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Abstract—The paper discusses the implementation of the 

IJTAG network in the TAP controller of the modern AMD 

CPUs, related to the implementation of the CPU debug unlock 

procedure and the unlock procedure itself. During the research, 

reverse engineering of protocol implementation was carried out, 

and the structure of the hardware and software that implements 

the functionality of the Hardware Debug Tool (HDT) debugging 

interface for the AMD EPYC 7313 CPU was restored. The logic 

of organizing access to the TAP controller in the JTAG network 

based on the IEEE 1687 standard, which implements the 

exchange interface with the security coprocessor, was analyzed. 

The paper analyzed the protocol for unlocking the debugging 

capabilities of an undeclared hardware interface and proposed 

an algorithm for checking whether the debugging mode is 

blocked. 
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I. INTRODUCTION 

Testing is an integral stage of the development cycle. In 
the process of hardware development, even at the design stage, 
testing nodes and circuit components is laid down to reduce 
the production time of the final hardware solution due to 
timely detection of errors. 

Often, developers of general-purpose hardware computing 
systems (CPUs and SoCs) provide interfaces for debugging 
software running on the computing device, which allows 
systems software developers to test the software being 
developed on the end system. In turn, AMD, as a 
manufacturer, has provided such an interface for its CPUs. 
However, no information about debug interface is currently 
available to the public. As a result, there is no way to verify 
the correct blocking of debugging capabilities in computer 
systems based on AMD CPUs during the operational stages, 
which in turn entails the risk of incorrect use of the debugging 
interface in production or the presence of undeclared 
capabilities that allow compromising the system, which must 
be taken into account.  

Researching the implementation of a hardware debugging 
interface allows mitigate the risk of incorrect use in production 
due to the possibility of implementing a procedure for 
checking its status before putting the system into operation 
stage, as well as identifying undeclared capabilities or 
vulnerabilities in the implementation that allow the system to 
be compromised at the operational stage. This debugging 
interface is not currently explored due to its closed nature.  

Since the most common mistake when using hardware 
interfaces of circuit boards in production is the complete 
absence or errors in the procedure for blocking them, this 
paper is focused on analyzing the implementation of the 
algorithm for unlocking the debugging interface. 

II. STRUCTURE OF THE AMD HDT DEBUGGING INTERFACE 

The TAP controller of the HDT interface is compatible 
and implements the JTAG [2], IJTAG [4] and IEEE 1500 [5] 
standards in various representations. JTAG is used as an 
interface for interacting with the TAP controller, which 
implements subsequent debugging logic. In turn, the TAP 
controller implements the internal IJTAG network through a 
special command that allows, by sequentially writing to a data 
register, to activate different sections of the circuit and vary 
the length of its data register. In the IJTAG network of the 
HDT debugging interface there are other TAP controllers 
whose register writing is implemented in accordance with the 
IEEE 1500 standard.  

The HDT is divided into three parts: TAP controller in 
SoC with onboard interface connector, hardware adapter with 
RPC-based YAAP (Yet Another AMD Protocol) 
communication protocol, and HDT utility used to implement 
main CPU debug logic. 

The hardware adapter that converts high-level commands 
from the HDT utility into low-level ones can be either an 
external device connected to the HDT+ onboard interface or a 
Baseboard Management Controller (BMC) connected to the 
lines of the interface through a multiplexer or resistors. 

Access to the adapter device is realized via an Ethernet 
network with a TCP/IP protocol stack. The undocumented 
RPC-based YAAP protocol is an application layer protocol 
used to pass commands from software to the adapter device. 
It uses TCP as a transport protocol; by default, incoming 
connections are listened to on port 6123. The protocol 
supports authorization on the device and blocking to protect 
against attempts simultaneously execute commands from 
different user sessions.  

The HDT+ onboard interface connector consists of 2 rows 
of 10 pins each, 5 of which are JTAG [2] interface lines - TDI, 
TDO, TMS, TCK and TRST. The placement of the 
corresponding interface contacts is shown in the Figure 1 [3]. 

Fig. 1. Pinout of the onboard HDT+ interface connector. 

The utility for CPUs of the old Kaveri architecture, which 
implements the functionality of the debugging interface, as 

 



well as the user manual for it, are publicly available [1]. 
Corresponding software for newer CPUs is not currently 
publicly available. This software contains a description of the 
internal structure of the debugging interface for each of the 
supported CPUs, as well as the implementation of logical 
debugging operations implemented through interaction with 
the hardware adapter: reading registers, setting breakpoints, 
etc. 

The TAP controller of the HDT interface is compatible 
and implements the JTAG [2], IJTAG [4] and IEEE 1500 [5] 
standards in various representations. JTAG is used as an 
interface for interacting with the TAP controller, which 
implements subsequent debugging logic. In turn, the TAP 
controller implements the internal IJTAG network through a 
special command that allows, by sequentially writing to a data 
register, to activate different sections of the circuit and vary 
the length of its data register. In the IJTAG network of the 
HDT debugging interface there are other TAP controllers 
whose register writing is implemented in accordance with the 
IEEE 1500 standard. 

The length of the instruction register (IR) for the master 
TAP controller of the debug interface is 8 bits. It supports two 
commands: IDCODE (0x02) and SELECTDIE (0x03). In 
accordance with the result returned by the IDCODE 
command, the software selects control logic to implement the 
interface capabilities. The SELECTDIE command used for 
select an internal component for subsequent switching to its 
TAP controller with greater functionality, for example, I/O 
DIE (DIE 0) or Core Complex DIE (CCD). For AMD EPYC 
7313, the IDCODE value returned is 0x0003A003. This value 
is related to the I/O DIE used in AMD EPYC and Ryzen 
Threadripper CPUs based on the Zen 3 architecture. 

To access all commands in the I/O DIE TAP controller, 
you can select internal component (DIE) number 0 using the 
SELECTDIE command. The data register (DR) length for the 
SELECTDIE command is 6 bits. Bit 0 is the internal 
component selection (DIE) activation bit. Bits 1 to 4 encode 
the number of the component (DIE) to be selected. Bit 5 
encodes the serial mode and can be activated only in 
conjunction with activation of all other bits. 

The TAP I/O DIE controller supports many commands, 
for example some of them: BYPASS (0xFF), ALTTAPEN 
(0x05), P1687A (0x13), MANID(0x1F), AEB_STATUS 
(0x59), CCD_STATUS (0x63). 

The CCD_STATUS command allows you to check the 
presence and status (enabled/disabled) of core blocks (CCD). 

The AEB_STATUS command allows you to check the 
values of the bit fields of the platform security status register, 
which contains the CPU operating mode and the unlock mode 
state. 

The MANID command allows you get more detailed 
information about the CPU, such as serial number, type, etc. 

The BYPASS command is a standardized JTAG 
command and allows you to change the length of the TAP 
controller data register to one. 

The ALTTAPEN command allows you to include 
additional TAP controllers in the JTAG chain. Access to this 
command is limited in accordance with the bits of the platform 
security status register. 

The P1687A command is used to access the IJTAG 
network. For example, to access the TAP controller of the 
Scalable Control Fabric (SCF) into the data register (DR) of 
the corresponding TAP command of the I/O DIE controller of 
the AMD EPYC 7313 processor, it is necessary to sequentially 
write data 01, 01X_YYYYYYYY, where X bit selecting the 
next recording mode is set to 0 for subsequent writing to the 
data register (WDR) and 1 to the command register (WIR), 
YYYYYYYY is the corresponding command sent to the next 
TAP controller in the network. Since after a reset all select 
registers are activated (in state 1), first write will be made to 
the command register. In this case the length of the command 
register (IR) of the SCF controller is 8 bits. The first 2 bits 
deactivate the SIB Exclusion Bit (SEB) register and activate 
the SIB Exclusion Bit (SIB) register. In this case, the chain 
contains only one segment with the TAP controller SCF, then 
access to subsequent network segments is provided through it. 
The SEB register is used to exclude a group of SIB registers 
from the chain, thereby reducing the length of the data 
register. 

The software uses access to the MP0_J2P_MBX0/ 
MP0_J2P_MBX1 interface registers of security coprocessor 
to implement the unlocking procedure. By writing or reading 
these registers, communication protocol with the security 
coprocessor through the HDT debug interface implemented. 

Figure 2 shows a diagram of access to interface registers 
in the IJTAG network for the AMD EPYC 7313 CPU. The 
root node in the diagram is the component labeled 
“design_iod”, which is the TAP I/O DIE controller. Access to 
further network elements provided through the command data 
register P1687A of this controller. 

In order to simplify the SEB access scheme, registers, 
write mode selection registers, command and data registers are 
not displayed on it. 

In the BC1500_NETWORK network segment, nodes 
"smu_mp0_t" and "smu_ccp_t" are controlled using a general 
write mode selection register; writing to the command or data 
register is carried out for two devices simultaneously. 

Components R01-R09 act as routers in the IJTAG network 
and are used to split the network into smaller segments. 

III. DEBUG INTERFACE UNLOCK PROTOCOL 

Components R01-R09 act as routers in the IJTAG network 
and are used to split the network into smaller segments. 

The utility that implements the unlocking procedure 
directly in the process is not involved, but is a node that 
ensures interactions between the server and the security 
coprocessor software. It is omitted from the description of the 
unlocking protocol presented below.  

The debug interface unlocking protocol is implemented by 
the finite state machine in the security coprocessor software, 
as well as by the server as follows: 

1. The security coprocessor software generates a 32-bit 
random number and signs it with a private key generated 
based on the hardware configuration with module length 
2048. 

The correctness of the generator state is not checked in the 
procedure for generating a random number; if the hardware 
random number generator fails or there is insufficient entropy 



to generate a random number (for example, as a result of 
external influence), the signed number will be zero. 

Fig. 2. Diagram of the access path to the interface registers. 

2. The signed random number with the signature is sent to 
the server, which verifies the received value. 

Communication between the security coprocessor and the 
software implemented by setting bit flags in the 
MP0_J2P_MBX0 register and then writing (reading) a piece 
of data to the MP0_J2P_MBX1 register. 

The size of the data transmitted at this step is 264 bytes: 8 
bytes of a random number and 256 bytes of its signature. 

3. The server signs the unlock token on a special debug 
token signing key according to the RSA PSS scheme and 
sends it to the security coprocessor software. 

The size of the unlock token is 26 bytes, the size of the 
signature is 512 bytes. The debug token contains the platform 
serial number, unlock type, AEB register and peripheral 
access parameters register value. 

The structure of the debug token is presented in Table I. 

4. The coprocessor software checks the received token 
against the debug token signing key. This key is stored in 
external flash memory and signed with the root key of the 
platform. 

TABLE I.  DEBUG UNLOCK TOKEN STRUCTURE 

Offset Size Description 

0x6 0x2 Protocol version 

0x8 0x4 Peripheral Debug Modules Access Register 

0xC 0x4 Peripheral Debug Modules Access Register 

0x10 0x1 JTAG debug control register bits 

0x11 0x1 Unlock type (not used) 

0x12 0x8 Serial number (not used) 

 

Before checking the token signature, the software verifies 
the protocol version used to communicate with the server, 
located in bytes 6 and 7 of the received token, for equality to 
the value 0x212. The first 8 bytes of the received token is not 
involved in the signature verification procedure because if 
verification successful, software overwrites them with a 
previously generated random number. Also, before checking 
signature, the size of the received token is checked to ensure 
it is equal to the value 0x21A. 

5. If verification is successful, the token is synchronized 
with all child cores of security coprocessor. The encryption 
keys stored in the cryptographic coprocessor are cleared, and 
the debugging capabilities provided in the token are unlocked. 

The platform supports prohibiting the ability to unlock 
debug mode, but this feature is implemented in software. 

Checking the serial number field in the security 
coprocessor software during the unlocking procedure is also 
not implemented, which, together with the lack of checking 
the state of the hardware random number generator, makes it 
possible to implement an attack on using a token signed by the 
server on other platforms with the same debug token signing 
key. Due to the absence in the token structure of any fields 
related to the lifetime of the token, obtaining a single token 
signed by the server with a zero random number allows 
compromising all platforms with the same certificate (the 
entire family of processors) in the event of an attack on the 
hardware random number generator. 

The constants used in step 1 to initialize the pseudorandom 
number generator (for certificate generation) can be obtained 
from unencrypted platform software, allowing a token 
acquisition attack for a null number signing without using any 
platform. Nonetheless, to implement such an attack, you must 
have a valid account on the AMD server used to generate 
tokens with the ability to unlock at least one platform. 

If code execution can be achieved in the security 
coprocessor, debug mode can be unlocked by writing to 
several hardware registers without an unlocking procedure. It 
can be done, for example, by downgrading the security 
coprocessor software version to the vulnerable version and 
then exploiting a known vulnerability to execute arbitrary 
code in the security coprocessor. Rolling back the version is 
possible because the internal bootloader does not have a 
procedure for checking the version of the external bootloader 
being loaded.  

In the same time, unlocking debugging capabilities can be 
achieved with hardware access through the fault injection 
attack discussed in [6]. 

 



IV. DEBUG INTERFACE STATE CHECKING 

The algorithm for checking the state of the debug interface 
in the general case can be implemented by checking the state 
of the AEB register. It can be accessed by sequentially 
executing the JTAG commands SELECTDIE and 
AEB_STATUS. Implementation of the algorithm for 
checking the state of the debugging interface in SVF syntax is 
proposed on the Figure 3. 

Fig. 3.  Algorithm for checking debugging interface locking. 

Bits 4 and 5 of the AEB register are responsible for 
unlocking the debugging capabilities of the platform; if any 
debugging capabilities are activated, these bits will be 
activated (equal to 1), which will be detected by the algorithm.  

V. CONCLUSION 

The logic for organizing access to the TAP controller, 
which implements the exchange interface with the security 
coprocessor for a unlocking debugging capabilities protocol, 
has been restored. Access to the controller that implements the 
communication interface with the security coprocessor is 
realized by sequential activation of the corresponding zones 
of the JTAG network by changing the SIB registers. 

In the unlocking protocol implementation in the security 
coprocessor software several mistakes were discovered, 
which allows unlocking an arbitrary platform with a signed 
zero random number token. Since the implementation of such 
an attack involves influencing the hardware random number 
generator of the platform in order to temporarily disable it or 
exhaust its internal source of entropy as a result of a large 

number of requests, without the presence of a primitive that 
allows influencing the hardware random number generator, 
exploitation of this flaw is virtually impossible. Future studies 
may explore ways to manipulate the hardware random number 
generator. 

The lack of verification by the internal loader of the 
version of the security coprocessor software loaded from 
external memory allows a rollback attack to the software 
version to a vulnerable one and, through its exploitation, 
activating the debugging mode. Such an attack can be done 
remotely, since the BMC has write access to external flash 
memory and the debugging interface. 

An implementation of an algorithm for checking the state 
of the debugging interface in SVF syntax is proposed. It can 
help mitigate the risk of incorrect use of the debugging 
interface in production. 
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