, task-specific
objectives are introduced to fine-tune the PLMs for model adapta-
tion. Notably, the increasing scale of PLMs (measured by the number
of parameters) seems to be an irreversible trend, as constant empiri-
cal results show that larger models (along with more data) almost
certainly lead to better performance. For example, with 175 billion
parameters, Generative Pre-trained Transformer 3 (GPT-3)9 generates
natural language of unprecedented quality and can conduct various
desired zero-shot tasks with satisfactory results given appropriate
prompts. Subsequently, a series of large-scale models such as Gopher10,
Megatron-Turing Natural Language Generation (NLG)11 and Pathways
Language Model (PaLM)12 have repeatedly shown effectiveness on a
broad range of downstream tasks.

As the model scales, how to efficiently and effectively adapt
large models to particular downstream tasks becomes an intriguing
research issue. Although in-context learning has shown promising
performance for PLMs such as GPT-3, fine-tuning still overtakes it under
the task-specific setting. However, the predominant approach, full
parameter fine-tuning, which initializes the model with the pre-trained
weights, updates all the parameters and produces separate instances
for different tasks, becomes impractical when dealing with large-scale
models. In addition to the cost of deployment and computation, storing
different instances for different tasks is extremely memory intensive.
To further explore the practical application rate of large models (PLMs
with over 1 billion parameters), we randomly select 1,200 published
research papers from the recent six NLP conferences (200 for each
venue), including Annual Meeting of the Association for Computational
Linguistics (ACL) 2022, ACL 2021, Conference on Empirical Methods
in Natural Language Processing (EMNLP) 2021, Annual Conference of
the North American Chapter of the Association for Computational
Linguistics (NAACL) 2021, ACL 2020 and EMNLP 2020. Then we manu-
ally count the usage of PLMs in these peer-reviewed works, focusing on
only the experimental part of the papers. According to the statistics in
Extended Data Table 1, although the use of PLMs has become increas-
ingly popular, only about 0.5–4% of research papers practically adopt
large PLMs in the experiments. One of the reasons for their unpopular-
ity is the unaffordable cost of deploying and experimentally validating
large PLMs.

In fact, large PLMs with billions of parameters could be effec-
tively driven by optimization of a few parameters, and a branch of
parameter-efficient methods for model tuning arises. Although each
of these approaches proposes distinct designs on the structure and
location of trainable parameters in PLMs, they essentially tune a ‘delta’
in the adaptation phase, which refers to a small fraction of trainable
parameters that can be placed anywhere in the PLM. We thus unify them
under a more accessible term ‘delta-tuning’ that captures the essence
of this branch of methods more precisely. In general, delta-tuning
updates only a small number of parameters (inherently in the model
or additionally introduced) while freezing the remaining parameters
that account for the vast majority. Adapter tuning13 is among the earli-
est approaches to steer pre-trained models with a limited number of
parameters. It inserts adapter modules with bottleneck architecture
between layers in PLMs and only these inserted modules get updated
during fine-tuning. BitFit14 updates the bias terms in PLMs while freez-
ing the remaining modules. Low rank adaptation (LoRA)15 decomposes
attention weight update into low-rank matrices to reduce the number
of trainable parameters. The delta-tuning methods enable efficient
tuning and practical usage for large pre-trained models and often
achieve comparable results to the standard fine-tuning. For example,
the vanilla fine-tuning of GPT-3 needs to update about 175,255 million
parameters, which is almost infeasible in both industry and academia.
However, if we tune only the injected low-rank decomposition matrices
in each transformer layer15, only 37.7 million parameters will be involved
in backpropagation. Delta-tuning not only provides a promising way
to adapt large PLMs but also sheds light on the mechanisms behind

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 222

Analysis https://doi.org/10.1038/s42256-023-00626-4

Table 1 | Overall (test) performance of over 100 NLP tasks comparing PT, PF, LR, AP and FT

Task PT (BASE) PT (LARGE) PF LR AP FT

Ratio of tunable parameters 0.03% 0.01% 7.93% 0.38% 2.38% 100%

Classification/sentiment analysis

GLUE-SST2 92.20 94.95 92.66 94.04 93.35 94.27

ROTTEN_TOMATOES 88.36 91.84 89.96 89.30 89.20 89.77

FINANCIAL_PHRASEBANK 97.18 98.36 98.36 97.94 97.95 98.36

POEM_SENTIMENT 54.18 70.31 85.38 86.80 82.52 83.26

YELP_POLARITY 95.47 98.18 97.78 97.37 97.30 97.92

AVG. OF SENTIMENT ANALYSIS 85.48 90.73 92.83 93.09 92.06 92.72

Classification/emotion

EMO 69.91 71.47 73.31 76.13 74.88 75.69

EMOTION 89.19 88.73 88.29 88.63 88.98 89.25

TWEET_EVAL-HATE 53.00 42.23 44.67 48.16 47.88 51.33

TWEET_EVAL-IRONY 58.02 69.73 76.00 76.75 73.88 77.43

TWEET_EVAL-OFFENSIVE 75.94 78.87 80.94 80.97 80.59 82.05

TWEET_EVAL-SENTIMENT 28.90 72.79 71.78 71.31 71.90 71.98

TWEET_EVAL-STANCE_ABORTION 32.59 61.42 61.47 63.20 62.61 61.72

TWEET_EVAL-STANCE_ATHEISM 56.28 67.58 71.54 71.77 71.27 74.41

TWEET_EVAL-STANCE_CLIMATE 47.61 52.43 52.86 55.92 59.06 57.38

TWEET_EVAL-STANCE_FEMINIST 29.65 51.63 56.27 57.41 58.57 58.51

TWEET_EVAL-STANCE_HILLARY 41.34 63.18 62.15 65.40 61.74 66.41

AVG. OF EMOTION 52.95 65.46 67.21 68.70 68.31 69.65

Classification/hate-speech detection

ETHOS-DISABILITY 46.99 100.00 93.81 93.81 100.00 93.81

ETHOS-GENDER 63.84 77.08 77.44 79.91 79.91 74.48

ETHOS-NATIONAL_ORIGIN 44.30 81.77 81.77 87.95 84.72 84.72

ETHOS-RACE 84.36 97.06 94.54 97.21 94.27 97.21

ETHOS-RELIGION 93.02 93.02 96.35 93.02 96.35 96.64

ETHOS-DIRECTED_VS_GENERALIZED 76.86 86.64 94.76 92.29 94.94 94.94

HATE_SPEECH_OFFENSIVE 73.27 79.08 75.22 75.21 75.06 75.04

HATE_SPEECH18 75.57 74.45 79.42 79.59 80.86 80.93

HATEXPLAIN 50.98 67.62 66.06 68.03 68.11 68.02

AVG. OF HATE SPEECH DETECTION 67.69 84.08 84.37 85.22 86.02 85.09

Classification/natural language inference

ANLI 25.85 44.96 43.88 45.27 49.19 50.54

GLUE-MNLI 35.43 86.12 82.21 83.74 83.90 86.39

GLUE-QNLI 52.34 93.01 87.48 92.02 91.58 92.57

GLUE-RTE 45.32 79.14 72.66 79.14 78.42 80.58

SCITAIL 91.02 95.47 93.04 93.80 94.04 94.77

SUPERGLUE-RTE 50.36 84.89 73.38 79.14 82.01 78.42

SICK 40.10 88.82 87.91 88.69 88.88 89.15

SUPERGLUE-CB 75.00 78.57 100.00 100.00 96.43 96.43

AVG. OF NATURAL LANGUAGE INFERENCE 51.93 81.37 80.07 82.73 83.06 83.61

Classification/fact checking

CLIMATE_FEVER 15.47 33.42 38.03 39.35 37.48 41.57

LIAR 13.23 28.87 26.46 28.67 27.08 28.20

HEALTH_FACT 39.15 45.60 50.38 52.05 51.21 54.19

TAB_FACT 46.65 50.16 52.53 56.86 53.42 57.34

AVG. OF FACT CHECKING 28.63 39.51 41.85 44.23 42.30 45.36

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 223

Analysis https://doi.org/10.1038/s42256-023-00626-4

Task PT (BASE) PT (LARGE) PF LR AP FT

Classification/paraphrase

GLUE-QQP 84.65 86.21 84.62 86.87 85.93 89.13

MEDICAL_QUESTIONS_PAIRS 46.56 91.80 85.25 88.52 90.16 87.21

PAWS 49.60 91.27 92.07 93.39 92.91 93.60

GLUE-MRPC 67.65 88.24 87.25 87.25 87.25 89.71

AVG. OF PARAPHRASE 62.12 89.38 87.3 89.01 89.06 89.91

Classification/topic

AG_NEWS 91.37 93.61 93.42 94.63 94.60 95.19

Classification/binary

BOOLQ 61.28 77.43 77.55 80.00 78.47 81.77

MC_TACO 76.25 88.39 86.02 88.13 86.81 87.34

AVG. OF BINARY 68.77 82.91 81.79 84.07 82.64 84.56

Classification/other

ADE_CORPUS_V2-CLASSIFICATION 41.76 94.42 93.25 94.47 93.91 94.27

DISCOVERY 0.18 18.83 16.67 18.98 18.41 25.88

GLUE-COLA 0.00 55.60 50.95 49.40 44.66 51.53

SMS_SPAM 95.80 97.46 97.14 97.14 97.46 97.11

SUPERGLUE-WIC 50.16 68.34 64.89 68.65 70.53 71.79

WIKI_QA 48.78 73.97 64.10 72.15 70.75 74.41

CIRCA 13.51 77.39 80.16 82.38 82.93 84.69

ONESTOP_ENGLISH 22.53 98.23 100.00 100.00 100.00 100.00

TREC 90.80 91.51 91.38 93.38 93.36 94.81

TREC-FINEGRAINED 80.63 88.18 90.04 91.44 90.00 91.27

AVG. OF OTHER CLASSIFICATION 44.42 76.39 74.86 76.80 76.2 78.58

Question answering/closed-book question answering

FREEBASE_QA 1.90 6.71 2.63 3.75 5.86 23.52

LAMA-CONCEPTNET 15.25 26.12 22.63 34.96 43.62 70.28

LAMA-GOOGLE_RE 11.78 14.08 12.60 18.82 23.73 24.88

LAMA-SQUAD 3.23 16.13 12.90 9.68 3.23 9.68

LAMA-TREX 59.13 63.68 63.91 66.21 67.23 69.12

NUMER_SENSE 50.53 56.75 53.30 56.27 53.97 57.32

SEARCH_QA 7.14 19.17 8.70 10.17 9.72 19.26

WEB_QUESTIONS 11.90 19.58 15.87 18.78 20.63 25.40

HOTPOT_QA 65.95 76.41 73.76 76.13 74.65 78.45

AVG. OF CLOSED-BOOK QA 25.20 33.18 29.59 32.75 33.63 41.99

Question answering/multiple-choice question answering

COSMOS_QA 7.30 10.98 9.91 10.78 10.85 11.32

DREAM 49.19 71.83 58.70 61.00 59.53 62.42

HELLASWAG 23.82 70.28 24.76 32.82 27.60 41.90

OPENBOOKQA 44.80 54.40 50.20 52.20 53.80 57.00

QASC 19.22 47.73 33.26 37.80 33.05 43.63

QUAREL 54.89 54.71 57.25 59.78 57.61 62.50

QUARTZ-NO_KNOWLEDGE 65.43 68.88 68.49 67.09 66.96 69.39

QUARTZ-WITH_KNOWLEDGE 64.03 85.97 71.56 74.23 73.72 76.28

RACE-HIGH 34.51 60.09 42.82 59.52 58.92 65.95

RACE-MIDDLE 47.21 74.65 62.67 68.31 65.46 70.61

SUPERGLUE-COPA 53.60 56.00 58.40 56.40 60.40 59.20

WINO_GRANDE 48.42 58.20 50.79 61.20 50.47 67.19

COMMONSENSE_QA 58.43 76.76 58.43 62.52 60.72 61.21

Table 1 (continued) | Overall (test) performance of over 100 NLP tasks comparing PT, PF, LR, AP and FT

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 224

Analysis https://doi.org/10.1038/s42256-023-00626-4

Task PT (BASE) PT (LARGE) PF LR AP FT

SCIQ 96.95 98.53 98.08 98.42 98.19 98.30

WIQA 36.10 65.27 63.67 77.99 64.44 79.82

AVG. OF MULTIPLE-CHOICE QA 46.93 63.62 53.93 58.67 56.11 61.78

Question answering/long-form question answering

ELI5-ASKH 11.26 11.70 12.64 11.99 11.45 13.00

ELI5-ASKS 14.79 15.54 15.09 15.25 15.01 15.28

ELI5-ELI5 14.19 15.38 15.23 14.59 14.43 14.75

AVG. OF LONG-FORM QA 13.41 14.21 14.32 13.94 13.63 14.34

Question answering/machine reading comprehension

SUPERGLUE-RECORD 44.67 73.82 61.62 64.66 62.08 67.20

MULTI_NEWS 18.09 19.23 18.81 19.44 19.10 19.80

ADVERSARIAL_QA 34.10 54.60 43.17 46.40 45.35 48.56

AVG. OF READING COMPREHENSION 32.29 49.22 41.20 43.50 42.18 45.19

Conditional generation/summarization

SAMSUM 39.35 45.12 43.38 45.00 44.68 45.73

XSUM 21.35 26.56 23.84 25.87 26.07 29.90

AVG. OF SUMMARIZATION 30.35 35.84 33.61 35.44 35.38 37.82

Conditional generation/other

SPIDER 3.29 6.38 7.74 9.67 8.70 6.77

WIKI_BIO 42.39 44.03 44.84 45.36 46.19 47.09

WIKI_SPLIT 79.80 80.10 79.91 80.09 80.05 80.34

AVG. OF OTHER GENERATION 41.83 43.50 44.16 45.04 44.98 44.73

Other/linguistic phenomenon

BLIMP-ANAPHOR_GENDER_AGREEMENT 100.00 100.00 100.00 100.00 100.00 99.00

BLIMP-ELLIPSIS_N_BAR_1 49.00 100.00 100.00 100.00 100.00 100.00

BLIMP-SENTENTIAL_NEGATION 54.00 100.00 100.00 100.00 100.00 100.00

_NPI_SCOPE

BLIMP-ANAPHOR_NUMBER_AGREEMENT 49.00 100.00 100.00 100.00 100.00 100.00

BLIMP-DETERMINER_NOUN_AGREEMENT 46.00 100.00 100.00 100.00 100.00 100.00

_WITH_ADJ_IRREGULAR_1

BLIMP-EXISTENTIAL_THERE 53.00 100.00 100.00 100.00 100.00 100.00

_QUANTIFIERS_1

BLIMP-IRREGULAR_PAST 100.00 100.00 100.00 100.00 100.00 100.00

_PARTICIPLE_ADJECTIVES

BLIMP-WH_QUESTIONS_OBJECT_GAP 55.00 100.00 100.00 100.00 100.00 100.00

AVG. OF LINGUISTIC PHENOMENON 63.25 100.00 100.00 100.00 100.00 99.88

Other/generate explanation

COS_E 12.41 14.82 13.90 14.05 14.31 13.46

Other/slot filling

ADE_CORPUS_V2-DOSAGE 78.57 89.29 82.14 85.71 82.14 82.14

ADE_CORPUS_V2-EFFECT 59.15 61.35 63.25 62.52 60.91 62.66

AVG. OF SLOT FILLING 68.86 75.32 72.70 74.12 71.53 72.40

Other/other

ACRONYM_IDENTIFICATION 93.35 96.68 96.12 96.12 95.57 96.12

ASLG_PC12 15.78 44.07 47.71 73.72 80.65 92.92

CRAWL_DOMAIN 68.16 76.91 73.04 73.00 72.76 75.12

PROTO_QA 21.16 37.66 24.57 27.87 26.17 34.47

AVG. OF OTHER TASKS 49.61 63.83 60.36 67.68 68.79 74.66

AVG. OF ALL TASKS 49.80 67.18 65.08 67.31 66.80 69.27

We experiment all methods on T5BASE, with the best performance highlighted in bold, and also report the performance of PT on T5LARGE.

Table 1 (continued) | Overall (test) performance of over 100 NLP tasks comparing PT, PF, LR, AP and FT

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 225

Analysis https://doi.org/10.1038/s42256-023-00626-4

12,
800

6,400
3,20

0
1,6

00
800

400
20

0
10

0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps

12,
800

6,400
3,20

0
1,6

00
800

400
20

0
10

0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps

12,
800

6,400
3,20

0
1,6

00
800

400
20

0
10

0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps

12,
800

6,400
3,20

0
1,6

00
800

400
20

0
10

0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps

12,
800

6,400
3,20

0
1,6

00
800

400
20

0
10

0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps
12,

800
6,400

3,20
0

1,6
00

800
400

20
0

10
0

25
,600

Steps

12,
800

6,400
3,20

0
1,6

00
800

400
20

0
10

0

25
,600

Steps

0.99 0.97

0.92

0.88

0.84

0.79

0.94

0.89

0.84

0.79

EM

C
la

ss
ifi

ca
tio

n-
F1

C
la

ss
ifi

ca
tio

n-
F1

C
la

ss
ifi

ca
tio

n-
F1

C
la

ss
ifi

ca
tio

n-
F1

EM

EM
EM

AC
C

acronym_identification ag_news anli

circaboolqaslg_pc12

commonsense_qa crawl_domain discovery

dream freebase_qa glue-mnli

glue-qnli glue-qqp glue-sst2

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

PF
FT
AP
LR

0.54

0.41

0.28

0.15

0.02

0.90

0.69

0.48

0.26

0.050.36

0.48

0.60

0.72

0.840.97

0.72

0.48

0.24

0

0.69

0.52

0.36

0.19

0.02

0.68

0.51

0.34

0.17

0

0.94

0.82

0.7

0.57

0.45

0.93

0.77

0.62

0.46

0.3 0.44

0.57

0.71

0.85

0.98

0.29

0.44

0.60

0.75

0.90

0

0.06

0.13

0.19

0.25

0

0.06

0.12

0.17

0.23

0.18

0.33

0.48

0.62

0.77

Fig. 1 | The performance of T5BASE with different delta-tuning methods
(LR, AP and PF) and fine-tuning (FT) at different training steps. Note we apply
early stopping to all methods. We choose three metrics: (1) exact match (EM),
which measures the percentage of correctly predicted answers that exactly
match the ground-truth answer; (2) classification F1, which is calculated as the

harmonic mean of precision and recall; and (3) accuracy (ACC), which measures
the percentage of correctly predicted instances out of all instances. The
performance of PT is omitted as it lags far behind other tuning methods in both
convergence and performance. The convergence rate of these tuning methods is
ranked as: FT > AP ≈ LR > PF.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 226

Analysis https://doi.org/10.1038/s42256-023-00626-4

	6.	 Transferability. Existing delta-tuning methods could well sup-
port knowledge transfer, showing non-trivial transferability
among downstream tasks of similar categories. The finding sug-
gests that we could establish a common platform to share and
migrate these lightweight delta objects (that is the portion of
the fine-tuned parameters).
We discuss the practicality and applications of delta-tuning from

various perspectives in Supplementary Section 6, including efficient
training and shareable checkpoints, multi-task learning, catastrophic
forgetting mitigation and model-as-service. Hopefully, this Analysis
will inspire research to advance the efficient adaptation of large lan-
guage models.

Results
As an effective engine to stimulate large-size PLMs, delta-tuning pre-
sents an enormous practical potential for various real-world appli-
cations. We carried out systematic experiments to gain a deeper
understanding of the attributes of different mainstream delta-tuning
methods. Specifically, (1) we first conduct thorough comparisons
among four representative delta-tuning methods and fine-tuning,
covering the performance, convergence and the efficiency analysis.
(2) We explore the combinability of three representative delta-tuning
methods by comparing the performance under both the full-data and
low-resource settings. We also explore the effects of manual templates
and compare the generalization gap of different delta-tuning methods.
Furthermore, we investigate (3) the scaling law and (4) the transfer-
ability of delta-tuning methods among different downstream tasks.
The implementation details and tasks are described in Supplementary
Sections 3 and 4.

Performance, convergence and efficiency
Experimental setting. We evaluate vanilla fine-tuning (FT) and four
representative delta-tuning methods, including prompt-tuning (PT),
prefix-tuning (PF), LoRA (LR) and adapter (AP). We follow the common
practice for each delta-tuning implementation, and the training details
are provided in Supplementary Section 3.1.

To cover broad and diverse NLP tasks, we select over 100 repre-
sentative tasks from Huggingface datasets18. The selected tasks include
text classification (for example, sentiment analysis and natural lan-
guage inference), question answering (for example, machine reading
comprehension and multi-choice question answering), conditional
generation (for example, summarization and dialogue) and so on. We
list the task details of each category in Supplementary Table 4. To han-
dle different tasks with a single text-to-text PLM, we process the input
and output of each task into the same sequence-to-sequence format.
T5BASE and T5LARGE are two PLMs with the T5 architecture released by
ref. 8. We choose T5BASE (ref. 8) as the mainly evaluated PLM backbone
for different tuning methods, and we also report the performance of
PT with T5LARGE (ref. 8).

Performance analysis. The overall results are listed in Table 1, from
which we observe the following.

	1.	 In general, despite the substantial reduction of tunable param-
eters, different delta-tuning methods are almost comparable
to FT in performance in most cases. This demonstrates the po-
tential of driving large-scale PLMs through parameter-efficient
adaptation.

	2.	 Despite having different design elements, PF, LR and AP are
comparable to each other in performance. Specifically, each can
show dominant performance (even better than FT) over others
on certain tasks. According to the average results, the perfor-
mances of all the methods are ranked as FT > LR > AP > PF > PT.
Interestingly, the performance of the delta-tuning methods is
not consistent with their number of tunable parameters, that is,
at least on small PLMs, more tunable parameters do not neces-
sarily lead to better performance, and the design of the struc-
ture for delta-tuning may play a greater role.

	3.	 PT lags far behind other delta-tuning methods in most cases,
despite being the easiest method to implement (that is, without
modifying the internal structure of the model). Another inter-
esting finding is that, better PT performance is observed when
the model size is enlarged to T5LARGE, which is aligned with previ-
ous findings on the power of scale for prompt-tuning19. Howev-
er, as we show later, other delta-tuning methods also exhibit far
better performance when the scale of the backbone PLM grows
extremely large. The phenomenon implies that when the model
size increases sharply, the design of the structure may become
less important for delta-tuning methods.

Convergence analysis. In Fig. 1, Extended Data Fig. 1 and Supple-
mentary Fig. 3, we visualize the performance of different delta-tuning
methods (LR, AP and PF) and fine-tuning (FT) at different training steps
to compare their convergence rate. We also report the convergence
rate with respect to training time in Extended Data Fig. 2. As PT lags
far behind other tuning methods in convergence, we do not visualize
it in the figures. However, as mentioned in Methods, PT is the easiest
method to implement and it is the desirable method to theoretically
and empirically study the convergence issue across different sizes of
PLMs. Our findings are summarized as follows.

	1.	 The convergence rate of these tuning methods is ranked as:
FT > AP ≈ LR > PF. Overall, FT converges the fastest.

	2.	 We also find empirically that, (1) within a reasonably broad range,
the performance and convergence of each delta-tuning method
are not sensitive to the number of tunable parameters, but more
sensitive to the structures of the methods, and (2) with the scale
of PLM growing larger, the convergence of delta-tuning is also
accelerated (see ‘The power of scale for delta-tuning’ section).
To summarize, our experiments yield similar conclusions

in convergence and overall performance. These conclusions are

10.0

7.5

5.0

2.5

0

30.0

22.5

15.0

7.5

0 0

25.0

50.0

75.0

100.0

0 1 8

Batch size

T5BASE

G
PU

 m
em

or
y

(G
B)

32 64

0.90.80.
8 0.90.90.9

1.6 1.6 1.4

4.4

7.3

4.03.8
3.3

5.8
6.8

7.2

9.8

3.7
3.3

0 1 8

Batch size
32 64 0 1 8

Batch size

FT
AP
LR
BF

32 64

T5LARGE T5XL

11.
0 11.

6 13
.5

2.82.82.8 2.9 2.
93.0

4.8 4.74.4

11.
0
10
.5

9.3

15
.9

18
.319

.321
.1

28
.1

42
.5

10
.7
10
.7
10
.7 11.

2
11.
2

11.
1 16

.1
16
.0
15
.8

33
.1
32
.6
30
.5

55
.6
54
.6
52
.3

66
.5

90
.5

48
.5

43
.6

Fig. 2 | GPU memory consumed by each delta-tuning method and fine-tuning. We choose three T5 models with different scales to assess the GPU memory.
All evaluations are conducted on NVIDIA A100 GPUs.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 227

Analysis https://doi.org/10.1038/s42256-023-00626-4

well supported by the fact that we used the same experimental and
implementation set-up, the same model selection strategy and
diverse tasks.

Efficiency analysis. Here we study the efficiency of delta-tuning from
the perspectives of memory efficiency and computation efficiency. For
memory efficiency, to validate the efficiency of graphics processing

Table 2 | Results of combining different delta-tuning methods

Prompt ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

BitFit ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Adapter ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Tunable parameters 0% 1.75% 0.09% 1.84% 0.003% 1.76% 0.09% 1.85%

RoBERTaLARGE, full data, without manual templates

CoLA(Matt.) 4.6 66.61.6 63.50.6 65.90.5 42.72.3 63.11.5 63.70.9 64.40.9

SST-2(acc) 50.9 95.80.1 95.60.1 95.70.2 95.30.2 95.70.1 95.30.2 95.50.1

MRPC(F1) 1.4 92.70.2 91.90.4 93.00.4 85.40.5 92.00.5 92.20.5 92.90.3

STS-B(Pear.) -6.2 91.40.1 90.70.2 90.50.1 83.02.8 90.50.4 90.30.7 90.90.1

QQP(F1.) 6.4 83.50.1 83.50.0 84.40.0 77.20.4 84.30.0 83.60.1 84.40.0

MNLI(acc) 34.2 88.60.2 88.00.2 89.00.1 77.92.5 88.90.1 88.00.2 88.90.1

QNLI(acc) 50.6 93.70.3 93.40.3 94.20.1 86.20.5 94.20.1 93.20.3 94.40.1

RTE(acc) 47.7 86.80.5 86.21.0 84.50.5 74.40.5 84.10.8 85.71.5 84.71.1

Average 23.7 87.40.4 86.60.4 87.10.2 77.71.2 86.60.4 86.50.6 87.00.3

RoBERTaLARGE, full data, with manual templates

CoLA(Matt.) 2.2 66.91.1 64.20.5 65.51.0 37.820.8 64.71.3 64.80.7 64.91.0

SST-2(acc) 83.6 96.30.2 96.10.1 96.20.2 95.70.2 95.80.1 95.90.1 95.80.2

MRPC(F1) 61.9 92.20.4 92.70.6 92.70.2 84.20.5 91.80.2 92.20.4 92.00.4

STS-B(Pear.) -3.3 91.30.5 90.90.1 90.70.2 79.61.3 91.90.3 90.80.4 90.10.6

QQP(F1) 49.7 83.60.1 83.60.0 84.60.1 77.00.7 84.30.0 83.70.0 84.40.2

MNLI(acc) 50.9 88.60.1 87.70.1 88.70.1 80.20.2 88.70.1 88.00.1 88.90.1

QNLI(acc) 50.8 93.60.1 93.10.2 93.80.1 86.60.4 93.80.1 93.00.1 93.80.1

RTE(acc) 51.3 86.90.2 86.21.0 86.00.7 78.30.3 84.60.5 86.41.5 84.70.9

Average 43.4 87.40.3 86.80.3 87.30.3 77.43.0 86.90.3 86.90.4 86.80.4

RoBERTaLARGE, 16 shot, without manual templates

CoLA(Matt.) 4.6 19.69.6 15.117.0 17.711.4 3.50.6 21.411.5 20.819.6 21.513.4

SST-2(acc) 50.9 92.70.4 92.70.6 93.10.6 74.90.6 91.70.8 92.20.5 91.60.7

MRPC(F1) 1.4 78.24.4 69.81.6 81.20.0 6.24.1 74.67.1 69.36.5 77.45.4

STS-B(Pear.) -6.2 66.52.5 67.58.0 71.02.5 10.73.5 63.31.6 64.75.6 69.68.6

QQP(F1) 6.4 55.95.8 55.16.8 54.64.2 52.41.4 58.37.2 55.14.8 58.56.1

MNLI(acc) 34.2 58.14.5 64.63.4 62.74.1 35.30.6 61.43.9 61.45.1 61.03.8

QNLI(acc) 50.6 60.23.0 69.71.9 59.81.7 52.81.0 60.24.9 60.94.0 61.67.0

RTE(acc) 47.7 55.01.6 54.50.8 54.92.9 50.10.7 58.22.5 54.62.4 58.73.4

Average 23.7 60.84.0 61.15.0 61.93.4 35.71.6 61.24.9 59.96.1 62.56.0

RoBERTaLARGE, 16 shot, with manual templates

CoLA(Matt.) 2.2 10.515.0 4.65.0 9.210.2 1.41.7 10.24.2 5.92.5 5.95.5

SST-2(acc) 83.6 93.10.3 92.90.1 92.10.1 90.90.6 91.90.4 92.00.4 92.20.6

MRPC(F1) 61.9 77.21.4 74.54.9 81.20.0 72.14.4 76.81.3 76.12.4 81.20.0

STS-B(Pear.) -3.3 65.84.7 69.36.0 71.04.1 12.08.0 61.75.7 71.36.4 67.12.8

QQP(F1) 49.7 66.60.5 67.80.5 66.34.1 53.41.0 66.91.9 68.61.2 67.12.9

MNLI(acc) 50.9 68.01.4 69.43.3 68.90.4 53.22.5 67.11.8 67.12.0 68.10.3

QNLI(acc) 50.8 69.51.1 70.23.4 68.12.4 59.40.5 69.92.5 72.53.9 70.42.3

RTE(acc) 51.3 70.63.6 67.35.1 73.02.0 56.34.6 70.42.3 69.23.5 72.42.8

Average 43.4 65.23.5 64.53.5 66.22.9 49.82.9 64.42.5 65.32.8 65.62.2

Performance of RoBERTaLARGE on GLUE datasets. We report the average result of multiple random seeds on the validation set. A tick symbol denotes that the component is included in the
combination and a cross symbol denotes that it is excluded in the combination. The best performance of each dataset is highlighted in bold.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 228

Analysis https://doi.org/10.1038/s42256-023-00626-4

Adapter (MNLI) Adapter (QNLI) Adapter (SST-2)

LoRA (MNLI) LoRA (QNLI) LoRA (SST-2)

Pre	x-tuning (MNLI) Pre	x-tuning (QNLI) Pre	x-tuning (SST-2)

Last-layer tuning (MNLI) Last-layer tuning (QNLI) Last-layer tuning (SST-2)

Selective-module tuning (MNLI) Selective-module tuning (QNLI) Selective-module tuning (SST-2)

10,0008,0006,000

Steps
4,0002,0000 10,0008,0006,000

Steps
4,0002,000010,0008,0006,000

Steps
4,0002,0000

10,0008,0006,000

Steps
4,0002,000010,0008,0006,000

Steps
4,0002,000010,0008,0006,000

Steps
4,0002,0000

10,0008,0006,000

Steps
4,0002,0000 10,0008,0006,000

Steps
4,0002,0000 10,0008,0006,000

Steps
4,0002,0000

10,0008,0006,000

Steps
4,0002,000010,0008,0006,000

Steps
4,0002,000020,00015,000

Steps
10,0005,0000

10,0008,0006,000

Steps

AC
C

4,0002,0000 10,0008,0006,000

Steps
4,0002,0000 8,0006,000

Steps
4,0002,0000

a b c

d e f

g h i

j k l

m n o

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)XXL

BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)XXL

BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

0.96

0.72

0.48

0.24

0 0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0.96

0.72

0.48

0.24

0

0.96

0.72

0.48

0.24

0

0.96

0.72

0.48

0.24

0

0.96

0.72

0.48

0.24

0

Fig. 3 | The power of scale of delta-tuning methods. a–o, We perform all delta-
tuning methods on different scales of T5: T5SMALL(), T5BASE() and T5XXL(). We report
the performance of Adapter in (a–c), LoRA in (d–f), Prefix-tuning in (g–i),

Last-layer tuning in (j–l), and Selective-module tuning in (m–o). From this figure,
we can observe that with the scale of T5 increasing, all delta-tuning methods
could converge faster and achieve better performance on MNLI, QNLI and SST-2.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 229

Analysis https://doi.org/10.1038/s42256-023-00626-4

unit (GPU) memory for delta-tuning, in Fig. 2, we conduct experiments
to compare the GPU memory consumed by different delta-tuning
methods and fine-tuning across different PLM scales. T5XL is the PLM
with the T5 architecture released by ref. 8. Specifically, we choose three
scales of the T5 model, that is, T5BASE, T5LARGE and T5XL, and test the peak
GPU memories under different batch sizes. The static GPU memories,
which leave out the intermediate tensors such as hidden states, are
drawn on Batchsize=0. We use a NVIDIA A100 GPU (maximum GPU
memory 39.58 GB) and library OpenDelta for these experiments. For
the cases that consume more GPU memory than a single A100, we
parallelize the model across multiple GPUs, which does not introduce
additional memory consumption. We observe from the figure that
under small batch sizes (for example, 1 and 8), delta-tuning saves up
to 3/4 GPU memory; under large batch sizes (for example, 32 and 64),
delta-tuning saves about 1/2–1/3 GPU memory. This demonstrates that
delta-tuning saves GPU memory by alleviating the need for gradient
computations for most of the parameters. Given the fact that small
batch sizes are preferred when utilizing big models, delta-tuning has
great potential to apply to large-scale PLMs. Furthermore, among the
investigated methods, BitFit is the most memory efficient.

In addition, although delta-tuning may converge slower than
traditional fine-tuning, the computations of the tunable parameters
in the optimizer are greatly reduced, which speeds up training. We
compare the forwards time and the backwards time of prompt-tuning,
BitFit, adapter tuning and fine-tuning in Extended Data Fig. 3, varying
the input length. For a fair comparison, we keep the batch size the same.
From the results, we can see that:

	1.	 The structure of the delta-tuning methods could have a con-
siderable impact on the time of a single forwards or backwards
process. By greatly reducing the computations of the tunable
parameters, the backwards time of delta-tuning methods is
shorter than fine-tuning.

	2.	 As the adapter injects additional neural modules to each layer
of the transformer model, the path of data flow becomes longer
and further leads to inference latency (longer forwards time).

Combinations of delta-tuning methods
Considering that different delta-tuning methods are compatible
with each other, which means they could be applied on the same PLM
together, we investigate whether such a combination would bring addi-
tional benefits. Specifically, we evaluate both simultaneous combi-
nation and sequential combination. We choose three representative
delta-tuning methods, including prompt-tuning, BitFit and adapter,
to explore the effects of their combinations. The training details are
described in Supplementary Section 3.2.

Simultaneous combination. We first explore the effects of directly
applying all the three delta-tuning methods simultaneously. RoBERTaLARGE
is the PLM released by ref. 20 and GLUE21 is the official benchmark for lan-
guage understanding ability evaluation. The experiments are conducted
using RoBERTaLARGE on eight tasks of GLUE (full-data setting), and we
report the performance on the official development sets. We also test
the performance of RoBERTaLARGE under the few-shot setting, where we
randomly sample 16 training examples per label to construct the new

training set and development set, respectively. Similar to prompt-based
fine-tuning22, we insert a natural language prompt template into the input
text for each task, and the detailed implementations are described in
Supplementary Section 3.2.

We list the results of simultaneous combination for RoBERTaLARGE in
Table 2 (the results of T5BASE are listed in Extended Data Table 2, with dis-
cussions in Supplementary Section 3.2), from which we conclude that:

	1.	 Under both the full-data setting and few-shot setting, introduc-
ing adapter into the combination almost always conduces to
the average performance across GLUE tasks no matter whether
there exist manual templates.

	2.	 Introducing prompt-tuning into the combination generally
harms the average performance, showing that prompt-tuning
may not be compatible with the other two delta-tuning methods.

	3.	 Introducing BitFit into the combination generally improves the
average performance.

	4.	 Manual templates could substantially improve the zero-shot
performance (from 23.7 to 43.4) by narrowing the gap between
downstream tuning and pre-training. Under the few-shot set-
ting, manual templates could also help boost the average per-
formance evidently. However, when the training supervision is
abundant (full-data setting), manual templates only show mar-
ginal improvements.

Sequential combination. In addition to the simultaneous combina-
tion, we further investigate the compatibility when the above three
delta-tuning methods (prompt-tuning, BitFit and adapter) are sequen-
tially introduced. Specifically, we split the whole tuning process into
three stages. During each stage, we train an individual delta-tuning
method for 6,000 steps; in the following stages, we freeze the tuned
parameters in the previous stages and optimize only the newly intro-
duced delta parameters. SST-2 (ref. 23) is the dataset that evaluates
the sentiment analysis ability. We experiment with RoBERTaLARGE on
SST-2 with and without manual templates. The results are visualized
in Extended Data Fig. 4, from which it is derived that:

	1.	 Under certain cases, the performance can be improved with the
involvement of subsequent delta-tuning methods.

	2.	 However, there does not exist an optimal sequential combina-
tion strategy that could dominate other combination strategies
under different settings.

Generalization gap. In addition, we report the generalization gap
(train performance − dev performance) for RoBERTaLARGE under the
full-data setting, with the results shown in Extended Data Table 3. It
is derived that:

	1.	 The gap of a single delta-tuning method is always smaller than
fine-tuning, which means over-parameterization may help bet-
ter memorize (overfit) training samples. Among all the delta-
tuning methods, prompt-tuning tends to have the smallest gen-
eralization gap. Considering that each delta-tuning method
could already generalize well and achieve non-trivial perfor-
mance on the development set, overfitting the training set may
not be the prerequisite for good generalization.

	2.	 In general, combining delta-tuning methods would enlarge the
generalization gap, even to the extent that is comparable to
fine-tuning, despite tuning far fewer parameters. This suggests
that, for the investigated tasks, memorizing the training set may
not require employing all of the parameters; in other words, a
small model capacity during downstream adaptation may be
enough for good memorization.

	3.	 Utilizing manual templates generally would not influence the
generalization gap.

Conclusion. The above experiments indicate that different
delta-tuning methods have distinct functionalities for the optimization

Θ′ =

Pre-trained PLM

Θ =

Θ′ =

Θ′ =

Addition

Specification

Reparameterization

Frozen parameters Tunable parameters

Delta-tuning

Θ → Θ′

Fig. 4 | The categorization criterion of delta-tuning. Here Θ denotes the pre-
trained parameters and Θ′ represents the well-tuned parameters.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 230

Analysis https://doi.org/10.1038/s42256-023-00626-4

of PLMs; thus, combining them is generally conducive to the down-
stream performance. However, as shown in the above results, the opti-
mal combination of delta-tuning methods may vary considerably under
different settings. That being said, it would be interesting to explore
the mechanisms behind the inductive biases brought by different
delta-tuning methods under different cases in the future. Besides, we
also encourage future research explorations to systematically report
the performance of their proposed delta-tuning methods on various
PLM backbones under different settings thoroughly.

The power of scale for delta-tuning
With the scale of the backbone PLM growing, prompt-tuning becomes
more and more competitive in performance, and would even achieve
comparable performance to fine-tuning for a PLM with over 10 bil-
lion parameters19, and the convergence speed of prompt-tuning ben-
efits from the scaling law. In this section, we explore whether other
delta-tuning methods also exhibit the power of scale. MNLI and QNLI
are two natural language inference dataset, and T5SMALL and T5XXL are
two PLMs with the T5 architecture released by ref. 8. Specifically, we
experiment on the task of MNLI, QNLI and SST-2, and choose three
PLMs (T5SMALL, T5BASE and T5XXL) of increasing sizes, and evaluate the
performance of five representative delta-tuning methods (adapter,
LoRA, prefix-tuning, last-layer tuning and selective-module tuning). We
describe the percentages of the tuned parameters for each method in
all scales of the PLM in Supplementary Table 3. The training details are
provided in Supplementary Section 3.3. The results are visualized in
Fig. 3. From Fig. 3a–i, we observe that with the scale of the PLM growing,
both the performance and the convergence of all delta-tuning methods
are greatly improved. All delta-tuning methods tend to show compa-
rable performance to fine-tuning, even for a small-scale PLM (T5BASE).

On the basis of the existing results, we further design two
delta-tuning methods: last-layer tuning and selective-module tun-
ing. For last-layer tuning, we optimize the last layer in the T5 encoder;
for selective-module tuning, we randomly choose some modules (for
example, the feed-forward layer, query/key/value matrix in the atten-
tion layer, or a layer norm) in the T5 model to be tunable. The results
are visualized in Fig. 3j–l,m–o, from which we could conclude that:

	1.	 Both methods show promising results, especially when the
scale of the PLM is extremely large, with selective-module tun-
ing slightly better than last-layer tuning. These results suggest
that confining the optimization within a specific layer may not
be a good strategy (for example, the case of prompt-tuning and
last-layer tuning).

	2.	 Furthermore, randomly choosing modules across different lay-
ers could achieve excellent performance when the scale of PLMs
grows extremely large.
In general, the above results imply that the power of scale may be

a common phenomenon for delta-tuning. We hypothesize the exist-
ence of such a phenomenon is because larger PLMs generally have
smaller intrinsic dimensionalities16; therefore, merely tuning minimal
parameters could obtain a strong enough representation ability to
achieve non-trivial performance in downstream tasks; furthermore,
the over-parameterization and large-scale pre-training may make
PLMs more unlikely to get stuck in a local optimum during downstream
optimization, and thus the convergence is accelerated.

Task-level transferability evaluation
Recent studies24–26 have demonstrated that prompt-tuning has excel-
lent cross-task transferability. In this subsection, we explore the
cross-task transferability of four delta-tuning methods (prompt-tuning,
prefix-tuning, adapter and LoRA) with 12 tasks of 5 different types (senti-
ment analysis, natural language inference, paraphrase identification,
question answering and summarization). We transfer the trained delta
parameters to the unseen target tasks. More training and dataset details
are provided in Supplementary Section 3.4.

In experiments, we report their relative performance (zero-shot
transferring performance and original performance). The results
are shown in Extended Data Fig. 5, from which we can observe
that:

	1.	 For the tasks belonging to the same category, transferring tuned
parameters among them generally performs well; for the tasks
of different types, transferring delta parameters among them
generally achieves poor performance.

	2.	 We also find that transferring tuned parameters from the text
generation tasks such as question answering and summariza-
tion can achieve non-trivial performance on sentiment analysis,
indicating that text generation might be a complex task that in-
cludes the knowledge required to solve the sentiment analysis
tasks. In general, the above results demonstrate that it is promis-
ing to utilize trained delta parameters for similar tasks through
knowledge transfer.

Conclusion
This Analysis focuses on parameter-efficient methods, that is,
delta-tuning, for PLMs. We first describe the problem and provide a
categorization to survey the development of delta-tuning systemati-
cally. Captivated by the empirical evidence, we propose two frameworks
to theoretically discuss delta-tuning from the optimization and optimal
control perspectives. Our discussion sheds light on the theoretical
references of a novel design for delta-tuning methods and hopefully
could inspire a deeper understanding of model adaptation for PLMs.
Empirically, we conduct extensive experiments across 100+ NLP tasks
to fairly evaluate and explore the combinatorial property, influence
of scale and transferability for delta-tuning. In terms of performance,
delta-tuning can be slightly behind or comparable to fine-tuning on a
wide range of tasks, and the gap shrinks as the model scales; in terms of
efficiency, delta-tuning could considerably reduce storage space and
memory usage, as well as accelerate backpropagation. In summary,
delta-tuning shows considerable potential to stimulate large PLMs,
and we hope that the paradigm can be further theoretically studied
and empirically practiced.

Methods
Delta-tuning is developed on the success of PLMs, which use deep
transformers as the base structure and adopts pre-training objectives
on large-scale unlabelled corpora. For more information about PLMs
and transformers, see Supplementary Section 1 or related surveys27
and original papers4,5,8,9.

Given a pre-trained model Θ = {w1, w2, ..., wN} and training data 𝒟𝒟,
the objective of PLM adaptation is to produce the adapted model
ϴ′ = {w′

1,w
′
2, ...,w

′
M}, where wi is the model parameter. Define ΔΘ as the

change in the adapted model Θ′ compared with Θ, including the change
in values and the number of elements. In vanilla fine-tuning, N = M and
Δϴ = ∇fϴ(𝒟𝒟𝒟 is the update value of all parameters in Θ with respect to
training data, where fΘ represents the resulting loss of applying model
Θ to training data D. Note that in this case, we omit the small set of
parameters brought by extra classification heads for downstream tasks.
While in delta-tuning, ΔΘ refers to the modification of a small number
of parameters. Empirically, |ΔΘ| = |Θ| in vanilla fine-tuning, while for
delta-tuning, |ΔΘ| ≪ |Θ|, where |⋅| indicates the number of parameters
involved.

To organize them under a unified framework, we categorize the
delta-tuning methods into three groups according to the operations
on the delta parameters (as illustrated in Fig. 4): addition-based,
specification-based and reparameterization-based approaches.

•	 Addition-based methods introduce extra trainable neu-
ral modules or parameters that do not exist in the original
model or process. In addition-based methods, M ≥ N and
ΔΘ = {wN+1, wN+2, ..., wM}.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 231

Analysis https://doi.org/10.1038/s42256-023-00626-4

•	 Specification-based methods specify certain parameters in the
original model or process become trainable, whereas others are
frozen. Denote the set of trainable parameters as 𝒲𝒲, then
ΔΘ = {Δw1, Δw2, ..., ΔwN}. When wi ∈ 𝒲𝒲, Δwi is the incremental
value from wi to w′

i, else, Δwi = 0.
•	 Reparameterization-based methods reparameterize existing

parameters to a parameter-efficient form by transformation.
Denote the set of parameters to be reparameterized as 𝒲𝒲, and
suppose that each wi ∈ 𝒲𝒲 is reparameterized with new param-
eters R(wi𝒟 = {u1,u2, ...,uNi }, then Δϴ = (ϴ ⧵𝒲𝒲𝒟 𝒲 𝒲𝒲, where
𝒲𝒲 = {uj|∃wi ∈ 𝒲𝒲,uj ∈ R(wi𝒟}.

Addition-based methods
With the above definition in mind, addition-based methods intro-
duce additional parameters to the neural network. In this section, we
introduce two branches of representative addition-based methods,
adapter-based tuning and prompt-based tuning.

Adapter-based tuning. As a seminal work in delta-tuning,
adapter-based methods inject small-scale neural modules (adapters)
to the transformer layers and only tune these adapters for model adap-
tation. Although such a strategy leaves an open choice of adapter
structures, a simple instantiation13 achieves impressive performance
and has become the most widely used baseline in recent research.
Specifically, one adapter module contains a down-projection and an
up-projection. For an input feature h ∈ ℝd, a down-projection projects
the input to a r-dimensional space with a parameter matrix Wd ∈ ℝd×r,
after which a nonlinear function f (⋅) is applied. Then the up-projection
Wu maps the r-dimensional representation back to d-dimensional
space. Added with a residual connection, the complete computation
could be written as h← f(hWd)Wu+h.

In each block, the adapter modules are separately inserted after
the multi-head self-attention and the feed-forward network sublayers,
which reduces the tunable parameters per layer to 2 × (2dr (projection-
matrices) + d (residualconnection) + r (biasterm)). Practically, about
0.5–8% of parameters of the whole model13 could be involved in the
tuning process under such a strategy.

Although an adapter works with much fewer tunable parameters
than vanilla fine-tuning, some work attempts a more rigorous saving
strategy by introducing inductive biases into the structure of the
adapter layer. For example, Compacter28 proposes to use a combination
of hypercomplex multiplication and parameter sharing. The hyper-
complex multiplication parameterizes the original linear layer as the
sum of the Kronecker products of two small matrices. Taking the
down-projection as an example, Wd = ∑n

i=1 Ai ⊗ Bi, where A ∈ ℝn×n and

B ∈ ℝ
d
n
× r

n .
Their method reduces the parameter complexity of the normal

adapter layer from 𝒪𝒪(dr𝒟 to 𝒪𝒪(d + r𝒟 without harming the performance.
It also shows that a simple low-rank decomposition of the linear layer
leads to comparable performance with the adapter layer, that is,
Wd = ABT, where A ∈ ℝd×n, B ∈ ℝr×n and n ≪ min(d, r𝒟, where the super-
script T means matrix transposition.

As an addition-based approach, adapter-based tuning has the
advantage of placing multiple adapter instances on a pre-trained
model simultaneously, which can benefit many application scenarios.
For example, multi-task learning29,30 is an advantageous setting for
adapter-based methods, inserted with adapter modules in parallel with
the self-attention module, PLMs could demonstrate impressive rep-
resentational capacity in the multi-task setting. In contrast to directly
conducting multi-task learning on adapters, adapterFusion31 first
pre-trains task-specific adapters and then combines the representa-
tions of the pre-trained adapters to leverage the cross-task knowledge
and enhance the performance of transfer learning.

In terms of computational efficiency, the training of adapters
could be 60% faster than vanilla fine-tuning while the inference is only

4–6% slower. In addition, the computational cost could be further
reduced dynamically by removing adapters from lower transformer
layers32. Research also shows that adapter-based fine-tuning demon-
strates better robustness than fine-tuning. Specifically, adapter-based
fine-tuning could perform better than vanilla fine-tuning on few-shot
and cross-lingual scenarios33 and is more robust under adversarial
attacking34. We provide a comparison of different adapters, as well as
other delta-tuning methods in Extended Data Table 4.

To sum up, adapters are lightweight additional neural modules
that could be trained in a task-specific style, which could be regarded
as ‘encapsulation’ of task information (in fact, this perspective can be
applied to all the ‘deltas’). Although in an ideal world, adapters could
be freely shared and reused by researchers, in practice, sharing and
reusing such modules face substantial obstacles. Taking the first step,
AdapterHub35 provides a feasible platform and toolkit to deploy adapt-
ers inside the transformer-based models.

Prompt-based tuning. Instead of injecting neural modules to the
transformer model, prompt-based methods wrap the original input
with additional context. As a strategy to stimulate PLMs by mimick-
ing pre-trained objectives in the downstream tasks, prompt-based
learning has achieved promising performance in various NLP tasks36,37,
especially in low-data settings. The introduction of the technique and
implementations of prompt-based learning have already been compre-
hensively presented in other literature38,39. In this paper, we primarily
focus on the parameter-efficient attribute of prompt-based learning
(only prefixes or prompts are optimized) and pay less attention to the
settings where the models and prompts are simultaneously optimized.

An important seminal work of this branch of research is
prefix-tuning40, which prepends trainable continuous tokens (prefixes)
to the input and hidden states of each transformer layer. Each prefix is
drawn from a newly initialized trainable parameter matrix P, whereas
other parameters of the pre-trained model remain unchanged during
training. During generation, if an activation hi is in a prefix position,
it is the direct copy of the corresponding trainable parameter; other-
wise, the activation is computed by the model as hi = LM(zi, h<i), where
i is the position index, z is the input and LM stands for the language
model. It is worth noting that the paradigm could be applied to both
autoregressive and encoder–decoder models. Such a strategy could
be effectively applied to natural language understanding with differ-
ent scales of models41.

Compared with prefix-tuning, which adds tunable prefixes to
every intermediate transformer layer, prompt-tuning19 proposes a
more simplified strategy that only adds soft prompts to the input layer.
Similar to prefix-tuning, the newly introduced prompts are not param-
eterized by the pre-trained model but an additional parameter matrix.
And during training, the parameters of soft prompts are updated by
gradient descent while the model parameters keep frozen. As the model
size increases, the performance gap between prompt-tuning and full
parameter fine-tuning is narrowed. In particular, when the model scales
to T5XXL with 11 billion parameters, prompt-tuning yields comparable
performance on SuperGlue with fine-tuning. This strategy also exhibits
sensitivity to the length and initialization of the soft prompts. Prompts
could also be injected in the pre-training stage to seek a satisfying ini-
tialization point42. Moreover, similar to other methods, prompt-tuning
also demonstrates transferability across tasks24,26, which suggests
that appropriate initialization could be substantially beneficial for
downstream tasks.

The training curse of prompt-based methods. Although
prompt-based methods exhibit a promising future for the adaptation
of large pre-trained models, especially as prompt-tuning does not need
to modify anything inside the neural network, there still exist unsolved
challenges. In practice, prompt-tuning is difficult to optimize, and
generally, this phenomenon becomes more apparent as the volume

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 232

Analysis https://doi.org/10.1038/s42256-023-00626-4

of data and the size of the model decreases. Even though soft prompts
can be trained successfully, they converge slower than full parameter
fine-tuning and other delta-tuning methods during training. In our
experiments, we validate the phenomenon across different datasets
(‘Performance, convergence and efficiency’ section), indicating that
it is an interesting topic to train soft prompts to converge stably in
various situations.

Specification-based methods
Specification-based methods fine-tune a few inherent parameters
while leaving the majority of parameters unchanged in model adapta-
tion. This approach does not seek to change the internal structure of a
model but to optimize a small number of internal parameters to solve
particular tasks. In general, such specifications could be implemented
based on heuristics or training supervision.

Heuristic specification. Specification-based methods do not intro-
duce any new parameters to the model, but directly specify part of
the parameters to be optimized. The idea is simple but surprisingly
effective; an early study43 only fine-tunes one-fourth of the final lay-
ers of BERT and RoBERTa and could produce 90% of the performance
of full parameter fine-tuning. BitFit14 empirically proves that by only
optimizing the bias terms inside the model and freezing other param-
eters, the model could still reproduce over 95% performance on several
benchmarks. Empirical results in BitFit also show that even if we use a
small random set of parameters for delta-tuning (which obviously will
degrade the performance), the model could still yield passable results
on the GLUE benchmark. Unfortunately, the work only applies this trick
to small-scale models, and there is no guarantee that randomly choos-
ing some parameters to be tuned would remain competitive for larger
models. Another valuable observation is that different bias terms may
have different functionalities during model adaptation.

Learn the specification. Rather than manually or heuristically specify
which parameters to update, one alternative is to ‘learn’ such specifi-
cations. Following the definition in this section, diff pruning44 repa-
rameterizes the fine-tuned model parameters Θ′ as the summation
of the pre-trained parameters Θ and the difference vector ΔΘ, that is,
Θ′ = Θ + ΔΘ, where |Θ| = |Θ′|. Hence, the key issue is to encourage the
difference vector to be as sparse as possible; this work regularizes the
vector by a differentiable approximation to the L0-norm penalty to
achieve the goal of sparsity. Practically, because new parameters to be
optimized are introduced in the learning phase, diff pruning takes up
more GPU memory than full parameter fine-tuning, which may estab-
lish barriers in the application on large PLMs. The masking method45
learns selective masks for PLMs to only update the critical weights for
particular tasks. To learn such a set of masks, a binary matrix associated
with the model weights is introduced, where each value is generated
by a thresholding function. During backpropagation, the matrix is
updated by a noisy estimator.

Reparameterization-based methods
Reparameterization-based methods transform the adaptive param-
eters during optimization into parameter-efficient forms. This branch
of delta-tuning is typically motivated by the hypothesis that PLM adap-
tations towards most downstream tasks are inherently low rank, and
could thus be equivalently completed in a parameter-efficient way.

Intrinsic dimensions of PLM adaptation. Previous work16 has
empirically shown that the full parameter fine-tuning process of
pre-trained models can be reparameterized into optimization within
a low-dimensional subspace, that is, fine-tuning has a low intrinsic
dimension46, which measures the minimum number of parameters
needed to reach satisfactory performance. In experiments, they
find that a relatively low-dimensional (for example, thousands)

reparameterization could achieve over 85% fine-tuning performance. In
this sense, PLMs may serve as general compression frameworks, which
compress the optimization complexity from high dimensions to low
dimensions. They also demonstrate that larger PLMs generally have
smaller intrinsic dimensions, and the process of pre-training implicitly
reduces the PLM’s intrinsic dimension. Taking inspiration from these
observations, reparameterization-based delta-tuning methods are
proposed, which reparameterize (a part of) original model parameters
with low-dimensional proxy parameters and only optimize the proxy
parameters and thus reduce the computation and memory cost.

Intrinsic rank of weight differences. LoRA15 hypothesizes that the
change of weights during model tuning has a low intrinsic rank. On the
basis of this hypothesis, it is proposed to optimize the low-rank decom-
position for the change of original weight matrices in the self-attention
modules. In deployment, the optimized low-rank decomposition matri-
ces are multiplied to obtain the delta of self-attention weight matrices.
In this way, LoRA could match the fine-tuning performance on the GLUE
benchmark. They demonstrate the effectiveness of their methods on
PLMs of various scales and architectures.

Intrinsic space of multiple adaptations. Furthermore, intrinsic
prompt-tuning17 makes a stronger hypothesis that the adaptations
to multiple tasks could be reparameterized into optimizations within
the same low-dimensional intrinsic subspace. Instead of resorting to a
random subspace16, they try to find a common subspace shared by vari-
ous NLP tasks, which is implemented through decomposing the trained
soft prompts of multiple NLP tasks into the same low-dimensional
nonlinear subspace, and then learn to adapt the PLM to unseen tasks
or data by only tuning parameters in the subspace. Experiments
show that in a 250-dimensional subspace found with 100 random
tasks, by only tuning 250 free parameters, 97% and 83% of the full
prompt-tuning performance can be recovered for 100 seen tasks (using
different training data) and 20 unseen tasks, respectively. This provides
strong evidence for their universal reparameterization hypothesis
and may inspire future work. Moreover, this work also shows that the
low-dimensional reparameterization can substantially improve the sta-
bility of prompt-tuning. Their method could also be leveraged as a tool
for analysing the similarity and differences between various NLP tasks.

Theoretical perspectives of delta-tuning
Are these methods essentially doing the same thing? We are interested
in the theoretical principles behind delta-tuning. A PLM can usually be
effectively adapted to various downstream tasks with a smaller cost
compared with pre-training, which leads to theoretical issues that
are worth exploring in depth. We adopt two frameworks to introduce
theoretical insights into delta-tuning from the perspectives of optimi-
zation and optimal control.

Optimization perspective. As training neural networks is an opti-
mization process, the mechanism of delta-tuning can be analysed
from the perspective of optimization. In general, it is challenging and
time-consuming to solve large-scale and high-dimensional optimiza-
tion problems. However, in the fine-tuning of a large PLM, empirical
study16 reveals that there exists a low intrinsic dimension; thus, some
customized optimization schemes can benefit from this property and
be quite efficient in practice. One promising scheme is the subspace
optimization47 that seeks an acceptable solution in a low-dimensional
subspace. It manipulates a small number of variables and is more eco-
nomical than the optimization in the whole space. In fact, delta-tuning
can be viewed as a subspace-optimization method.

There are two approaches to applying subspace optimization
and thus the delta-tuning can roughly fall into two categories. One
is tuning model parameters in the solution subspace. It exploits a
low-dimensional manifold that can approximately represent the

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 233

Analysis https://doi.org/10.1038/s42256-023-00626-4

whole model parameters, and the optimization trajectory follows
this manifold. Some delta-tuning methods can be categorized into
this approach, for example, LoRA15, BitFit14 and diff pruning44. The
other approach seeks a surrogate of the original objective function in
a small functional subspace and uses the minimizer of the surrogate
function as the approximate final solution. It can provide some expla-
nations of the rationales of some popular delta-tuning methods such
as prompt-tuning19 and prefix-tuning40. A complete discussion can be
found in Supplementary Section 2.1.

Optimal control perspective. We draw inspiration from optimal
control theories to better understand the functionality of delta-tuning.
In addition to their parameter efficiency, the essence of delta-tuning
lies in regularizing the layer-wise hidden-state transformation process
along forwards propagation. The forward propagation of hidden states
h between layer j and j + 1 in the PLM, with the guidance of the delta
parameters δ(j) at the jth layer, can be written as 𝒢𝒢(j)θ (h(j),δ(j)) . With the
parameters θ in the PLM fixed, the transformation function 𝒢𝒢(j)θ defines
the altered forwards propagation at the jth layer with the learnable δ(j).
The detailed formulations and instantiations of 𝒢𝒢(j)θ for different
delta-tuning methods, including Prefix-tuning, Adapter, LoRA and
BitFit, are listed in Supplementary Section 2.2. In this way, the tuned
delta parameters are interpreted as the optimal controllers that steer
the PLMs to work in different realistic settings.

The optimal control perspective instructs the novel design of
delta-tuning. For example, robust prefix-tuning48 tunes additional
layer-wise prefix parameters during inference. The layer-wise propaga-
tion of hidden states is thus guided towards correct outputs. Another
work49 leveraged inference-time bias-term tuning to mitigate bias and
toxicity in natural language generation. The number of bias terms to be
tuned is determined by the extent of modification of the hidden-state
transformation in an adaptive manner. Finally, by applying the theo-
ries of controller design50,51, we expect more delta-tuning methods
proposed with theoretical guarantees and better exploitation of the
power of PLMs52.

Data availability
Datasets used in this study are freely available at https://github.com/
INK-USC/CrossFit and https://huggingface.co/datasets/glue.

Code availability
The source code of this study is publicly available on GitHub at https://
github.com/thunlp/OpenDelta. It is also available at https://zenodo.
org/record/7340282.

References
1.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,

436–444 (2015).
2.	 Hochreiter, S. & Schmidhuber, J. ürgen. Long short-term memory.

Neural Comput. 9, 1735–1780 (1997).
3.	 Bengio, Y., Ducharme, R. & Vincent, P. A neural probabilistic

language model. In Advances in Neural Information Processing
Systems. 13 (2000).

4.	 Vaswani, A. et al. Attention is all you need. In Advances in Neural
Information Processing Systems. 30 (2017).

5.	 Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training
of deep bidirectional transformers for language understanding.
In Proc. the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies. 1, 4171–4186 (2019).

6.	 Radford, A., Narasimhan, K., Salimans, T. & Sutskever, I. Improving
language understanding by generative pre-training. OpenAI Blog.
https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf (2018).

7.	 Radford, A. et al. Language models are unsupervised multitask
learners. OpenAI Blog. https://d4mucfpksywv.cloudfront.net/
better-language-models/language-models.pdf (2019).

8.	 Raffel, C. et al. Exploring the limits of transfer learning with
a unified text-to-text transformer. J. Mach. Learn. Res. 21,
5485–5551 (2020).

9.	 Brown, T. et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems. 33,
1877–1901 (2020).

10.	 Rae, J. W. et al. Scaling language models: methods, analysis &
insights from training Gopher. Preprint at arXiv https://arxiv.org/
abs/2112.11446 (2021).

11.	 Smith, S. et al. Using deepspeed and megatron to train
Megatron-Turing NLG 530b, a large-scale generative language
model. Preprint at arXiv https://arxiv.org/abs/2201.11990 (2022).

12.	 Chowdhery, A. et al. PaLM: scaling language modeling with
pathways. Preprint at arXiv https://arxiv.org/abs/2204.02311 (2022).

13.	 Houlsby, N. et al. Parameter-efficient transfer learning for NLP. In
International Conference on Machine Learning. (eds Chaudhuri, K.
& Salakhutdinov, R.) 2790–2799 (2019).

14.	 Zaken, E. B., Ravfogel, S. & Goldberg, Y. Bitfit: simple
parameter-efficient fine-tuning for transformer-based masked
language-models. In Proc. the 60th Annual Meeting of the
Association for Computational Linguistics. 2, 1–9 (2022).

15.	 Hu, E. J. et al. LoRA: low-rank adaptation of large language models.
In International Conference on Learning Representations (2022).

16.	 AAghajanyan, A., Gupt, S. & Zettlemoyer, L. Intrinsic
dimensionality explains the effectiveness of language model
fine-tuning. In Proc. the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing. 1, 7319–7328 (2021).

17.	 Qin, Y. et al. Exploring low-dimensional intrinsic task subspace via
prompt tuning. Preprint at arXiv https://arxiv.org/abs/2110.07867
(2021).

18.	 Lhoest, Q. et al. Datasets: a community library for natural
language processing. In Proc. the 2021 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations.
175–184 (2021).

19.	 Lester, B., Al-Rfou, R. & Constant, N. The power of scale for
parameter-efficient prompt tuning. In Proc. the 2021 Conference
on Empirical Methods in Natural Language Processing. 3045–3059
(2021).

20.	 Liu, Y. et al. Roberta: a robustly optimized BERT pretraining
approach. Preprint at arXiv https://arxiv.org/abs/1907.11692 (2019).

21.	 Wang, A. et al. GLUE: a multi-task benchmark and analysis
platform for natural language understanding. In International
Conference on Learning Representations (2019).

22.	 Schick, T. & Schütze, H. Exploiting cloze-questions for few-shot
text classification and natural language inference. In Proc. the
16th Conference of the European Chapter of the Association for
Computational Linguistics. 255–269 (2021).

23.	 Socher, R. et al. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proc. the 2013
Conference on Empirical Methods in Natural Language Processing.
1631–1642 (2013).

24.	 Su, Y. et al. On transferability of prompt tuning for natural
language understanding. In Proc. the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies. 3949–3969 (2022).

25.	 Williams, A., Nangia, N. & Bowman, S. A broad-coverage
challenge corpus for sentence understanding through inference.
In Proc. the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies. 1, 1112–1122 (2018).

http://www.nature.com/natmachintell
https://github.com/INK-USC/CrossFit
https://github.com/INK-USC/CrossFit
https://huggingface.co/datasets/glue
https://github.com/thunlp/OpenDelta
https://github.com/thunlp/OpenDelta
https://zenodo.org/record/7340282
https://zenodo.org/record/7340282
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.07867
https://arxiv.org/abs/1907.11692

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 234

Analysis https://doi.org/10.1038/s42256-023-00626-4

26.	 Vu, T., Lester, B., Constant, N., Al-Rfou, R. & Cer, D. Spot: better
frozen model adaptation through soft prompt transfer. In Proc.
the 60th Annual Meeting of the Association for Computational
Linguistics. 1, 5039–5059 (2022).

27.	 Han, X. et al. Pre-trained models: Past, present and future. AI
Open 2, 225-250. https://www.sciencedirect.com/science/article/
pii/S2666651021000231 (2021).

28.	 Mahabadi, R. K., Henderson, J. & Ruder, S. Compacter: efficient
low-rank hypercomplex adapter layers. In Advances in Neural
Information Processing Systems. 34, 1022–1035 (2021).

29.	 Stickland, A. C. & Murray, I. BERT and pals: projected attention
layers for efficient adaptation in multi-task learning. In
International Conference on Machine Learning. 5986–5995 (2019).

30.	 Mahabadi, R. K., Ruder, S., Dehghani, M. & Henderson, J.
Parameter-efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proc. the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing.
1, 565–576 (2021).

31.	 Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K. & Gurevych, I.
AdapterFusion: non-destructive task composition for transfer
learning. In Proc. the 16th Conference of the European Chapter of
the Association for Computational Linguistics. 487–503 (2021).

32.	 Rücklé, A. et al. AdapterDrop: in the efficiency of adapters in
transformers. In Proc. the 2021 Conference on Empirical Methods
in Natural Language Processing. 7930–7946 (2021).

33.	 He, R. et al. On the effectiveness of adapter-based tuning for
pretrained language model adaptation. In Proc. the 59th Annual
Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language
Processing. 1, 2208–2222 (2021).

34.	 Han, W., Pang, B. & Wu, Y. N. Robust transfer learning with
pretrained language models through adapters. In Proc. the 59th
Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing. 2, 854–861 (2021).

35.	 Pfeiffer, J. et al. AdapterHub: a framework for adapting
transformers. In Proc. the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations.
46–54 (2020).

36.	 Gao, T., Fisch, A. & Chen, D. Making pre-trained language
models better few-shot learners. In Proc. the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing. 1,
3816–3830 (2021).

37.	 Hu, S. et al. Knowledgeable prompt-tuning: incorporating
knowledge into prompt verbalizer for text classification. In
Proc. the 60th Annual Meeting of the Association for
Computational Linguistics. 1, 2225–2240 (2021).

38.	 Liu, P. et al. Pre-train, prompt, and predict: a systematic survey
of prompting methods in natural language processing. ACM
Comput. Surv. 55, 1–35 (2023).

39.	 Ding, N. et al. Openprompt: an open-source framework for
prompt-learning. In Proc. the 60th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations.
105–113 (2022).

40.	 Li, X. L. & Liang, P. Prefix-tuning: optimizing continuous
prompts for generation. In Proc. the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing. 1,
4582–4597 (2021).

41.	 Liu, X. et al. P-tuning: prompt tuning can be comparable to
fine-tuning universally across scales and tasks. In Proc. the 60th
Annual Meeting of the Association for Computational Linguistics. 2,
61–68 (2022).

42.	 Gu, Y., Han, X., Liu, S. & Huang, M. Ppt: pre-trained prompt
tuning for few-shot learning. In Proc. the 60th Annual
Meeting of the Association for Computational Linguistics. 1,
8410–8423 (2022).

43.	 Lee, J., Tang, R. & Lin, J. What would elsa do? Freezing layers
during transformer fine-tuning. Preprint at arXiv https://arxiv.org/
abs/1911.03090 (2019).

44.	 Guo, D., Rush, A. & Kim, Y. Parameter-efficient transfer learning
with diff pruning. In Proc. the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing. 1,
4884–4896 (2021).

45.	 Zhao, M., Lin, T., Mi, F., Jaggi, M. & Schütze, H. Masking as an
efficient alternative to finetuning for pretrained language models.
In Proc. the 2020 Conference on Empirical Methods in Natural
Language Processing. 2226–2241 (2020).

46.	 Li, C., Farkhoor, H., Liu, R. & Yosinski, J. Measuring the intrinsic
dimension of objective landscapes. In International Conference on
Learning Representations (2018).

47.	 Liu, X., Wen, Z. & Yuan, Y.-X. Subspace methods for nonlinear
optimization. CSIAM Trans. Appl. Math. 2, 585–651 (2021).

48.	 Yang, Z. & Liu, Y. On robust prefix-tuning for text classification.
In International Conference on Learning Representations
(2022).

49.	 Yang, Z., Yi, X., Li, P., Liu, Y. & Xie, X. Unified detoxifying and
debiasing in language generation via inference-time adaptive
optimization. Preprint at arXiv https://arxiv.org/abs/2210.04492
(2022).

50.	 Boyd, S. P. & Barratt, C. H. Linear Controller Design: Limits of
Performance Vol. 7 (Citeseer, 1991).

51.	 Ang, K. H., Chong, G. & Li, Y. PID control system analysis,
design, and technology. IEEE Trans. Control Syst. Technol. 13,
559–576 (2005).

52.	 He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T. & Neubig, G. Towards
a unified view of parameter-efficient transfer learning. In
International Conference on Learning Representations (2022).

Acknowledgements
This work is supported by the National Key Research and
Development Program of China (No. 2020AAA0106500), National
Natural Science Foundation of China (No. 62276154 and No.
62011540405), Beijing Academy of Artificial Intelligence (BAAI)
and the Institute for Guo Qiang at Tsinghua University. We thank
J. He, P. Liu, T. Sun, C., L. Wang, C. Fang, X. Han and R. Shao for their
suggestions and help with the paper.

Author contributions
N.D., Y.Q. and Z.L. initiated and organized the research. N.D. drafted
the abstract, the main text and Section Methods. S.H., X.W., W.Z. and
Y.Q. added contents to Section Methods. F.W., Z.Y., N.D., Y.Q., S.H. and
J.C. discussed the scope and content of the theoretical discussion.
F.W. developed the optimization framework, and Z.Y. and Y.L. proposed
the optimal control framework. N.D. verified the formula derivation.
Y.Q. led the empirical study part. Y.Q., G.Y., Y.C., Y.S., W.C., J.Y.,
C.-M.C. and N.D. drafted Section Results. Y.Q., G.Y., W.C., J.Y. and S.H.
conducted the experiments for overall performance and combination
in Section Results. Y.S. and C.-M.C. conducted and wrote experiments
for transferability and power of scale in Section Results. S.H. and
Y.Q. drafted the application part. Z.L., H.-T.Z, Y.L., J.T., J.L. and M.S.
advised the project, suggested the theoretical and empirical study
and participated in the discussion. N.D. and Y.Q. participated in all the
sections and proofread the whole paper.

Competing interests
The authors declare no competing interests.

http://www.nature.com/natmachintell
https://www.sciencedirect.com/science/article/pii/S2666651021000231
https://www.sciencedirect.com/science/article/pii/S2666651021000231
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/2210.04492

Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 235

Analysis https://doi.org/10.1038/s42256-023-00626-4

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-023-00626-4.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s42256-023-00626-4.

Correspondence and requests for materials should be addressed to
Zhiyuan Liu, Hai-Tao Zheng or Maosong Sun.

Peer review information Nature Machine Intelligence
thanks Dieuwke Hupkes and the other, anonymous,
reviewer(s) for their contribution to the peer review of
this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and
indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license
and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Fig. 1 | The performance of T5BASE with different delta-tuning methods at different training steps. The performance of T5BASE with different delta-
tuning methods (LR, AP, PF) and fine-tuning (FT) at different training steps.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Fig. 2 | The performance of T5BASE with different delta-tuning methods at different training time. The performance of T5BASE.with different delta-
tuning methods (LR, AP, PF) and fine-tuning (FT) at different training time (seconds).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Fig. 3 | Time consumption for fine-tuning (FT) and different delta-tuning methods. Time consumption for fine-tuning (FT) and different delta-
tuning methods, including BitFit (BF), adapter (AP) and prompt-tuning (PT). We report the results with different input length.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Fig. 4 | The performance of RoBERTaLARGE when sequentially applying different delta-tuning methods. The performance of RoBERTaLARGE when
different delta-tuning methods (adapter (AP), BitFit (BF) and prompt-tuning (PT)) are applied sequentially. The experiments are conducted on SST-2.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Fig. 5 | Zero-shot transferring performance of four delta-
tuning methods using T5BASE. Zero-shot transferring performance of four
delta-tuning methods using T5BASE. We report relative performance (zero-shot
transferring performance / original performance) (%) on the target tasks

(columns) when delta parameters are transferred from the source tasks (rows).
Colours of the task names indicate the task types. Blue: sentiment analysis.
Green: natural language inference. Orange: paraphrase identification. Brown:
question answering. Purple: summarization.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Table 1 | Statistics of the usage of different sizes of pre-trained models

The usage of models of different sizes in research published in NLP conferences, the statistic is based on 1000 randomly selected papers. Large PLMs are defined as PLMs with over 1 billion
parameters.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Table 2 | Performance for T5BASE on GLUE datasets

Performance of T5BASE on GLUE datasets. We report the average result of multiple random seeds on the validation set. ✓ denotes the component is included in the combination and ✗ denotes
it is excluded in the combination.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Table 3 | Generalization gap for RoBERTaLARGE on GLUE datasets

The experiments of generalization gap for RoBERTaLARGE on GLUE datasets. We report the average result (train performance - dev performance) of multiple random seeds. ✓ denotes the
component is included in the combination and ✗ denotes it is excluded in the combination.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Table 4 | Comparison between different delta-tuning methods

Comparison between different delta-tuning methods. we use underline to denote tunable parameters and modules. [:] is the concatenation operation; dh means the hidden dimension of the
Transformer model; dm is the intermediate dimension between down-projection and up-projection, where dm is far smaller than dh. Compacter utilize hypercomplex matrix multiplication and
low-rank decomposition to reduce the amount of parameters; AdapterDrop randomly dropout adapters in the first n layers and also bring down backpropagation time; Prefix-Tuning adds
prefixes of n past key-values.

http://www.nature.com/natmachintell

	Parameter-efficient fine-tuning of large-scale pre-trained language models

	Results

	Performance, convergence and efficiency

	Experimental setting
	Performance analysis
	Convergence analysis
	Efficiency analysis

	Combinations of delta-tuning methods

	Simultaneous combination
	Sequential combination
	Generalization gap
	Conclusion

	The power of scale for delta-tuning

	Task-level transferability evaluation

	Conclusion

	Methods

	Addition-based methods

	Adapter-based tuning
	Prompt-based tuning
	The training curse of prompt-based methods

	Specification-based methods

	Heuristic specification
	Learn the specification

	Reparameterization-based methods

	Intrinsic dimensions of PLM adaptation
	Intrinsic rank of weight differences
	Intrinsic space of multiple adaptations

	Theoretical perspectives of delta-tuning

	Optimization perspective
	Optimal control perspective

	Acknowledgements

	Fig. 1 The performance of T5BASE with different delta-tuning methods (LR, AP and PF) and fine-tuning (FT) at different training steps.
	Fig. 2 GPU memory consumed by each delta-tuning method and fine-tuning.
	Fig. 3 The power of scale of delta-tuning methods.
	Fig. 4 The categorization criterion of delta-tuning.
	Extended Data Fig. 1 The performance of T5BASE with different delta-tuning methods at different training steps.
	Extended Data Fig. 2 The performance of T5BASE with different delta-tuning methods at different training time.
	Extended Data Fig. 3 Time consumption for fine-tuning (FT) and different delta-tuning methods.
	Extended Data Fig. 4 The performance of RoBERTaLARGE when sequentially applying different delta-tuning methods.
	Extended Data Fig. 5 Zero-shot transferring performance of four delta-tuning methods using T5BASE.
	Table 1 Overall (test) performance of over 100 NLP tasks comparing PT, PF, LR, AP and FT.
	Table 2 Results of combining different delta-tuning methods.
	Extended Data Table 1 Statistics of the usage of different sizes of pre-trained models.
	Extended Data Table 2 Performance for T5BASE on GLUE datasets.
	Extended Data Table 3 Generalization gap for RoBERTaLARGE on GLUE datasets.
	Extended Data Table 4 Comparison between different delta-tuning methods.

