

Undocumented Debug Interface HDT of Modern

AMD CPUs

Bulat N. Zagartdinov

Institute of Cyber Intelligence Systems

National Research Nuclear University Moscow Engineering Physics Institute

Moscow, Russia

me@vaire.lt

Abstract—The paper discusses the implementation of the

IJTAG network in the TAP controller of the modern AMD

CPUs, related to the implementation of the CPU debug unlock

procedure and the unlock procedure itself. During the research,

reverse engineering of protocol implementation was carried out,

and the structure of the hardware and software that implements

the functionality of the Hardware Debug Tool (HDT) debugging

interface for the AMD EPYC 7313 CPU was restored. The logic

of organizing access to the TAP controller in the JTAG network

based on the IEEE 1687 standard, which implements the

exchange interface with the security coprocessor, was analyzed.

The paper analyzed the protocol for unlocking the debugging

capabilities of an undeclared hardware interface and proposed

an algorithm for checking whether the debugging mode is

blocked.

Keywords—JTAG, P1687, cryptographic protocols, reverse

engineering

I. INTRODUCTION

Testing is an integral stage of the development cycle. In
the process of hardware development, even at the design stage,
testing nodes and circuit components is laid down to reduce
the production time of the final hardware solution due to
timely detection of errors.

Often, developers of general-purpose hardware computing
systems (CPUs and SoCs) provide interfaces for debugging
software running on the computing device, which allows
systems software developers to test the software being
developed on the end system. In turn, AMD, as a
manufacturer, has provided such an interface for its CPUs.
However, no information about debug interface is currently
available to the public. As a result, there is no way to verify
the correct blocking of debugging capabilities in computer
systems based on AMD CPUs during the operational stages,
which in turn entails the risk of incorrect use of the debugging
interface in production or the presence of undeclared
capabilities that allow compromising the system, which must
be taken into account.

Researching the implementation of a hardware debugging
interface allows mitigate the risk of incorrect use in production
due to the possibility of implementing a procedure for
checking its status before putting the system into operation
stage, as well as identifying undeclared capabilities or
vulnerabilities in the implementation that allow the system to
be compromised at the operational stage. This debugging
interface is not currently explored due to its closed nature.

Since the most common mistake when using hardware
interfaces of circuit boards in production is the complete
absence or errors in the procedure for blocking them, this
paper is focused on analyzing the implementation of the
algorithm for unlocking the debugging interface.

II. STRUCTURE OF THE AMD HDT DEBUGGING INTERFACE

The TAP controller of the HDT interface is compatible
and implements the JTAG [2], IJTAG [4] and IEEE 1500 [5]
standards in various representations. JTAG is used as an
interface for interacting with the TAP controller, which
implements subsequent debugging logic. In turn, the TAP
controller implements the internal IJTAG network through a
special command that allows, by sequentially writing to a data
register, to activate different sections of the circuit and vary
the length of its data register. In the IJTAG network of the
HDT debugging interface there are other TAP controllers
whose register writing is implemented in accordance with the
IEEE 1500 standard.

The HDT is divided into three parts: TAP controller in
SoC with onboard interface connector, hardware adapter with
RPC-based YAAP (Yet Another AMD Protocol)
communication protocol, and HDT utility used to implement
main CPU debug logic.

The hardware adapter that converts high-level commands
from the HDT utility into low-level ones can be either an
external device connected to the HDT+ onboard interface or a
Baseboard Management Controller (BMC) connected to the
lines of the interface through a multiplexer or resistors.

Access to the adapter device is realized via an Ethernet
network with a TCP/IP protocol stack. The undocumented
RPC-based YAAP protocol is an application layer protocol
used to pass commands from software to the adapter device.
It uses TCP as a transport protocol; by default, incoming
connections are listened to on port 6123. The protocol
supports authorization on the device and blocking to protect
against attempts simultaneously execute commands from
different user sessions.

The HDT+ onboard interface connector consists of 2 rows
of 10 pins each, 5 of which are JTAG [2] interface lines - TDI,
TDO, TMS, TCK and TRST. The placement of the
corresponding interface contacts is shown in the Figure 1 [3].

Fig. 1. Pinout of the onboard HDT+ interface connector.

The utility for CPUs of the old Kaveri architecture, which
implements the functionality of the debugging interface, as

well as the user manual for it, are publicly available [1].
Corresponding software for newer CPUs is not currently
publicly available. This software contains a description of the
internal structure of the debugging interface for each of the
supported CPUs, as well as the implementation of logical
debugging operations implemented through interaction with
the hardware adapter: reading registers, setting breakpoints,
etc.

The TAP controller of the HDT interface is compatible
and implements the JTAG [2], IJTAG [4] and IEEE 1500 [5]
standards in various representations. JTAG is used as an
interface for interacting with the TAP controller, which
implements subsequent debugging logic. In turn, the TAP
controller implements the internal IJTAG network through a
special command that allows, by sequentially writing to a data
register, to activate different sections of the circuit and vary
the length of its data register. In the IJTAG network of the
HDT debugging interface there are other TAP controllers
whose register writing is implemented in accordance with the
IEEE 1500 standard.

The length of the instruction register (IR) for the master
TAP controller of the debug interface is 8 bits. It supports two
commands: IDCODE (0x02) and SELECTDIE (0x03). In
accordance with the result returned by the IDCODE
command, the software selects control logic to implement the
interface capabilities. The SELECTDIE command used for
select an internal component for subsequent switching to its
TAP controller with greater functionality, for example, I/O
DIE (DIE 0) or Core Complex DIE (CCD). For AMD EPYC
7313, the IDCODE value returned is 0x0003A003. This value
is related to the I/O DIE used in AMD EPYC and Ryzen
Threadripper CPUs based on the Zen 3 architecture.

To access all commands in the I/O DIE TAP controller,
you can select internal component (DIE) number 0 using the
SELECTDIE command. The data register (DR) length for the
SELECTDIE command is 6 bits. Bit 0 is the internal
component selection (DIE) activation bit. Bits 1 to 4 encode
the number of the component (DIE) to be selected. Bit 5
encodes the serial mode and can be activated only in
conjunction with activation of all other bits.

The TAP I/O DIE controller supports many commands,
for example some of them: BYPASS (0xFF), ALTTAPEN
(0x05), P1687A (0x13), MANID(0x1F), AEB_STATUS
(0x59), CCD_STATUS (0x63).

The CCD_STATUS command allows you to check the
presence and status (enabled/disabled) of core blocks (CCD).

The AEB_STATUS command allows you to check the
values of the bit fields of the platform security status register,
which contains the CPU operating mode and the unlock mode
state.

The MANID command allows you get more detailed
information about the CPU, such as serial number, type, etc.

The BYPASS command is a standardized JTAG
command and allows you to change the length of the TAP
controller data register to one.

The ALTTAPEN command allows you to include
additional TAP controllers in the JTAG chain. Access to this
command is limited in accordance with the bits of the platform
security status register.

The P1687A command is used to access the IJTAG
network. For example, to access the TAP controller of the
Scalable Control Fabric (SCF) into the data register (DR) of
the corresponding TAP command of the I/O DIE controller of
the AMD EPYC 7313 processor, it is necessary to sequentially
write data 01, 01X_YYYYYYYY, where X bit selecting the
next recording mode is set to 0 for subsequent writing to the
data register (WDR) and 1 to the command register (WIR),
YYYYYYYY is the corresponding command sent to the next
TAP controller in the network. Since after a reset all select
registers are activated (in state 1), first write will be made to
the command register. In this case the length of the command
register (IR) of the SCF controller is 8 bits. The first 2 bits
deactivate the SIB Exclusion Bit (SEB) register and activate
the SIB Exclusion Bit (SIB) register. In this case, the chain
contains only one segment with the TAP controller SCF, then
access to subsequent network segments is provided through it.
The SEB register is used to exclude a group of SIB registers
from the chain, thereby reducing the length of the data
register.

The software uses access to the MP0_J2P_MBX0/
MP0_J2P_MBX1 interface registers of security coprocessor
to implement the unlocking procedure. By writing or reading
these registers, communication protocol with the security
coprocessor through the HDT debug interface implemented.

Figure 2 shows a diagram of access to interface registers
in the IJTAG network for the AMD EPYC 7313 CPU. The
root node in the diagram is the component labeled
“design_iod”, which is the TAP I/O DIE controller. Access to
further network elements provided through the command data
register P1687A of this controller.

In order to simplify the SEB access scheme, registers,
write mode selection registers, command and data registers are
not displayed on it.

In the BC1500_NETWORK network segment, nodes
"smu_mp0_t" and "smu_ccp_t" are controlled using a general
write mode selection register; writing to the command or data
register is carried out for two devices simultaneously.

Components R01-R09 act as routers in the IJTAG network
and are used to split the network into smaller segments.

III. DEBUG INTERFACE UNLOCK PROTOCOL

Components R01-R09 act as routers in the IJTAG network
and are used to split the network into smaller segments.

The utility that implements the unlocking procedure
directly in the process is not involved, but is a node that
ensures interactions between the server and the security
coprocessor software. It is omitted from the description of the
unlocking protocol presented below.

The debug interface unlocking protocol is implemented by
the finite state machine in the security coprocessor software,
as well as by the server as follows:

1. The security coprocessor software generates a 32-bit
random number and signs it with a private key generated
based on the hardware configuration with module length
2048.

The correctness of the generator state is not checked in the
procedure for generating a random number; if the hardware
random number generator fails or there is insufficient entropy

to generate a random number (for example, as a result of
external influence), the signed number will be zero.

Fig. 2. Diagram of the access path to the interface registers.

2. The signed random number with the signature is sent to
the server, which verifies the received value.

Communication between the security coprocessor and the
software implemented by setting bit flags in the
MP0_J2P_MBX0 register and then writing (reading) a piece
of data to the MP0_J2P_MBX1 register.

The size of the data transmitted at this step is 264 bytes: 8
bytes of a random number and 256 bytes of its signature.

3. The server signs the unlock token on a special debug
token signing key according to the RSA PSS scheme and
sends it to the security coprocessor software.

The size of the unlock token is 26 bytes, the size of the
signature is 512 bytes. The debug token contains the platform
serial number, unlock type, AEB register and peripheral
access parameters register value.

The structure of the debug token is presented in Table I.

4. The coprocessor software checks the received token
against the debug token signing key. This key is stored in
external flash memory and signed with the root key of the
platform.

TABLE I. DEBUG UNLOCK TOKEN STRUCTURE

Offset Size Description

0x6 0x2 Protocol version

0x8 0x4 Peripheral Debug Modules Access Register

0xC 0x4 Peripheral Debug Modules Access Register

0x10 0x1 JTAG debug control register bits

0x11 0x1 Unlock type (not used)

0x12 0x8 Serial number (not used)

Before checking the token signature, the software verifies
the protocol version used to communicate with the server,
located in bytes 6 and 7 of the received token, for equality to
the value 0x212. The first 8 bytes of the received token is not
involved in the signature verification procedure because if
verification successful, software overwrites them with a
previously generated random number. Also, before checking
signature, the size of the received token is checked to ensure
it is equal to the value 0x21A.

5. If verification is successful, the token is synchronized
with all child cores of security coprocessor. The encryption
keys stored in the cryptographic coprocessor are cleared, and
the debugging capabilities provided in the token are unlocked.

The platform supports prohibiting the ability to unlock
debug mode, but this feature is implemented in software.

Checking the serial number field in the security
coprocessor software during the unlocking procedure is also
not implemented, which, together with the lack of checking
the state of the hardware random number generator, makes it
possible to implement an attack on using a token signed by the
server on other platforms with the same debug token signing
key. Due to the absence in the token structure of any fields
related to the lifetime of the token, obtaining a single token
signed by the server with a zero random number allows
compromising all platforms with the same certificate (the
entire family of processors) in the event of an attack on the
hardware random number generator.

The constants used in step 1 to initialize the pseudorandom
number generator (for certificate generation) can be obtained
from unencrypted platform software, allowing a token
acquisition attack for a null number signing without using any
platform. Nonetheless, to implement such an attack, you must
have a valid account on the AMD server used to generate
tokens with the ability to unlock at least one platform.

If code execution can be achieved in the security
coprocessor, debug mode can be unlocked by writing to
several hardware registers without an unlocking procedure. It
can be done, for example, by downgrading the security
coprocessor software version to the vulnerable version and
then exploiting a known vulnerability to execute arbitrary
code in the security coprocessor. Rolling back the version is
possible because the internal bootloader does not have a
procedure for checking the version of the external bootloader
being loaded.

In the same time, unlocking debugging capabilities can be
achieved with hardware access through the fault injection
attack discussed in [6].

IV. DEBUG INTERFACE STATE CHECKING

The algorithm for checking the state of the debug interface
in the general case can be implemented by checking the state
of the AEB register. It can be accessed by sequentially
executing the JTAG commands SELECTDIE and
AEB_STATUS. Implementation of the algorithm for
checking the state of the debugging interface in SVF syntax is
proposed on the Figure 3.

Fig. 3. Algorithm for checking debugging interface locking.

Bits 4 and 5 of the AEB register are responsible for
unlocking the debugging capabilities of the platform; if any
debugging capabilities are activated, these bits will be
activated (equal to 1), which will be detected by the algorithm.

V. CONCLUSION

The logic for organizing access to the TAP controller,
which implements the exchange interface with the security
coprocessor for a unlocking debugging capabilities protocol,
has been restored. Access to the controller that implements the
communication interface with the security coprocessor is
realized by sequential activation of the corresponding zones
of the JTAG network by changing the SIB registers.

In the unlocking protocol implementation in the security
coprocessor software several mistakes were discovered,
which allows unlocking an arbitrary platform with a signed
zero random number token. Since the implementation of such
an attack involves influencing the hardware random number
generator of the platform in order to temporarily disable it or
exhaust its internal source of entropy as a result of a large

number of requests, without the presence of a primitive that
allows influencing the hardware random number generator,
exploitation of this flaw is virtually impossible. Future studies
may explore ways to manipulate the hardware random number
generator.

The lack of verification by the internal loader of the
version of the security coprocessor software loaded from
external memory allows a rollback attack to the software
version to a vulnerable one and, through its exploitation,
activating the debugging mode. Such an attack can be done
remotely, since the BMC has write access to external flash
memory and the debugging interface.

An implementation of an algorithm for checking the state
of the debugging interface in SVF syntax is proposed. It can
help mitigate the risk of incorrect use of the debugging
interface in production.

REFERENCES

[1] KaveriPI AMD BIOSDBG tool, [online] Available:
https://github.com/fishbaoz/KaveriPI/tree/master/Tools/AMD%20BI
OSDBG.

[2] "IEEE 1149.1", [online] Available: http://grouper.ieee.org/groups/
1149/1/.

[3] Lanner NCA-4112 User Manual, [online] Available:
https://www.lannerinc.com/support/download-center/user-
manuals/category/16-network-appliances?download=489:nca-4112-
user-manual.

[4] "IEEE P1687", [online] Available: http://grouper.ieee.org/groups/
1687/.

[5] "IEEE 1500", [online] Available: http://grouper.ieee.org/groups/1500/.

[6] R. Buhren, H.-N. Jacob, T. Krachenfels and J.-P. Seifert, "One glitch
to rule them all: Fault injection attacks against AMD’s secure encrypted
virtualization", Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
pp. 2875-2889, Nov. 2021.

