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Parameter-efficient fine-tuning of large-scale 
pre-trained language models

Ning Ding    1,2,4, Yujia Qin1,2,4, Guang Yang1, Fuchao Wei1, Zonghan Yang1, 
Yusheng Su1,2, Shengding Hu1,2, Yulin Chen3, Chi-Min Chan1, Weize Chen1,2, 
Jing Yi1,2, Weilin Zhao1,2, Xiaozhi Wang1, Zhiyuan Liu    1,2  , Hai-Tao Zheng    3  , 
Jianfei Chen1, Yang Liu1, Jie Tang1,2, Juanzi Li1 & Maosong Sun    1,2 

With the prevalence of pre-trained language models (PLMs) and the 
pre-training–fine-tuning paradigm, it has been continuously shown that 
larger models tend to yield better performance. However, as PLMs scale 
up, fine-tuning and storing all the parameters is prohibitively costly and 
eventually becomes practically infeasible. This necessitates a new branch 
of research focusing on the parameter-efficient adaptation of PLMs, which 
optimizes a small portion of the model parameters while keeping the rest 
fixed, drastically cutting down computation and storage costs. In general, 
it demonstrates that large-scale models could be effectively stimulated by 
the optimization of a few parameters. Despite the various designs, here we 
discuss and analyse the approaches under a more consistent and accessible 
term ‘delta-tuning’, where ‘delta’ a mathematical notation often used to 
denote changes, is borrowed to refer to the portion of parameters that are 
‘changed’ during training. We formally describe the problem and propose a 
unified categorization criterion for existing delta-tuning methods to explore 
their correlations and differences. We also discuss the theoretical principles 
underlying the effectiveness of delta-tuning and interpret them from the 
perspectives of optimization and optimal control. Furthermore, we provide 
a holistic empirical study on over 100 natural language processing tasks and 
investigate various aspects of delta-tuning. With comprehensive study and 
analysis, our research demonstrates the theoretical and practical properties 
of delta-tuning in the adaptation of PLMs.

With the revolutionary development in computing hardware, tradi-
tional statistical methods for modelling natural language have yielded 
their place to deep learning1 that heavily relies on tensor computation 
and huge data volume. Modern natural language processing (NLP) 
uses deep neural networks to implicitly model language distribution 
and capture language representations2–4. A standard pipeline involves 
encoding language into discrete tokens (tokenization) as model input, 
choosing a proper model architecture, designing corresponding tasks 

and training the network with the given corpora. Among these deep 
neural architectures, the transformer neural network4 produces 
state-of-the-art performances on a series of NLP applications. Sub-
sequently, the advancement in pre-trained language models (PLMs) 
using deep transformers as their foundation has ushered in a new era 
of NLP. PLMs typically use heavily over-parameterized transformers 
as the base architecture and model natural language in bidirectional5, 
autoregressive6,7 or sequence-to-sequence8 manners on large-scale 
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such model adaptations. Compared with fine-tuning, delta-tuning 
makes model adaptation a considerably low-cost process. For instance, 
researchers find that the optimization problem of the adaptations for 
big models could be reparameterized into a low-dimensional ‘intrinsic 
subspace’16,17 and various NLP tasks could be handled by tuning only 
very few parameters in the subspace. The empirical evidence takes us 
one step closer to understanding how pre-trained models work and 
may even spawn new theoretical questions that are worth exploring.

This Analysis attempts to comprehensively analyse recent 
advances in delta-tuning to establish a deeper understanding of 
this branch of methods (Methods). We formally describe the prob-
lem and categorize delta-tuning methods into addition-based, 
specification-based and reparameterization-based methods as illus-
trated in Fig. 4, then we comprehensively introduce the technical 
details and empirical conclusions of each method. To better under-
stand the inner connections among the delta-tuning methods and the 
mechanisms of model adaptation, we develop theoretical analyses of 
delta-tuning by proposing theoretical frameworks from two differ-
ent perspectives: optimization and optimal control. Our theoretical 
discussion is summarized as follows.

	1.	 Optimization. Based on the knowledge of a low intrinsic dimen-
sion in a large PLM, we show that delta-tuning is essentially a 
subspace-optimization method with respect to the solution 
space or functional space. The discussion justifies the designs of 
the existing delta-tuning methods and explains some phenom-
ena in the experiments.

	2.	 Optimal control. Inspired by the relationship between deep 
learning and optimal control theories, we interpret delta-tuning 
as seeking optimal controllers for PLMs. We propose an optimal 
control framework that unifies different delta-tuning approach-
es. Our analysis provides theoretical references for the novel de-
sign of delta-tuning methods.
In terms of empirical studies, we carry out extensive and system-

atic experiments (Results) on over 100 NLP tasks to rigorously explore 
the performances, combinability, the power of scale, transferability 
and so on. Our main findings are summarized as follows.

	1.	 Performance. Delta-tuning yields consistent and non-trivial per-
formance on more than 100 NLP tasks, showing that it is an ef-
fective and lightweight alternative to conventional fine-tuning. 
Among several representative delta-tuning methods, no single 
algorithm predominantly outperforms the others.

	2.	 Convergence. Training stability is also one of our focuses. Al-
though the convergence of delta-tuning is generally not as fast 
as that of full parameter fine-tuning, we find that it is more sensi-
tive to the delta structures than the number of tunable param-
eters. Meanwhile, the larger the model is, the faster the training 
converges.

	3.	 Efficiency. In terms of computational efficiency, which is the 
original motivation for the methods, delta-tuning could sub-
stantially improve computational and storage efficiency while 
achieving decent results, highlighting the promising practical 
value of adapting super-large PLMs.

	4.	 Combinability. Combining multiple delta-tuning methods is 
more effective than a single method in most cases, despite that 
the optimal combination may vary for different PLM backbones, 
downstream tasks and data scales. This finding implies the ex-
istence of an optimal delta structure, and it is likely that such a 
structure cannot be obtained artificially, but could be generated 
automatically.

	5.	 Power of scale. The power of scale (that is, both the performance 
and convergence are improved when the size of the PLM increas-
es) is observed in all of the delta-tuning methods, even in unregu-
lated neural modules. In other words, when the model size is large 
enough, only optimizing a random portion of parameters can 
achieve comparable performance to conventional fine-tuning.

unsupervised corpora. Then for downstream tasks, task-specific 
objectives are introduced to fine-tune the PLMs for model adapta-
tion. Notably, the increasing scale of PLMs (measured by the number 
of parameters) seems to be an irreversible trend, as constant empiri-
cal results show that larger models (along with more data) almost 
certainly lead to better performance. For example, with 175 billion 
parameters, Generative Pre-trained Transformer 3 (GPT-3)9 generates 
natural language of unprecedented quality and can conduct various 
desired zero-shot tasks with satisfactory results given appropriate 
prompts. Subsequently, a series of large-scale models such as Gopher10, 
Megatron-Turing Natural Language Generation (NLG)11 and Pathways 
Language Model (PaLM)12 have repeatedly shown effectiveness on a 
broad range of downstream tasks.

As the model scales, how to efficiently and effectively adapt 
large models to particular downstream tasks becomes an intriguing 
research issue. Although in-context learning has shown promising 
performance for PLMs such as GPT-3, fine-tuning still overtakes it under 
the task-specific setting. However, the predominant approach, full 
parameter fine-tuning, which initializes the model with the pre-trained 
weights, updates all the parameters and produces separate instances 
for different tasks, becomes impractical when dealing with large-scale 
models. In addition to the cost of deployment and computation, storing 
different instances for different tasks is extremely memory intensive. 
To further explore the practical application rate of large models (PLMs 
with over 1 billion parameters), we randomly select 1,200 published 
research papers from the recent six NLP conferences (200 for each 
venue), including Annual Meeting of the Association for Computational 
Linguistics (ACL) 2022, ACL 2021, Conference on Empirical Methods 
in Natural Language Processing (EMNLP) 2021, Annual Conference of 
the North American Chapter of the Association for Computational 
Linguistics (NAACL) 2021, ACL 2020 and EMNLP 2020. Then we manu-
ally count the usage of PLMs in these peer-reviewed works, focusing on 
only the experimental part of the papers. According to the statistics in 
Extended Data Table 1, although the use of PLMs has become increas-
ingly popular, only about 0.5–4% of research papers practically adopt 
large PLMs in the experiments. One of the reasons for their unpopular-
ity is the unaffordable cost of deploying and experimentally validating 
large PLMs.

In fact, large PLMs with billions of parameters could be effec-
tively driven by optimization of a few parameters, and a branch of 
parameter-efficient methods for model tuning arises. Although each 
of these approaches proposes distinct designs on the structure and 
location of trainable parameters in PLMs, they essentially tune a ‘delta’ 
in the adaptation phase, which refers to a small fraction of trainable 
parameters that can be placed anywhere in the PLM. We thus unify them 
under a more accessible term ‘delta-tuning’ that captures the essence 
of this branch of methods more precisely. In general, delta-tuning 
updates only a small number of parameters (inherently in the model 
or additionally introduced) while freezing the remaining parameters 
that account for the vast majority. Adapter tuning13 is among the earli-
est approaches to steer pre-trained models with a limited number of 
parameters. It inserts adapter modules with bottleneck architecture 
between layers in PLMs and only these inserted modules get updated 
during fine-tuning. BitFit14 updates the bias terms in PLMs while freez-
ing the remaining modules. Low rank adaptation (LoRA)15 decomposes 
attention weight update into low-rank matrices to reduce the number 
of trainable parameters. The delta-tuning methods enable efficient 
tuning and practical usage for large pre-trained models and often 
achieve comparable results to the standard fine-tuning. For example, 
the vanilla fine-tuning of GPT-3 needs to update about 175,255 million 
parameters, which is almost infeasible in both industry and academia. 
However, if we tune only the injected low-rank decomposition matrices 
in each transformer layer15, only 37.7 million parameters will be involved 
in backpropagation. Delta-tuning not only provides a promising way 
to adapt large PLMs but also sheds light on the mechanisms behind 
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Table 1 | Overall (test) performance of over 100 NLP tasks comparing PT, PF, LR, AP and FT

Task PT (BASE) PT (LARGE) PF LR AP FT

Ratio of tunable parameters 0.03% 0.01% 7.93% 0.38% 2.38% 100%

Classification/sentiment analysis

GLUE-SST2 92.20 94.95 92.66 94.04 93.35 94.27

ROTTEN_TOMATOES 88.36 91.84 89.96 89.30 89.20 89.77

FINANCIAL_PHRASEBANK 97.18 98.36 98.36 97.94 97.95 98.36

POEM_SENTIMENT 54.18 70.31 85.38 86.80 82.52 83.26

YELP_POLARITY 95.47 98.18 97.78 97.37 97.30 97.92

AVG. OF SENTIMENT ANALYSIS 85.48 90.73 92.83 93.09 92.06 92.72

Classification/emotion

EMO 69.91 71.47 73.31 76.13 74.88 75.69

EMOTION 89.19 88.73 88.29 88.63 88.98 89.25

TWEET_EVAL-HATE 53.00 42.23 44.67 48.16 47.88 51.33

TWEET_EVAL-IRONY 58.02 69.73 76.00 76.75 73.88 77.43

TWEET_EVAL-OFFENSIVE 75.94 78.87 80.94 80.97 80.59 82.05

TWEET_EVAL-SENTIMENT 28.90 72.79 71.78 71.31 71.90 71.98

TWEET_EVAL-STANCE_ABORTION 32.59 61.42 61.47 63.20 62.61 61.72

TWEET_EVAL-STANCE_ATHEISM 56.28 67.58 71.54 71.77 71.27 74.41

TWEET_EVAL-STANCE_CLIMATE 47.61 52.43 52.86 55.92 59.06 57.38

TWEET_EVAL-STANCE_FEMINIST 29.65 51.63 56.27 57.41 58.57 58.51

TWEET_EVAL-STANCE_HILLARY 41.34 63.18 62.15 65.40 61.74 66.41

AVG. OF EMOTION 52.95 65.46 67.21 68.70 68.31 69.65

Classification/hate-speech detection

ETHOS-DISABILITY 46.99 100.00 93.81 93.81 100.00 93.81

ETHOS-GENDER 63.84 77.08 77.44 79.91 79.91 74.48

ETHOS-NATIONAL_ORIGIN 44.30 81.77 81.77 87.95 84.72 84.72

ETHOS-RACE 84.36 97.06 94.54 97.21 94.27 97.21

ETHOS-RELIGION 93.02 93.02 96.35 93.02 96.35 96.64

ETHOS-DIRECTED_VS_GENERALIZED 76.86 86.64 94.76 92.29 94.94 94.94

HATE_SPEECH_OFFENSIVE 73.27 79.08 75.22 75.21 75.06 75.04

HATE_SPEECH18 75.57 74.45 79.42 79.59 80.86 80.93

HATEXPLAIN 50.98 67.62 66.06 68.03 68.11 68.02

AVG. OF HATE SPEECH DETECTION 67.69 84.08 84.37 85.22 86.02 85.09

Classification/natural language inference

ANLI 25.85 44.96 43.88 45.27 49.19 50.54

GLUE-MNLI 35.43 86.12 82.21 83.74 83.90 86.39

GLUE-QNLI 52.34 93.01 87.48 92.02 91.58 92.57

GLUE-RTE 45.32 79.14 72.66 79.14 78.42 80.58

SCITAIL 91.02 95.47 93.04 93.80 94.04 94.77

SUPERGLUE-RTE 50.36 84.89 73.38 79.14 82.01 78.42

SICK 40.10 88.82 87.91 88.69 88.88 89.15

SUPERGLUE-CB 75.00 78.57 100.00 100.00 96.43 96.43

AVG. OF NATURAL LANGUAGE INFERENCE 51.93 81.37 80.07 82.73 83.06 83.61

Classification/fact checking

CLIMATE_FEVER 15.47 33.42 38.03 39.35 37.48 41.57

LIAR 13.23 28.87 26.46 28.67 27.08 28.20

HEALTH_FACT 39.15 45.60 50.38 52.05 51.21 54.19

TAB_FACT 46.65 50.16 52.53 56.86 53.42 57.34

AVG. OF FACT CHECKING 28.63 39.51 41.85 44.23 42.30 45.36
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Task PT (BASE) PT (LARGE) PF LR AP FT

Classification/paraphrase

GLUE-QQP 84.65 86.21 84.62 86.87 85.93 89.13

MEDICAL_QUESTIONS_PAIRS 46.56 91.80 85.25 88.52 90.16 87.21

PAWS 49.60 91.27 92.07 93.39 92.91 93.60

GLUE-MRPC 67.65 88.24 87.25 87.25 87.25 89.71

AVG. OF PARAPHRASE 62.12 89.38 87.3 89.01 89.06 89.91

Classification/topic

AG_NEWS 91.37 93.61 93.42 94.63 94.60 95.19

Classification/binary

BOOLQ 61.28 77.43 77.55 80.00 78.47 81.77

MC_TACO 76.25 88.39 86.02 88.13 86.81 87.34

AVG. OF BINARY 68.77 82.91 81.79 84.07 82.64 84.56

Classification/other

ADE_CORPUS_V2-CLASSIFICATION 41.76 94.42 93.25 94.47 93.91 94.27

DISCOVERY 0.18 18.83 16.67 18.98 18.41 25.88

GLUE-COLA 0.00 55.60 50.95 49.40 44.66 51.53

SMS_SPAM 95.80 97.46 97.14 97.14 97.46 97.11

SUPERGLUE-WIC 50.16 68.34 64.89 68.65 70.53 71.79

WIKI_QA 48.78 73.97 64.10 72.15 70.75 74.41

CIRCA 13.51 77.39 80.16 82.38 82.93 84.69

ONESTOP_ENGLISH 22.53 98.23 100.00 100.00 100.00 100.00

TREC 90.80 91.51 91.38 93.38 93.36 94.81

TREC-FINEGRAINED 80.63 88.18 90.04 91.44 90.00 91.27

AVG. OF OTHER CLASSIFICATION 44.42 76.39 74.86 76.80 76.2 78.58

Question answering/closed-book question answering

FREEBASE_QA 1.90 6.71 2.63 3.75 5.86 23.52

LAMA-CONCEPTNET 15.25 26.12 22.63 34.96 43.62 70.28

LAMA-GOOGLE_RE 11.78 14.08 12.60 18.82 23.73 24.88

LAMA-SQUAD 3.23 16.13 12.90 9.68 3.23 9.68

LAMA-TREX 59.13 63.68 63.91 66.21 67.23 69.12

NUMER_SENSE 50.53 56.75 53.30 56.27 53.97 57.32

SEARCH_QA 7.14 19.17 8.70 10.17 9.72 19.26

WEB_QUESTIONS 11.90 19.58 15.87 18.78 20.63 25.40

HOTPOT_QA 65.95 76.41 73.76 76.13 74.65 78.45

AVG. OF CLOSED-BOOK QA 25.20 33.18 29.59 32.75 33.63 41.99

Question answering/multiple-choice question answering

COSMOS_QA 7.30 10.98 9.91 10.78 10.85 11.32

DREAM 49.19 71.83 58.70 61.00 59.53 62.42

HELLASWAG 23.82 70.28 24.76 32.82 27.60 41.90

OPENBOOKQA 44.80 54.40 50.20 52.20 53.80 57.00

QASC 19.22 47.73 33.26 37.80 33.05 43.63

QUAREL 54.89 54.71 57.25 59.78 57.61 62.50

QUARTZ-NO_KNOWLEDGE 65.43 68.88 68.49 67.09 66.96 69.39

QUARTZ-WITH_KNOWLEDGE 64.03 85.97 71.56 74.23 73.72 76.28

RACE-HIGH 34.51 60.09 42.82 59.52 58.92 65.95

RACE-MIDDLE 47.21 74.65 62.67 68.31 65.46 70.61

SUPERGLUE-COPA 53.60 56.00 58.40 56.40 60.40 59.20

WINO_GRANDE 48.42 58.20 50.79 61.20 50.47 67.19

COMMONSENSE_QA 58.43 76.76 58.43 62.52 60.72 61.21

Table 1 (continued) | Overall (test) performance of over 100 NLP tasks comparing PT, PF, LR, AP and FT
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Task PT (BASE) PT (LARGE) PF LR AP FT

SCIQ 96.95 98.53 98.08 98.42 98.19 98.30

WIQA 36.10 65.27 63.67 77.99 64.44 79.82

AVG. OF MULTIPLE-CHOICE QA 46.93 63.62 53.93 58.67 56.11 61.78

Question answering/long-form question answering

ELI5-ASKH 11.26 11.70 12.64 11.99 11.45 13.00

ELI5-ASKS 14.79 15.54 15.09 15.25 15.01 15.28

ELI5-ELI5 14.19 15.38 15.23 14.59 14.43 14.75

AVG. OF LONG-FORM QA 13.41 14.21 14.32 13.94 13.63 14.34

Question answering/machine reading comprehension

SUPERGLUE-RECORD 44.67 73.82 61.62 64.66 62.08 67.20

MULTI_NEWS 18.09 19.23 18.81 19.44 19.10 19.80

ADVERSARIAL_QA 34.10 54.60 43.17 46.40 45.35 48.56

AVG. OF READING COMPREHENSION 32.29 49.22 41.20 43.50 42.18 45.19

Conditional generation/summarization

SAMSUM 39.35 45.12 43.38 45.00 44.68 45.73

XSUM 21.35 26.56 23.84 25.87 26.07 29.90

AVG. OF SUMMARIZATION 30.35 35.84 33.61 35.44 35.38 37.82

Conditional generation/other

SPIDER 3.29 6.38 7.74 9.67 8.70 6.77

WIKI_BIO 42.39 44.03 44.84 45.36 46.19 47.09

WIKI_SPLIT 79.80 80.10 79.91 80.09 80.05 80.34

AVG. OF OTHER GENERATION 41.83 43.50 44.16 45.04 44.98 44.73

Other/linguistic phenomenon

BLIMP-ANAPHOR_GENDER_AGREEMENT 100.00 100.00 100.00 100.00 100.00 99.00

BLIMP-ELLIPSIS_N_BAR_1 49.00 100.00 100.00 100.00 100.00 100.00

BLIMP-SENTENTIAL_NEGATION 54.00 100.00 100.00 100.00 100.00 100.00

_NPI_SCOPE

BLIMP-ANAPHOR_NUMBER_AGREEMENT 49.00 100.00 100.00 100.00 100.00 100.00

BLIMP-DETERMINER_NOUN_AGREEMENT 46.00 100.00 100.00 100.00 100.00 100.00

_WITH_ADJ_IRREGULAR_1

BLIMP-EXISTENTIAL_THERE 53.00 100.00 100.00 100.00 100.00 100.00

_QUANTIFIERS_1

BLIMP-IRREGULAR_PAST 100.00 100.00 100.00 100.00 100.00 100.00

_PARTICIPLE_ADJECTIVES

BLIMP-WH_QUESTIONS_OBJECT_GAP 55.00 100.00 100.00 100.00 100.00 100.00

AVG. OF LINGUISTIC PHENOMENON 63.25 100.00 100.00 100.00 100.00 99.88

Other/generate explanation

COS_E 12.41 14.82 13.90 14.05 14.31 13.46

Other/slot filling

ADE_CORPUS_V2-DOSAGE 78.57 89.29 82.14 85.71 82.14 82.14

ADE_CORPUS_V2-EFFECT 59.15 61.35 63.25 62.52 60.91 62.66

AVG. OF SLOT FILLING 68.86 75.32 72.70 74.12 71.53 72.40

Other/other

ACRONYM_IDENTIFICATION 93.35 96.68 96.12 96.12 95.57 96.12

ASLG_PC12 15.78 44.07 47.71 73.72 80.65 92.92

CRAWL_DOMAIN 68.16 76.91 73.04 73.00 72.76 75.12

PROTO_QA 21.16 37.66 24.57 27.87 26.17 34.47

AVG. OF OTHER TASKS 49.61 63.83 60.36 67.68 68.79 74.66

AVG. OF ALL TASKS 49.80 67.18 65.08 67.31 66.80 69.27

We experiment all methods on T5BASE, with the best performance highlighted in bold, and also report the performance of PT on T5LARGE.

Table 1 (continued) | Overall (test) performance of over 100 NLP tasks comparing PT, PF, LR, AP and FT
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Fig. 1 | The performance of T5BASE with different delta-tuning methods  
(LR, AP and PF) and fine-tuning (FT) at different training steps. Note we apply 
early stopping to all methods. We choose three metrics: (1) exact match (EM), 
which measures the percentage of correctly predicted answers that exactly 
match the ground-truth answer; (2) classification F1, which is calculated as the 

harmonic mean of precision and recall; and (3) accuracy (ACC), which measures 
the percentage of correctly predicted instances out of all instances. The 
performance of PT is omitted as it lags far behind other tuning methods in both 
convergence and performance. The convergence rate of these tuning methods is 
ranked as: FT > AP ≈ LR > PF.
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	6.	 Transferability. Existing delta-tuning methods could well sup-
port knowledge transfer, showing non-trivial transferability 
among downstream tasks of similar categories. The finding sug-
gests that we could establish a common platform to share and 
migrate these lightweight delta objects (that is the portion of 
the fine-tuned parameters).
We discuss the practicality and applications of delta-tuning from 

various perspectives in Supplementary Section 6, including efficient 
training and shareable checkpoints, multi-task learning, catastrophic 
forgetting mitigation and model-as-service. Hopefully, this Analysis 
will inspire research to advance the efficient adaptation of large lan-
guage models.

Results
As an effective engine to stimulate large-size PLMs, delta-tuning pre-
sents an enormous practical potential for various real-world appli-
cations. We carried out systematic experiments to gain a deeper 
understanding of the attributes of different mainstream delta-tuning 
methods. Specifically, (1) we first conduct thorough comparisons 
among four representative delta-tuning methods and fine-tuning, 
covering the performance, convergence and the efficiency analysis. 
(2) We explore the combinability of three representative delta-tuning 
methods by comparing the performance under both the full-data and 
low-resource settings. We also explore the effects of manual templates 
and compare the generalization gap of different delta-tuning methods. 
Furthermore, we investigate (3) the scaling law and (4) the transfer-
ability of delta-tuning methods among different downstream tasks. 
The implementation details and tasks are described in Supplementary 
Sections 3 and 4.

Performance, convergence and efficiency
Experimental setting. We evaluate vanilla fine-tuning (FT) and four 
representative delta-tuning methods, including prompt-tuning (PT), 
prefix-tuning (PF), LoRA (LR) and adapter (AP). We follow the common 
practice for each delta-tuning implementation, and the training details 
are provided in Supplementary Section 3.1.

To cover broad and diverse NLP tasks, we select over 100 repre-
sentative tasks from Huggingface datasets18. The selected tasks include 
text classification (for example, sentiment analysis and natural lan-
guage inference), question answering (for example, machine reading 
comprehension and multi-choice question answering), conditional 
generation (for example, summarization and dialogue) and so on. We 
list the task details of each category in Supplementary Table 4. To han-
dle different tasks with a single text-to-text PLM, we process the input 
and output of each task into the same sequence-to-sequence format. 
T5BASE and T5LARGE are two PLMs with the T5 architecture released by 
ref. 8. We choose T5BASE (ref. 8) as the mainly evaluated PLM backbone 
for different tuning methods, and we also report the performance of 
PT with T5LARGE (ref. 8).

Performance analysis. The overall results are listed in Table 1, from 
which we observe the following.

	1.	 In general, despite the substantial reduction of tunable param-
eters, different delta-tuning methods are almost comparable 
to FT in performance in most cases. This demonstrates the po-
tential of driving large-scale PLMs through parameter-efficient 
adaptation.

	2.	 Despite having different design elements, PF, LR and AP are 
comparable to each other in performance. Specifically, each can 
show dominant performance (even better than FT) over others 
on certain tasks. According to the average results, the perfor-
mances of all the methods are ranked as FT > LR > AP > PF > PT. 
Interestingly, the performance of the delta-tuning methods is 
not consistent with their number of tunable parameters, that is, 
at least on small PLMs, more tunable parameters do not neces-
sarily lead to better performance, and the design of the struc-
ture for delta-tuning may play a greater role.

	3.	 PT lags far behind other delta-tuning methods in most cases, 
despite being the easiest method to implement (that is, without 
modifying the internal structure of the model). Another inter-
esting finding is that, better PT performance is observed when 
the model size is enlarged to T5LARGE, which is aligned with previ-
ous findings on the power of scale for prompt-tuning19. Howev-
er, as we show later, other delta-tuning methods also exhibit far 
better performance when the scale of the backbone PLM grows 
extremely large. The phenomenon implies that when the model 
size increases sharply, the design of the structure may become 
less important for delta-tuning methods.

Convergence analysis. In Fig. 1, Extended Data Fig. 1 and Supple-
mentary Fig. 3, we visualize the performance of different delta-tuning 
methods (LR, AP and PF) and fine-tuning (FT) at different training steps 
to compare their convergence rate. We also report the convergence 
rate with respect to training time in Extended Data Fig. 2. As PT lags 
far behind other tuning methods in convergence, we do not visualize 
it in the figures. However, as mentioned in Methods, PT is the easiest 
method to implement and it is the desirable method to theoretically 
and empirically study the convergence issue across different sizes of 
PLMs. Our findings are summarized as follows.

	1.	 The convergence rate of these tuning methods is ranked as: 
FT > AP ≈ LR > PF. Overall, FT converges the fastest.

	2.	 We also find empirically that, (1) within a reasonably broad range, 
the performance and convergence of each delta-tuning method 
are not sensitive to the number of tunable parameters, but more 
sensitive to the structures of the methods, and (2) with the scale 
of PLM growing larger, the convergence of delta-tuning is also 
accelerated (see ‘The power of scale for delta-tuning’ section).
To summarize, our experiments yield similar conclusions 

in convergence and overall performance. These conclusions are  
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well supported by the fact that we used the same experimental and 
implementation set-up, the same model selection strategy and 
diverse tasks.

Efficiency analysis. Here we study the efficiency of delta-tuning from 
the perspectives of memory efficiency and computation efficiency. For 
memory efficiency, to validate the efficiency of graphics processing 

Table 2 | Results of combining different delta-tuning methods

Prompt ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

BitFit ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Adapter ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Tunable parameters 0% 1.75% 0.09% 1.84% 0.003% 1.76% 0.09% 1.85%

RoBERTaLARGE, full data, without manual templates

CoLA(Matt.) 4.6 66.61.6 63.50.6 65.90.5 42.72.3 63.11.5 63.70.9 64.40.9

SST-2(acc) 50.9 95.80.1 95.60.1 95.70.2 95.30.2 95.70.1 95.30.2 95.50.1

MRPC(F1) 1.4 92.70.2 91.90.4 93.00.4 85.40.5 92.00.5 92.20.5 92.90.3

STS-B(Pear.) -6.2 91.40.1 90.70.2 90.50.1 83.02.8 90.50.4 90.30.7 90.90.1

QQP(F1.) 6.4 83.50.1 83.50.0 84.40.0 77.20.4 84.30.0 83.60.1 84.40.0

MNLI(acc) 34.2 88.60.2 88.00.2 89.00.1 77.92.5 88.90.1 88.00.2 88.90.1

QNLI(acc) 50.6 93.70.3 93.40.3 94.20.1 86.20.5 94.20.1 93.20.3 94.40.1

RTE(acc) 47.7 86.80.5 86.21.0 84.50.5 74.40.5 84.10.8 85.71.5 84.71.1

Average 23.7 87.40.4 86.60.4 87.10.2 77.71.2 86.60.4 86.50.6 87.00.3

RoBERTaLARGE, full data, with manual templates

CoLA(Matt.) 2.2 66.91.1 64.20.5 65.51.0 37.820.8 64.71.3 64.80.7 64.91.0

SST-2(acc) 83.6 96.30.2 96.10.1 96.20.2 95.70.2 95.80.1 95.90.1 95.80.2

MRPC(F1) 61.9 92.20.4 92.70.6 92.70.2 84.20.5 91.80.2 92.20.4 92.00.4

STS-B(Pear.) -3.3 91.30.5 90.90.1 90.70.2 79.61.3 91.90.3 90.80.4 90.10.6

QQP(F1) 49.7 83.60.1 83.60.0 84.60.1 77.00.7 84.30.0 83.70.0 84.40.2

MNLI(acc) 50.9 88.60.1 87.70.1 88.70.1 80.20.2 88.70.1 88.00.1 88.90.1

QNLI(acc) 50.8 93.60.1 93.10.2 93.80.1 86.60.4 93.80.1 93.00.1 93.80.1

RTE(acc) 51.3 86.90.2 86.21.0 86.00.7 78.30.3 84.60.5 86.41.5 84.70.9

Average 43.4 87.40.3 86.80.3 87.30.3 77.43.0 86.90.3 86.90.4 86.80.4

RoBERTaLARGE, 16 shot, without manual templates

CoLA(Matt.) 4.6 19.69.6 15.117.0 17.711.4 3.50.6 21.411.5 20.819.6 21.513.4

SST-2(acc) 50.9 92.70.4 92.70.6 93.10.6 74.90.6 91.70.8 92.20.5 91.60.7

MRPC(F1) 1.4 78.24.4 69.81.6 81.20.0 6.24.1 74.67.1 69.36.5 77.45.4

STS-B(Pear.) -6.2 66.52.5 67.58.0 71.02.5 10.73.5 63.31.6 64.75.6 69.68.6

QQP(F1) 6.4 55.95.8 55.16.8 54.64.2 52.41.4 58.37.2 55.14.8 58.56.1

MNLI(acc) 34.2 58.14.5 64.63.4 62.74.1 35.30.6 61.43.9 61.45.1 61.03.8

QNLI(acc) 50.6 60.23.0 69.71.9 59.81.7 52.81.0 60.24.9 60.94.0 61.67.0

RTE(acc) 47.7 55.01.6 54.50.8 54.92.9 50.10.7 58.22.5 54.62.4 58.73.4

Average 23.7 60.84.0 61.15.0 61.93.4 35.71.6 61.24.9 59.96.1 62.56.0

RoBERTaLARGE, 16 shot, with manual templates

CoLA(Matt.) 2.2 10.515.0 4.65.0 9.210.2 1.41.7 10.24.2 5.92.5 5.95.5

SST-2(acc) 83.6 93.10.3 92.90.1 92.10.1 90.90.6 91.90.4 92.00.4 92.20.6

MRPC(F1) 61.9 77.21.4 74.54.9 81.20.0 72.14.4 76.81.3 76.12.4 81.20.0

STS-B(Pear.) -3.3 65.84.7 69.36.0 71.04.1 12.08.0 61.75.7 71.36.4 67.12.8

QQP(F1) 49.7 66.60.5 67.80.5 66.34.1 53.41.0 66.91.9 68.61.2 67.12.9

MNLI(acc) 50.9 68.01.4 69.43.3 68.90.4 53.22.5 67.11.8 67.12.0 68.10.3

QNLI(acc) 50.8 69.51.1 70.23.4 68.12.4 59.40.5 69.92.5 72.53.9 70.42.3

RTE(acc) 51.3 70.63.6 67.35.1 73.02.0 56.34.6 70.42.3 69.23.5 72.42.8

Average 43.4 65.23.5 64.53.5 66.22.9 49.82.9 64.42.5 65.32.8 65.62.2

Performance of RoBERTaLARGE on GLUE datasets. We report the average result of multiple random seeds on the validation set. A tick symbol denotes that the component is included in the 
combination and a cross symbol denotes that it is excluded in the combination. The best performance of each dataset is highlighted in bold.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 5 | March 2023 | 220–235 228

Analysis https://doi.org/10.1038/s42256-023-00626-4

Adapter (MNLI) Adapter (QNLI) Adapter (SST-2)

LoRA (MNLI) LoRA (QNLI) LoRA (SST-2)

Pre	x-tuning (MNLI) Pre	x-tuning (QNLI) Pre	x-tuning (SST-2)

Last-layer tuning (MNLI) Last-layer tuning (QNLI) Last-layer tuning (SST-2)

Selective-module tuning (MNLI) Selective-module tuning (QNLI) Selective-module tuning (SST-2)

10,0008,0006,000

Steps
4,0002,0000 10,0008,0006,000

Steps
4,0002,000010,0008,0006,000

Steps
4,0002,0000

10,0008,0006,000

Steps
4,0002,000010,0008,0006,000

Steps
4,0002,000010,0008,0006,000

Steps
4,0002,0000

10,0008,0006,000

Steps
4,0002,0000 10,0008,0006,000

Steps
4,0002,0000 10,0008,0006,000

Steps
4,0002,0000

10,0008,0006,000

Steps
4,0002,000010,0008,0006,000

Steps
4,0002,000020,00015,000

Steps
10,0005,0000

10,0008,0006,000

Steps

AC
C

4,0002,0000 10,0008,0006,000

Steps
4,0002,0000 8,0006,000

Steps
4,0002,0000

a b c

d e f

g h i

j k l

m n o

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

AC
C

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)XXL

BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)XXL

BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

XXL
BASE
SMALL
XXL (fine-tune)

0.96

0.72

0.48

0.24

0 0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0

0.25

0.50

0.75

1.00

0.96

0.72

0.48

0.24

0

0.96

0.72

0.48

0.24

0

0.96

0.72

0.48

0.24

0

0.96

0.72

0.48

0.24

0

Fig. 3 | The power of scale of delta-tuning methods. a–o, We perform all delta-
tuning methods on different scales of T5: T5SMALL(), T5BASE() and T5XXL(). We report 
the performance of Adapter in (a–c), LoRA in (d–f), Prefix-tuning in (g–i),  

Last-layer tuning in (j–l), and Selective-module tuning in (m–o). From this figure, 
we can observe that with the scale of T5 increasing, all delta-tuning methods 
could converge faster and achieve better performance on MNLI, QNLI and SST-2.
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unit (GPU) memory for delta-tuning, in Fig. 2, we conduct experiments 
to compare the GPU memory consumed by different delta-tuning 
methods and fine-tuning across different PLM scales. T5XL is the PLM 
with the T5 architecture released by ref. 8. Specifically, we choose three 
scales of the T5 model, that is, T5BASE, T5LARGE and T5XL, and test the peak 
GPU memories under different batch sizes. The static GPU memories, 
which leave out the intermediate tensors such as hidden states, are 
drawn on Batchsize=0. We use a NVIDIA A100 GPU (maximum GPU 
memory 39.58 GB) and library OpenDelta for these experiments. For 
the cases that consume more GPU memory than a single A100, we 
parallelize the model across multiple GPUs, which does not introduce 
additional memory consumption. We observe from the figure that 
under small batch sizes (for example, 1 and 8), delta-tuning saves up 
to 3/4 GPU memory; under large batch sizes (for example, 32 and 64), 
delta-tuning saves about 1/2–1/3 GPU memory. This demonstrates that 
delta-tuning saves GPU memory by alleviating the need for gradient 
computations for most of the parameters. Given the fact that small 
batch sizes are preferred when utilizing big models, delta-tuning has 
great potential to apply to large-scale PLMs. Furthermore, among the 
investigated methods, BitFit is the most memory efficient.

In addition, although delta-tuning may converge slower than 
traditional fine-tuning, the computations of the tunable parameters 
in the optimizer are greatly reduced, which speeds up training. We 
compare the forwards time and the backwards time of prompt-tuning, 
BitFit, adapter tuning and fine-tuning in Extended Data Fig. 3, varying 
the input length. For a fair comparison, we keep the batch size the same. 
From the results, we can see that:

	1.	 The structure of the delta-tuning methods could have a con-
siderable impact on the time of a single forwards or backwards 
process. By greatly reducing the computations of the tunable 
parameters, the backwards time of delta-tuning methods is 
shorter than fine-tuning.

	2.	 As the adapter injects additional neural modules to each layer 
of the transformer model, the path of data flow becomes longer 
and further leads to inference latency (longer forwards time).

Combinations of delta-tuning methods
Considering that different delta-tuning methods are compatible 
with each other, which means they could be applied on the same PLM 
together, we investigate whether such a combination would bring addi-
tional benefits. Specifically, we evaluate both simultaneous combi-
nation and sequential combination. We choose three representative 
delta-tuning methods, including prompt-tuning, BitFit and adapter, 
to explore the effects of their combinations. The training details are 
described in Supplementary Section 3.2.

Simultaneous combination. We first explore the effects of directly 
applying all the three delta-tuning methods simultaneously. RoBERTaLARGE 
is the PLM released by ref. 20 and GLUE21 is the official benchmark for lan-
guage understanding ability evaluation. The experiments are conducted 
using RoBERTaLARGE on eight tasks of GLUE (full-data setting), and we 
report the performance on the official development sets. We also test 
the performance of RoBERTaLARGE under the few-shot setting, where we 
randomly sample 16 training examples per label to construct the new 

training set and development set, respectively. Similar to prompt-based 
fine-tuning22, we insert a natural language prompt template into the input 
text for each task, and the detailed implementations are described in 
Supplementary Section 3.2.

We list the results of simultaneous combination for RoBERTaLARGE in 
Table 2 (the results of T5BASE are listed in Extended Data Table 2, with dis-
cussions in Supplementary Section 3.2), from which we conclude that:

	1.	 Under both the full-data setting and few-shot setting, introduc-
ing adapter into the combination almost always conduces to 
the average performance across GLUE tasks no matter whether 
there exist manual templates.

	2.	 Introducing prompt-tuning into the combination generally 
harms the average performance, showing that prompt-tuning 
may not be compatible with the other two delta-tuning methods.

	3.	 Introducing BitFit into the combination generally improves the 
average performance.

	4.	 Manual templates could substantially improve the zero-shot 
performance (from 23.7 to 43.4) by narrowing the gap between 
downstream tuning and pre-training. Under the few-shot set-
ting, manual templates could also help boost the average per-
formance evidently. However, when the training supervision is 
abundant (full-data setting), manual templates only show mar-
ginal improvements.

Sequential combination. In addition to the simultaneous combina-
tion, we further investigate the compatibility when the above three 
delta-tuning methods (prompt-tuning, BitFit and adapter) are sequen-
tially introduced. Specifically, we split the whole tuning process into 
three stages. During each stage, we train an individual delta-tuning 
method for 6,000 steps; in the following stages, we freeze the tuned 
parameters in the previous stages and optimize only the newly intro-
duced delta parameters. SST-2 (ref. 23) is the dataset that evaluates 
the sentiment analysis ability. We experiment with RoBERTaLARGE on 
SST-2 with and without manual templates. The results are visualized 
in Extended Data Fig. 4, from which it is derived that:

	1.	 Under certain cases, the performance can be improved with the 
involvement of subsequent delta-tuning methods.

	2.	 However, there does not exist an optimal sequential combina-
tion strategy that could dominate other combination strategies 
under different settings.

Generalization gap. In addition, we report the generalization gap 
(train performance − dev performance) for RoBERTaLARGE under the 
full-data setting, with the results shown in Extended Data Table 3. It 
is derived that:

	1.	 The gap of a single delta-tuning method is always smaller than 
fine-tuning, which means over-parameterization may help bet-
ter memorize (overfit) training samples. Among all the delta- 
tuning methods, prompt-tuning tends to have the smallest gen-
eralization gap. Considering that each delta-tuning method 
could already generalize well and achieve non-trivial perfor-
mance on the development set, overfitting the training set may 
not be the prerequisite for good generalization.

	2.	 In general, combining delta-tuning methods would enlarge the 
generalization gap, even to the extent that is comparable to 
fine-tuning, despite tuning far fewer parameters. This suggests 
that, for the investigated tasks, memorizing the training set may 
not require employing all of the parameters; in other words, a 
small model capacity during downstream adaptation may be 
enough for good memorization.

	3.	 Utilizing manual templates generally would not influence the 
generalization gap.

Conclusion. The above experiments indicate that different 
delta-tuning methods have distinct functionalities for the optimization 

Θ′ =

Pre-trained PLM

Θ =

Θ′ =

Θ′ =

Addition

Specification

Reparameterization

Frozen parameters Tunable parameters

Delta-tuning

Θ → Θ′ 

Fig. 4 | The categorization criterion of delta-tuning. Here Θ denotes the pre-
trained parameters and Θ′ represents the well-tuned parameters.
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of PLMs; thus, combining them is generally conducive to the down-
stream performance. However, as shown in the above results, the opti-
mal combination of delta-tuning methods may vary considerably under 
different settings. That being said, it would be interesting to explore 
the mechanisms behind the inductive biases brought by different 
delta-tuning methods under different cases in the future. Besides, we 
also encourage future research explorations to systematically report 
the performance of their proposed delta-tuning methods on various 
PLM backbones under different settings thoroughly.

The power of scale for delta-tuning
With the scale of the backbone PLM growing, prompt-tuning becomes 
more and more competitive in performance, and would even achieve 
comparable performance to fine-tuning for a PLM with over 10 bil-
lion parameters19, and the convergence speed of prompt-tuning ben-
efits from the scaling law. In this section, we explore whether other 
delta-tuning methods also exhibit the power of scale. MNLI and QNLI 
are two natural language inference dataset, and T5SMALL and T5XXL are 
two PLMs with the T5 architecture released by ref. 8. Specifically, we 
experiment on the task of MNLI, QNLI and SST-2, and choose three 
PLMs (T5SMALL, T5BASE and T5XXL) of increasing sizes, and evaluate the 
performance of five representative delta-tuning methods (adapter, 
LoRA, prefix-tuning, last-layer tuning and selective-module tuning). We 
describe the percentages of the tuned parameters for each method in 
all scales of the PLM in Supplementary Table 3. The training details are 
provided in Supplementary Section 3.3. The results are visualized in 
Fig. 3. From Fig. 3a–i, we observe that with the scale of the PLM growing, 
both the performance and the convergence of all delta-tuning methods 
are greatly improved. All delta-tuning methods tend to show compa-
rable performance to fine-tuning, even for a small-scale PLM (T5BASE).

On the basis of the existing results, we further design two 
delta-tuning methods: last-layer tuning and selective-module tun-
ing. For last-layer tuning, we optimize the last layer in the T5 encoder; 
for selective-module tuning, we randomly choose some modules (for 
example, the feed-forward layer, query/key/value matrix in the atten-
tion layer, or a layer norm) in the T5 model to be tunable. The results 
are visualized in Fig. 3j–l,m–o, from which we could conclude that:

	1.	 Both methods show promising results, especially when the 
scale of the PLM is extremely large, with selective-module tun-
ing slightly better than last-layer tuning. These results suggest 
that confining the optimization within a specific layer may not 
be a good strategy (for example, the case of prompt-tuning and 
last-layer tuning).

	2.	 Furthermore, randomly choosing modules across different lay-
ers could achieve excellent performance when the scale of PLMs 
grows extremely large.
In general, the above results imply that the power of scale may be 

a common phenomenon for delta-tuning. We hypothesize the exist-
ence of such a phenomenon is because larger PLMs generally have 
smaller intrinsic dimensionalities16; therefore, merely tuning minimal 
parameters could obtain a strong enough representation ability to 
achieve non-trivial performance in downstream tasks; furthermore, 
the over-parameterization and large-scale pre-training may make 
PLMs more unlikely to get stuck in a local optimum during downstream 
optimization, and thus the convergence is accelerated.

Task-level transferability evaluation
Recent studies24–26 have demonstrated that prompt-tuning has excel-
lent cross-task transferability. In this subsection, we explore the 
cross-task transferability of four delta-tuning methods (prompt-tuning, 
prefix-tuning, adapter and LoRA) with 12 tasks of 5 different types (senti-
ment analysis, natural language inference, paraphrase identification, 
question answering and summarization). We transfer the trained delta 
parameters to the unseen target tasks. More training and dataset details 
are provided in Supplementary Section 3.4.

In experiments, we report their relative performance (zero-shot 
transferring performance and original performance). The results 
are shown in Extended Data Fig. 5, from which we can observe  
that:

	1.	 For the tasks belonging to the same category, transferring tuned 
parameters among them generally performs well; for the tasks 
of different types, transferring delta parameters among them 
generally achieves poor performance.

	2.	 We also find that transferring tuned parameters from the text 
generation tasks such as question answering and summariza-
tion can achieve non-trivial performance on sentiment analysis, 
indicating that text generation might be a complex task that in-
cludes the knowledge required to solve the sentiment analysis 
tasks. In general, the above results demonstrate that it is promis-
ing to utilize trained delta parameters for similar tasks through 
knowledge transfer.

Conclusion
This Analysis focuses on parameter-efficient methods, that is, 
delta-tuning, for PLMs. We first describe the problem and provide a 
categorization to survey the development of delta-tuning systemati-
cally. Captivated by the empirical evidence, we propose two frameworks 
to theoretically discuss delta-tuning from the optimization and optimal 
control perspectives. Our discussion sheds light on the theoretical 
references of a novel design for delta-tuning methods and hopefully 
could inspire a deeper understanding of model adaptation for PLMs. 
Empirically, we conduct extensive experiments across 100+ NLP tasks 
to fairly evaluate and explore the combinatorial property, influence 
of scale and transferability for delta-tuning. In terms of performance, 
delta-tuning can be slightly behind or comparable to fine-tuning on a 
wide range of tasks, and the gap shrinks as the model scales; in terms of 
efficiency, delta-tuning could considerably reduce storage space and 
memory usage, as well as accelerate backpropagation. In summary, 
delta-tuning shows considerable potential to stimulate large PLMs, 
and we hope that the paradigm can be further theoretically studied 
and empirically practiced.

Methods
Delta-tuning is developed on the success of PLMs, which use deep 
transformers as the base structure and adopts pre-training objectives 
on large-scale unlabelled corpora. For more information about PLMs 
and transformers, see Supplementary Section 1 or related surveys27 
and original papers4,5,8,9.

Given a pre-trained model Θ = {w1, w2, ..., wN} and training data 𝒟𝒟, 
the objective of PLM adaptation is to produce the adapted model 
ϴ′ = {w′

1,w
′
2, ...,w

′
M}, where wi is the model parameter. Define ΔΘ as the 

change in the adapted model Θ′ compared with Θ, including the change 
in values and the number of elements. In vanilla fine-tuning, N = M and 
Δϴ = ∇fϴ(𝒟𝒟𝒟 is the update value of all parameters in Θ with respect to 
training data, where fΘ represents the resulting loss of applying model 
Θ to training data D. Note that in this case, we omit the small set of 
parameters brought by extra classification heads for downstream tasks. 
While in delta-tuning, ΔΘ refers to the modification of a small number 
of parameters. Empirically, |ΔΘ| = |Θ| in vanilla fine-tuning, while for 
delta-tuning, |ΔΘ| ≪ |Θ|, where |⋅| indicates the number of parameters 
involved.

To organize them under a unified framework, we categorize the 
delta-tuning methods into three groups according to the operations 
on the delta parameters (as illustrated in Fig. 4): addition-based, 
specification-based and reparameterization-based approaches.

•	 Addition-based methods introduce extra trainable neu-
ral modules or parameters that do not exist in the original 
model or process. In addition-based methods, M ≥ N and 
ΔΘ = {wN+1, wN+2, ..., wM}.
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•	 Specification-based methods specify certain parameters in the 
original model or process become trainable, whereas others are 
frozen. Denote the set of trainable parameters as 𝒲𝒲, then 
ΔΘ = {Δw1, Δw2, ..., ΔwN}. When wi ∈ 𝒲𝒲, Δwi is the incremental 
value from wi to w′

i, else, Δwi = 0.
•	 Reparameterization-based methods reparameterize existing 

parameters to a parameter-efficient form by transformation. 
Denote the set of parameters to be reparameterized as 𝒲𝒲, and 
suppose that each wi ∈ 𝒲𝒲 is reparameterized with new param-
eters R(wi𝒟 = {u1,u2, ...,uNi }, then Δϴ = (ϴ ⧵𝒲𝒲𝒟 𝒲 𝒲𝒲, where 
𝒲𝒲 = {uj|∃wi ∈ 𝒲𝒲,uj ∈ R(wi𝒟}.

Addition-based methods
With the above definition in mind, addition-based methods intro-
duce additional parameters to the neural network. In this section, we 
introduce two branches of representative addition-based methods, 
adapter-based tuning and prompt-based tuning.

Adapter-based tuning. As a seminal work in delta-tuning, 
adapter-based methods inject small-scale neural modules (adapters) 
to the transformer layers and only tune these adapters for model adap-
tation. Although such a strategy leaves an open choice of adapter 
structures, a simple instantiation13 achieves impressive performance 
and has become the most widely used baseline in recent research. 
Specifically, one adapter module contains a down-projection and an 
up-projection. For an input feature h ∈ ℝd, a down-projection projects 
the input to a r-dimensional space with a parameter matrix Wd ∈ ℝd×r, 
after which a nonlinear function f (⋅) is applied. Then the up-projection 
Wu maps the r-dimensional representation back to d-dimensional 
space. Added with a residual connection, the complete computation 
could be written as h← f(hWd)Wu+h.

In each block, the adapter modules are separately inserted after 
the multi-head self-attention and the feed-forward network sublayers, 
which reduces the tunable parameters per layer to 2 × (2dr (projection-
matrices) + d (residualconnection) + r (biasterm)). Practically, about 
0.5–8% of parameters of the whole model13 could be involved in the 
tuning process under such a strategy.

Although an adapter works with much fewer tunable parameters 
than vanilla fine-tuning, some work attempts a more rigorous saving 
strategy by introducing inductive biases into the structure of the 
adapter layer. For example, Compacter28 proposes to use a combination 
of hypercomplex multiplication and parameter sharing. The hyper-
complex multiplication parameterizes the original linear layer as the 
sum of the Kronecker products of two small matrices. Taking the 
down-projection as an example, Wd = ∑n

i=1 Ai ⊗ Bi, where A ∈ ℝn×n and 

B ∈ ℝ
d
n
× r

n .
Their method reduces the parameter complexity of the normal 

adapter layer from 𝒪𝒪(dr𝒟 to 𝒪𝒪(d + r𝒟 without harming the performance. 
It also shows that a simple low-rank decomposition of the linear layer 
leads to comparable performance with the adapter layer, that is, 
Wd = ABT, where A ∈ ℝd×n, B ∈ ℝr×n and n ≪ min(d, r𝒟, where the super-
script T means matrix transposition.

As an addition-based approach, adapter-based tuning has the 
advantage of placing multiple adapter instances on a pre-trained 
model simultaneously, which can benefit many application scenarios. 
For example, multi-task learning29,30 is an advantageous setting for 
adapter-based methods, inserted with adapter modules in parallel with 
the self-attention module, PLMs could demonstrate impressive rep-
resentational capacity in the multi-task setting. In contrast to directly 
conducting multi-task learning on adapters, adapterFusion31 first 
pre-trains task-specific adapters and then combines the representa-
tions of the pre-trained adapters to leverage the cross-task knowledge 
and enhance the performance of transfer learning.

In terms of computational efficiency, the training of adapters 
could be 60% faster than vanilla fine-tuning while the inference is only 

4–6% slower. In addition, the computational cost could be further 
reduced dynamically by removing adapters from lower transformer 
layers32. Research also shows that adapter-based fine-tuning demon-
strates better robustness than fine-tuning. Specifically, adapter-based 
fine-tuning could perform better than vanilla fine-tuning on few-shot 
and cross-lingual scenarios33 and is more robust under adversarial 
attacking34. We provide a comparison of different adapters, as well as 
other delta-tuning methods in Extended Data Table 4.

To sum up, adapters are lightweight additional neural modules 
that could be trained in a task-specific style, which could be regarded 
as ‘encapsulation’ of task information (in fact, this perspective can be 
applied to all the ‘deltas’). Although in an ideal world, adapters could 
be freely shared and reused by researchers, in practice, sharing and 
reusing such modules face substantial obstacles. Taking the first step, 
AdapterHub35 provides a feasible platform and toolkit to deploy adapt-
ers inside the transformer-based models.

Prompt-based tuning. Instead of injecting neural modules to the 
transformer model, prompt-based methods wrap the original input 
with additional context. As a strategy to stimulate PLMs by mimick-
ing pre-trained objectives in the downstream tasks, prompt-based 
learning has achieved promising performance in various NLP tasks36,37, 
especially in low-data settings. The introduction of the technique and 
implementations of prompt-based learning have already been compre-
hensively presented in other literature38,39. In this paper, we primarily 
focus on the parameter-efficient attribute of prompt-based learning 
(only prefixes or prompts are optimized) and pay less attention to the 
settings where the models and prompts are simultaneously optimized.

An important seminal work of this branch of research is 
prefix-tuning40, which prepends trainable continuous tokens (prefixes) 
to the input and hidden states of each transformer layer. Each prefix is 
drawn from a newly initialized trainable parameter matrix P, whereas 
other parameters of the pre-trained model remain unchanged during 
training. During generation, if an activation hi is in a prefix position, 
it is the direct copy of the corresponding trainable parameter; other-
wise, the activation is computed by the model as hi = LM(zi, h<i), where 
i is the position index, z is the input and LM stands for the language 
model. It is worth noting that the paradigm could be applied to both 
autoregressive and encoder–decoder models. Such a strategy could 
be effectively applied to natural language understanding with differ-
ent scales of models41.

Compared with prefix-tuning, which adds tunable prefixes to 
every intermediate transformer layer, prompt-tuning19 proposes a 
more simplified strategy that only adds soft prompts to the input layer. 
Similar to prefix-tuning, the newly introduced prompts are not param-
eterized by the pre-trained model but an additional parameter matrix. 
And during training, the parameters of soft prompts are updated by 
gradient descent while the model parameters keep frozen. As the model 
size increases, the performance gap between prompt-tuning and full 
parameter fine-tuning is narrowed. In particular, when the model scales 
to T5XXL with 11 billion parameters, prompt-tuning yields comparable 
performance on SuperGlue with fine-tuning. This strategy also exhibits 
sensitivity to the length and initialization of the soft prompts. Prompts 
could also be injected in the pre-training stage to seek a satisfying ini-
tialization point42. Moreover, similar to other methods, prompt-tuning 
also demonstrates transferability across tasks24,26, which suggests 
that appropriate initialization could be substantially beneficial for 
downstream tasks.

The training curse of prompt-based methods. Although 
prompt-based methods exhibit a promising future for the adaptation 
of large pre-trained models, especially as prompt-tuning does not need 
to modify anything inside the neural network, there still exist unsolved 
challenges. In practice, prompt-tuning is difficult to optimize, and 
generally, this phenomenon becomes more apparent as the volume 
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of data and the size of the model decreases. Even though soft prompts 
can be trained successfully, they converge slower than full parameter 
fine-tuning and other delta-tuning methods during training. In our 
experiments, we validate the phenomenon across different datasets 
(‘Performance, convergence and efficiency’ section), indicating that 
it is an interesting topic to train soft prompts to converge stably in 
various situations.

Specification-based methods
Specification-based methods fine-tune a few inherent parameters 
while leaving the majority of parameters unchanged in model adapta-
tion. This approach does not seek to change the internal structure of a 
model but to optimize a small number of internal parameters to solve 
particular tasks. In general, such specifications could be implemented 
based on heuristics or training supervision.

Heuristic specification. Specification-based methods do not intro-
duce any new parameters to the model, but directly specify part of 
the parameters to be optimized. The idea is simple but surprisingly 
effective; an early study43 only fine-tunes one-fourth of the final lay-
ers of BERT and RoBERTa and could produce 90% of the performance 
of full parameter fine-tuning. BitFit14 empirically proves that by only 
optimizing the bias terms inside the model and freezing other param-
eters, the model could still reproduce over 95% performance on several 
benchmarks. Empirical results in BitFit also show that even if we use a 
small random set of parameters for delta-tuning (which obviously will 
degrade the performance), the model could still yield passable results 
on the GLUE benchmark. Unfortunately, the work only applies this trick 
to small-scale models, and there is no guarantee that randomly choos-
ing some parameters to be tuned would remain competitive for larger 
models. Another valuable observation is that different bias terms may 
have different functionalities during model adaptation.

Learn the specification. Rather than manually or heuristically specify 
which parameters to update, one alternative is to ‘learn’ such specifi-
cations. Following the definition in this section, diff pruning44 repa-
rameterizes the fine-tuned model parameters Θ′ as the summation 
of the pre-trained parameters Θ and the difference vector ΔΘ, that is, 
Θ′ = Θ + ΔΘ, where |Θ| = |Θ′|. Hence, the key issue is to encourage the 
difference vector to be as sparse as possible; this work regularizes the 
vector by a differentiable approximation to the L0-norm penalty to 
achieve the goal of sparsity. Practically, because new parameters to be 
optimized are introduced in the learning phase, diff pruning takes up 
more GPU memory than full parameter fine-tuning, which may estab-
lish barriers in the application on large PLMs. The masking method45 
learns selective masks for PLMs to only update the critical weights for 
particular tasks. To learn such a set of masks, a binary matrix associated 
with the model weights is introduced, where each value is generated 
by a thresholding function. During backpropagation, the matrix is 
updated by a noisy estimator.

Reparameterization-based methods
Reparameterization-based methods transform the adaptive param-
eters during optimization into parameter-efficient forms. This branch 
of delta-tuning is typically motivated by the hypothesis that PLM adap-
tations towards most downstream tasks are inherently low rank, and 
could thus be equivalently completed in a parameter-efficient way.

Intrinsic dimensions of PLM adaptation. Previous work16 has 
empirically shown that the full parameter fine-tuning process of 
pre-trained models can be reparameterized into optimization within 
a low-dimensional subspace, that is, fine-tuning has a low intrinsic 
dimension46, which measures the minimum number of parameters 
needed to reach satisfactory performance. In experiments, they 
find that a relatively low-dimensional (for example, thousands) 

reparameterization could achieve over 85% fine-tuning performance. In 
this sense, PLMs may serve as general compression frameworks, which 
compress the optimization complexity from high dimensions to low 
dimensions. They also demonstrate that larger PLMs generally have 
smaller intrinsic dimensions, and the process of pre-training implicitly 
reduces the PLM’s intrinsic dimension. Taking inspiration from these 
observations, reparameterization-based delta-tuning methods are 
proposed, which reparameterize (a part of) original model parameters 
with low-dimensional proxy parameters and only optimize the proxy 
parameters and thus reduce the computation and memory cost.

Intrinsic rank of weight differences. LoRA15 hypothesizes that the 
change of weights during model tuning has a low intrinsic rank. On the 
basis of this hypothesis, it is proposed to optimize the low-rank decom-
position for the change of original weight matrices in the self-attention 
modules. In deployment, the optimized low-rank decomposition matri-
ces are multiplied to obtain the delta of self-attention weight matrices. 
In this way, LoRA could match the fine-tuning performance on the GLUE 
benchmark. They demonstrate the effectiveness of their methods on 
PLMs of various scales and architectures.

Intrinsic space of multiple adaptations. Furthermore, intrinsic 
prompt-tuning17 makes a stronger hypothesis that the adaptations 
to multiple tasks could be reparameterized into optimizations within 
the same low-dimensional intrinsic subspace. Instead of resorting to a 
random subspace16, they try to find a common subspace shared by vari-
ous NLP tasks, which is implemented through decomposing the trained 
soft prompts of multiple NLP tasks into the same low-dimensional 
nonlinear subspace, and then learn to adapt the PLM to unseen tasks 
or data by only tuning parameters in the subspace. Experiments 
show that in a 250-dimensional subspace found with 100 random 
tasks, by only tuning 250 free parameters, 97% and 83% of the full 
prompt-tuning performance can be recovered for 100 seen tasks (using 
different training data) and 20 unseen tasks, respectively. This provides 
strong evidence for their universal reparameterization hypothesis 
and may inspire future work. Moreover, this work also shows that the 
low-dimensional reparameterization can substantially improve the sta-
bility of prompt-tuning. Their method could also be leveraged as a tool 
for analysing the similarity and differences between various NLP tasks.

Theoretical perspectives of delta-tuning
Are these methods essentially doing the same thing? We are interested 
in the theoretical principles behind delta-tuning. A PLM can usually be 
effectively adapted to various downstream tasks with a smaller cost 
compared with pre-training, which leads to theoretical issues that 
are worth exploring in depth. We adopt two frameworks to introduce 
theoretical insights into delta-tuning from the perspectives of optimi-
zation and optimal control.

Optimization perspective. As training neural networks is an opti-
mization process, the mechanism of delta-tuning can be analysed 
from the perspective of optimization. In general, it is challenging and 
time-consuming to solve large-scale and high-dimensional optimiza-
tion problems. However, in the fine-tuning of a large PLM, empirical 
study16 reveals that there exists a low intrinsic dimension; thus, some 
customized optimization schemes can benefit from this property and 
be quite efficient in practice. One promising scheme is the subspace 
optimization47 that seeks an acceptable solution in a low-dimensional 
subspace. It manipulates a small number of variables and is more eco-
nomical than the optimization in the whole space. In fact, delta-tuning 
can be viewed as a subspace-optimization method.

There are two approaches to applying subspace optimization 
and thus the delta-tuning can roughly fall into two categories. One 
is tuning model parameters in the solution subspace. It exploits a 
low-dimensional manifold that can approximately represent the 
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whole model parameters, and the optimization trajectory follows 
this manifold. Some delta-tuning methods can be categorized into 
this approach, for example, LoRA15, BitFit14 and diff pruning44. The 
other approach seeks a surrogate of the original objective function in 
a small functional subspace and uses the minimizer of the surrogate 
function as the approximate final solution. It can provide some expla-
nations of the rationales of some popular delta-tuning methods such 
as prompt-tuning19 and prefix-tuning40. A complete discussion can be 
found in Supplementary Section 2.1.

Optimal control perspective. We draw inspiration from optimal 
control theories to better understand the functionality of delta-tuning. 
In addition to their parameter efficiency, the essence of delta-tuning 
lies in regularizing the layer-wise hidden-state transformation process 
along forwards propagation. The forward propagation of hidden states 
h between layer j and j + 1 in the PLM, with the guidance of the delta 
parameters δ(j) at the jth layer, can be written as 𝒢𝒢(j)θ (h(j),δ(j)) . With the 
parameters θ in the PLM fixed, the transformation function 𝒢𝒢(j)θ  defines 
the altered forwards propagation at the jth layer with the learnable δ(j). 
The detailed formulations and instantiations of 𝒢𝒢(j)θ  for different 
delta-tuning methods, including Prefix-tuning, Adapter, LoRA and 
BitFit, are listed in Supplementary Section 2.2. In this way, the tuned 
delta parameters are interpreted as the optimal controllers that steer 
the PLMs to work in different realistic settings.

The optimal control perspective instructs the novel design of 
delta-tuning. For example, robust prefix-tuning48 tunes additional 
layer-wise prefix parameters during inference. The layer-wise propaga-
tion of hidden states is thus guided towards correct outputs. Another 
work49 leveraged inference-time bias-term tuning to mitigate bias and 
toxicity in natural language generation. The number of bias terms to be 
tuned is determined by the extent of modification of the hidden-state 
transformation in an adaptive manner. Finally, by applying the theo-
ries of controller design50,51, we expect more delta-tuning methods 
proposed with theoretical guarantees and better exploitation of the 
power of PLMs52.

Data availability
Datasets used in this study are freely available at https://github.com/
INK-USC/CrossFit and https://huggingface.co/datasets/glue.

Code availability
The source code of this study is publicly available on GitHub at https://
github.com/thunlp/OpenDelta. It is also available at https://zenodo.
org/record/7340282.
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Extended Data Fig. 1 | The performance of T5BASE with different delta-tuning methods at different training steps. The performance of T5BASE with different delta-
tuning methods (LR, AP, PF) and fine-tuning (FT) at different training steps.
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Extended Data Fig. 2 | The performance of T5BASE with different delta-tuning methods at different training time. The performance of T5BASE.with different delta-
tuning methods (LR, AP, PF) and fine-tuning (FT) at different training time (seconds).
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Extended Data Fig. 3 | Time consumption for fine-tuning (FT) and different delta-tuning methods. Time consumption for fine-tuning (FT) and different delta-
tuning methods, including BitFit (BF), adapter (AP) and prompt-tuning (PT). We report the results with different input length.
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Extended Data Fig. 4 | The performance of RoBERTaLARGE when sequentially applying different delta-tuning methods. The performance of RoBERTaLARGE when 
different delta-tuning methods (adapter (AP), BitFit (BF) and prompt-tuning (PT)) are applied sequentially. The experiments are conducted on SST-2.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Analysis https://doi.org/10.1038/s42256-023-00626-4

Extended Data Fig. 5 | Zero-shot transferring performance of four delta-
tuning methods using T5BASE. Zero-shot transferring performance of four 
delta-tuning methods using T5BASE. We report relative performance (zero-shot 
transferring performance / original performance) (%) on the target tasks 

(columns) when delta parameters are transferred from the source tasks (rows). 
Colours of the task names indicate the task types. Blue: sentiment analysis. 
Green: natural language inference. Orange: paraphrase identification. Brown: 
question answering. Purple: summarization.
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Extended Data Table 1 | Statistics of the usage of different sizes of pre-trained models

The usage of models of different sizes in research published in NLP conferences, the statistic is based on 1000 randomly selected papers. Large PLMs are defined as PLMs with over 1 billion 
parameters.
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Extended Data Table 2 | Performance for T5BASE on GLUE datasets

Performance of T5BASE on GLUE datasets. We report the average result of multiple random seeds on the validation set. ✓ denotes the component is included in the combination and ✗ denotes 
it is excluded in the combination.
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Extended Data Table 3 | Generalization gap for RoBERTaLARGE on GLUE datasets

The experiments of generalization gap for RoBERTaLARGE on GLUE datasets. We report the average result (train performance - dev performance) of multiple random seeds. ✓ denotes the 
component is included in the combination and ✗ denotes it is excluded in the combination.
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Extended Data Table 4 | Comparison between different delta-tuning methods

Comparison between different delta-tuning methods. we use underline to denote tunable parameters and modules. [:] is the concatenation operation; dh means the hidden dimension of the 
Transformer model; dm is the intermediate dimension between down-projection and up-projection, where dm is far smaller than dh. Compacter utilize hypercomplex matrix multiplication and 
low-rank decomposition to reduce the amount of parameters; AdapterDrop randomly dropout adapters in the first n layers and also bring down backpropagation time; Prefix-Tuning adds 
prefixes of n past key-values.
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