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Warning
Tiered storage is considered an experimental part of the WiredTiger library, and is not yet ready for
production workloads.

Introduction and Definitions

Tiered storage allows B-Trees to be stored into multiple places, more recently updated blocks on local disk and
less recently updated blocks in cloud storage. The term object refers to one of these written btree parts, whether
the object resides on the local disk, as an object file, or in the cloud, as a cloud object. The mechanism to create
new objects is a WT_SESSION::checkpoint API call with the flush_tier configuration set. For brevity, it is
called a flush_tier call.

When in use, a tiered btree, like a non-tiered btree, may have some recently used or modified data that resides in
memory pages. This in-memory representation is the same between a tiered btree and a non-tiered btree, it is only
how data is stored on disk and in cloud objects that makes these btrees different.

Tiered storage is configured and enabled on the connection via wiredtiger_open configuration options (e.g.
tiered_storage=(name="s3_store",bucket="...") ). Once enabled on the connection, the configuration
applies to all tables created. The configuration can be overridden on individual tables with configuration options for
WT_SESSION::create . The related WT_SESSION::create configuration options allow the caller to specify a
different storage provider or bucket name or to have the table opt out of tiered storage.

Object IDs

In response to a flush_tier call, WiredTiger creates a new object for each changed btree. Each new object
created gets a new objectid, incremented from the previous objectid used with that btree. The new object lives
initially as a regular local disk object file, and the disk file name includes the name of the table and the objectid.
This makes it is easy to see from a directory listing which tables and which objects for that table are represented on
disk. Once a new (N+1) object is created, all writes to the previous (N) object are completed and that N object
becomes read-only, like all objects before it. At this point, the N object is queued to be copied to cloud storage.
After that copy successfully completes, the local copy of N is queued for removal, see Local File Removal.

Checkpoints

A normal, non-tiered table, can be thought of as an active or live btree, with zero or more checkpoints that are fully
represented in the single disk object file. Each checkpoint has its own root page, and can be considered its own
btree. Each of these btrees is a set of pages referencing each other as a tree, some in memory, some on disk. A



tiered table is the same, having a live btree and a set of checkpoint btrees. However, both the live btree and the
checkpoints may have pages that span multiple object files and/or cloud objects.

For tiered storage, each object, other than the current file object, is guaranteed to contain at least one checkpoint.
When there is a switch to a new (N+1) current object, a checkpoint in the previous (N) file object is guaranteed,
because a WT_SESSION::checkpoint call with a flush_tier option is required to switch. A checkpoint in the N
object refers to blocks in object N as well as previous (N-1, N-2, ...) objects.

Block Manager

A btree is organized logically as a set of pages. Each page is either a leaf page, containing keys and values, or an
internal page, which has references to subordinate leaf pages. Writing a page goes through the block manager,
which has the job of locating a free position in the file. That position, along with the block size and a checksum of
the content, is packaged up as an address cookie (a sequence of bytes) that is returned to the caller. Address
cookies are further described in What is a block?.

Cookies in Tiered Storage

For tiered storage, a reference to a written location needs to indicate an objectid. If the reference is from the same
object, no explicit objectid is needed, and the (position, size, checksum) triple can be used. Otherwise, a
four-tuple (position, size, checksum, objectid) is used. Because the byte size of the cookie is given,
and the objectid appears last, the code that interprets cookies can deduce which kind it is given. If the decoder has
seen three entries and it has reached the end of its data, then it has a triple. If the decoder still has more data, then
it also contains an objectid.

Object numbering starts at 1, so an objectid of 0 references the same object as the cookie's location. Because of
these properties, a file from a non-tiered btree can be upgraded to the first object of a tiered btree without changing
its contents. Every reference in the non-tiered btree is a triple, meaning there is an implied a zero objectid. Thus
each reference must be to the same object.

Files in the Block Manager

The data structure that the block manager uses for accessing a btree's files or objects is a WT_BM. For non-tiered
tables, the WT_BM->block field references a single WT_BLOCK handle, which represents the single file. This block
handle exists as long as the btree is open, so no locking or coordination is needed to access it.

For tiered tables, multiple objects are associated with a WT_BM, and each object is referenced by a WT_BLOCK. The
current writable object is referred to by WT_BM->block, and a list of objects recently referenced appears in the
WT_BM->handle_array. The handle_array always includes the current object. When an existing tiered table is
opened from disk, a new WT_BM is created. A WT_BLOCK for the current writable object is also created, and
WT_BM->block is set to that and also added to the (otherwise empty) handle_array. As other objects are
referenced, new WT_BLOCK handles are created to represent them, and they are added to the handle_array.

Block handles (WT_BLOCK) in the handle array are cached from the complete list of open block handles kept in the
connection (WT_CONNECTION_IMPL->block_hash). Blocks in the connection hash table are reference counted.
When the reference count goes to zero, the handle is removed and freed, and the underlying file handle is closed.

When a flush_tier is done, each table that had changes written as part of the checkpoint will have its
WT_BM::switch_object function called. This function creates a new WT_BLOCK for the new N+1 file object, and



adds it to the handle_array. It does not yet point the WT_BM->block to the new block handle, as there may still
be writes in progress to the old block. When all writes from the checkpoint have completed, the block manager
sets WT_BM->block to point to the block handle for the new file object (i.e., file object N+1).

Since there are multiple threads accessing the block manager, a read/write lock on the WT_BM is used to access,
modify or grow the array of WT_BLOCK handles.

Local File Removal

When the tiered server determines that a local object file should be removed there are no writers to the file. This is
because local object file removal can only be done on files that have become read-only. However, there may be
active readers in the object file. At the time an object file is removed, the corresponding WT_BLOCK entry from the
handle_array cannot be removed until all readers have finished using the block handle. The mechanism to
remove a local object file has several parts.

When a cloud copy of an object is completed, the block manager is told, via BM::switch_object_end , that
object id N (and therefore all ids less than N) can be removed. Then, when a block handle (WT_BLOCK) qualifies as
removable and its reader reference count goes to zero, the block handle can be removed from the handle_array.
This is triggered by calling a sweep function.

There is a potential for a race involving the read reference count: when the count becomes zero indicating the block
can be removed, a new reader thread can enter the system and start using the block as it is being removed. To
resolve the race, the reader thread takes a read lock on the block manager's lock while it increments the read
reference count. When the sweep runs, it holds a write lock on the block manager's lock.

Tiered Server and Work Queue

Whether or not tiered storage is enabled, a tiered server thread is created. Its job is to process items on its work
queue. Work items are actions that are generated by API calls that imply that some background action should take
place. There is a single work queue, and items on it have a type, as follows:

FLUSH: copy a local object file to the cloud.
FLUSH_FINISH: notify any local cloud caches that an object file has been copied to the cloud, and a local
copy is still available to ingest.
REMOVE_LOCAL: remove a local file that is has already been copied to the cloud.
REMOVE_SHARED: remove a cloud file, perhaps as part of a drop operation.

There are individual functions to add items of each type, and to get the next item, if any, of each type. That allows
processing of items in a certain order. With only one server thread, all operations occur sequentially. It would make
sense in the future to do FLUSH operations in parallel.

Metadata and Associated Data Structures

The WiredTiger metadata file persists important information about URIs known in the system. See Example
Metadata for a discussion on the relationship between metadata entries and internal data structures for a simple
non-tiered table A. That example is continued below for tiered tables.

For a tiered table A that has gone through a few flush_tiers, the following entries should appear in the metadata
table:



"table:A"
"colgroup:A"
"file:A-0000000004.wtobj"
"object:A-0000000003.wtobj"
"object:A-0000000002.wtobj"
"object:A-0000000001.wtobj"
"tier:A"
"tiered:A"

The "table:A" entry, like before, is the top-level URI that is used for API calls. As before, it maps to a WT_TABLE,
and the table has the WT_TABLE->is_tiered_shared flag set. The column group entry "colgroup:A" has in
its metadata a reference to the URI for the btree. In the non-tiered case, this appeared as source="file:A.wt".
In this, the tiered case, the reference is source="tiered:A", which relates to a WT_TIERED struct.

The WT_TIERED data structure has most of the useful information about a tiered table. In particular the btree is
found in the dhandle. To be precise, WT_TIERED->iface is the dhandle, and WT_TIERED->iface.handle is a
pointer to a WT_BTREE. The name of the current local object ("file:A-0000000004.wtobj" for this example) is
stored in WT_TIERED->tiers[WT_TIERED_INDEX_LOCAL]. The URI of the btree ("tiered:A") is kept in
WT_TIERED->tiers[WT_TIERED_INDEX_SHARED]. Stored here is a pointer to a WT_TIERED_TIERS struct, this
aligns with the "tier:A" entry in the metadata.

Also in the WT_TIERED struct is information about the current object id, and how many object ids are known. If the
current writable object id is 4, the needed name can be constructed: "file:A-0000000004.wtobj", likewise,
previous cloud object names can be constructed, like "object:A-0000000003.wtobj". Navigation like this,
constructing names to look up in metadata or as data handles doesn't happen often, mostly during startup or
flush_tier. During high performance paths, the WT_TIERED struct or the WT_BM (block manager struct) associated
with the btree have everything needed.

A "tiered:" entry (associated with a tiered table) and a "file:" entry (associated with a non-tiered table) behave
almost identically in the WiredTiger system. In fact, the WT_BTREE_PREFIX macro checks to see if a URI matches
either one of these prefix strings. The macro basically means "does this thing walk and talk like a btree?". In both
cases, the dhandle found with the given name has a dhandle->handle that points to the open WT_BTREE.

The "object:" entries do not have separate in-memory data structures (there is a WT_TIERED_OBJECT defined
in tiered.h, but it is not used). And while "table:", "file:" and "tiered:" all have data handles using
those URIs, there are no separate data handles for each object. This is probably a good thing, as scaling the
number of data handles system-wide has been challenging.

The following table summarizes the various relationships.

URI prefix struct type
has

dhandle?
notes

table: WT_TABLE yes the dhandle is cast to (WT_TABLE *)

file: (none) yes, but... ... does not relate to a btree

colgroup: (none) no
stored in an array in the WT_TABLE, references the
"tiered:" entry



tiered:
WT_TIERED,
WT_BTREE

yes
the dhandle is cast to (WT_TIERED *), and dhandle-
>handle is a (WT_BTREE *)

tier: WT_TIERED_TIERS no WT_TIERED->tiers[1] is a (WT_TIERED_TIERS *)

object: (none) no no dhandle for objects

Storage Sources, Buckets, and Prefixes

The location of objects in the cloud requires some information to be stored: the cloud provider, the bucket used,
and an id to reference any needed credentials in a key management system. When a connection is opened for
tiered storage, these are specified and are used in the default case. However, to have the ability to store tables in
different clouds or buckets, cloud location information needs to live in the WT_TIERED object as well. To make this
happen, all this location information is abstracted into a WT_BUCKET_STORAGE . The connection has a pointer to a
WT_BUCKET_STORAGE, and each WT_TIERED does as well.

Among the fields of a WT_BUCKET_STORAGE is a pointer to a WT_STORAGE_SOURCE. The storage source can be
thought of as a driver, or an abstraction of a cloud provider with operations. WiredTiger has several instances of
WT_STORAGE_SOURCE, these include the drivers for the AWS, GCP, and Azure clouds, as well as dir_store, used
for testing and development. A storage source can be asked to create a custom file system (returning a
WT_FILE_SYSTEM) from a bucket name and credentials. A file system created this way is stored in the
WT_BUCKET_STORAGE.

The file system can be used for various read-only operations, like listing the bucket contents or opening a
WT_FILE_HANDLE . That, in turn, can be used to get the contents of a cloud object. Note that WT_FILE_SYSTEM
and WT_FILE_HANDLE are more generic WiredTiger concepts, and are used outside of tiered storage.

The file system obtained from a storage source cannot be used to write pieces of data to objects, rather there is a
method on the WT_STORAGE_SOURCE (cloud driver) that is used to copy a source object file in its entirety to the
cloud. This makes it clear that objects must be written in their entirety, but may be read, if desired, in pieces.

In addition to the cloud providers, the storage source called dir_store emulates the behavior of a cloud provider,
but stores objects in a directory. This is used for testing and development, avoiding the complication and expense
of using cloud storage. By default, tests use a subdirectory of the WiredTiger home directory as the dir_store
repository. Then, when a test breaks, the "cloud" objects are readily available for debugging.

We anticipate that buckets may be shared among multiple nodes, and possibly multiple clusters. To avoid name
collisions, there is a prefix that can be given on a wiredtiger_open call. It is expected that the caller gives
WiredTiger a unique prefix. This prefix is stored as part of the WT_BUCKET_STORAGE, and so can also be specified
per table upon creation. The prefix is prepended to every name stored in a bucket.

Flush Checkpoint Operations

A flush_tier checkpoint has a slightly different sequence of operations from a regular checkpoint without flush_tier.
In particular, eviction is only disabled when we are checkpointing the tree.

The first part of the checkpoint is determining which btrees need to participate. Following that, those btrees are
checkpointed to disk. Finally, when the files have been written, they can be asynchronously copied (flushed) to
cloud storage.



Checkpoint Prepare Phase

Assemble a list of all the dhandles that will be part of the checkpoint. For non-tiered btrees this will be btrees
that have been modified since the last checkpoint. For tiered btrees this will be btrees modified since the last
flush. See checkpoint_flush_tier called from checkpoint_prepare.
For each tiered btree, create the new file, and queue a FLUSH work entry to flush the old one. The work entry
includes checkpoint generation information that is used by the tiered server thread to know when it is okay to
flush the file to object storage (i.e., after the current checkpoint has completed). See tiered_switch,
which is called from checkpoint_flush_tier.
This work is done now so that it doesn't add time to the actual checkpoint when eviction is disabled.

Data file checkpoint

Once the list of dhandles is known, each dhandle (this is, btree) is checkpointed:

When doing the actual checkpoint for each btree, eviction to the btree is blocked. Hence checkpoint is the
only thread updating the btree. This happens in wt_sync_file.
At the end of the checkpoint, after writing the new checkpoint root but before re-enabling eviction, the active
file switches to be the new file created during the prepare phase. This ensures that everything that is part of
the checkpoint is in the old file, and anything evicted after the checkpoint is in the next file.
If the btree is tiered, fsync is called on the old active file to ensure that all checkpoint updates are durable.
Side note: the fsync doesn't have to be done here, it could happen after re-enabling eviction. But this
describes the current actions of the code.
See bm_checkpoint for the active file switch and fsync.
After switching the file, eviction is allowed again as we finish wt_sync_file. Then the next dhandle is
processed.

Flush actions

As indicated above, the FLUSH work entry is queued during the prepare phase and is processed asynchronously.
The FLUSH entry indicates that WiredTiger should copy the completed file on disk to cloud storage.

When the FLUSH completes, these actions occur:

tell the chunk cache to ingest the object before it is removed
update the metadata to reference the new object in the cloud
queue a FLUSH_FINISH operation
queue a REMOVE_LOCAL operation

Future

There are some future features that are helpful to know about when studying the overall design.

Sharing of Tiered Objects

The current implementation of tiered storage supports btrees spanning objects that are stored locally and in cloud
storage. Each cloud object is currently only useful and known to the system that created it. However, a larger
design was in mind when the current implementation was made, and that informed a number of design decisions
along the way.



The larger design allows all systems in a cluster to share knowledge about tiered objects. Generally, there is a
single designated node in a cluster that calls flush_tier, this is the flushing node. Information about the objects
stored as a result of the flush can be returned to the application, where it is transferred to other cooperating nodes
in the cluster. These other nodes are known as "accepting" nodes, and accept this information, updating their
metadata and incorporating references to the newly known objects. The mechanism for returning the flush
information, and providing a way to incorporate the references, has not been implemented.

Another part of the sharing design is new kind of "union" table that is used to help incorporate new objects on the
accepting nodes. The idea is that a tiered table has an additional layer. There is a local "tier", which is just a local
btree, and a shared "tier" which is the tiered btree with multiple objects that has been described here. The cloud
objects in the shared tier is shared among all the nodes of a replica set.

On both the flushing node and accepting nodes, any changes to a tiered table are inserted or updated into the local
btree. Any lookups to the table consult the local btree first, then the shared btree. When a flush_tier is done on the
flushing node, the set of changes up to a known timestamp T is moved from the local btree to the shared btree, a
new object is created, and the previous object, which now contains the set changes, is pushed to the cloud. The
accepting nodes receive the notification of the new cloud object, and the timestamp T associated with it. The
accepting nodes trade out their own shared btree for a new shared btree rooted at the new cloud object. Any
entries in an accepting node's local btree with a timestamp older than T are redundant as they must be included in
the cloud object. There could be multiple strategies to remove the old entries.

The beauty of this design is that it is not difficult to understand (versus various alternatives), it does not require any
downtime when new objects are accepted, nor any downtime if an accepting node is upgraded to a flushing node.

Garbage Collection

While there is a mechanism to create new objects, there is no removal, or garbage collection of objects that
become redundant. That is, as new objects may completely cover sets of keys in the btree, pages having those
keys in an older object are no longer needed. After all pages in an object are no longer needed, an object can be
removed. The trick is in knowing when this can happen.

A future garbage collection solution could work well either synchronously or asynchronously. A synchronous
approach would probably have WiredTiger track references to all pages in either a checkpoint or a object file (and
persist that information as well), and notice when all references to an object have reached zero. This may require
enhancements to extent lists in the block manager. An asynchronous approach could work mostly separately from
WiredTiger (in another process possibly on a different node), and examine object files, visiting internal pages and
tracing the references to all objects. As such, it can notice when an object file has no references. Either approach
allows the identification and removal of unused objects, and maybe also identification of objects that are lightly
filled. These objects could be made redundant by rewriting their useful content directly into the active btree.


