
Tutorial 1

Tutorial
Switching Gō-Martini for Investigating Protein
Conformational Transitions and Protein-Lipid
Interactions
Introduction to Switching Gō-Martini
The Gō-like Martini model is an innovative fusion of the Gō-like model and the Martini model, which
was first introduced by Proma et al.(2017). In this model, protein structures are maintained by the
contact map interactions (rCSU and OV) using Lennard-Jones potentials. In contrast, the contact
interactions in the traditional Martini model are depicted as harmonic potentials. The most notable
distinction between these two potential functions is the energy when deviating from their
equilibrium values. The Lennard-Jones potential approaches zero for extended interaction lengths,
while the harmonic potential yields exceedingly high energies under similar conditions. This
fundamental contrast endows the Gō-like Martini model with the capability of capturing more
dynamics of protein conformations, including the folding and unfolding process of proteins, akin to
other Gō-like models. However, the single-basin energy landscape constructed by the contact map
in the Gō-like Martini model restricts the applicability of this model in exploring the conformational
transitions between distinct states in multiple-state proteins. To address this limitation, here we will
introduce a novel method, named Switching Gō-Martini, which is based on the switch approach
and the Gō-like Martini model. Our method can not only efficiently capture the conformational
transitions of proteins, but also reveal the associated proteins-lipids interactions.

Tutorial
In this section, we will utilize β2AR, a representative of GPCR, as an example to illustrate the
capability of the Switching Gō-Martini method in sampling conformational transition pathways. In
brief, we first generate two Gō-Martini models for active and inactive β2AR following the Martini
tutorial. Subsequently, we perform a sequential simulation, running both systems one after the
other, with a short-time relaxation process incorporated to relax the transition. For convenience, all
the necessary files used within this tutorial (including worked files) are supplied.

(1) Preprocess PDB files (PDB code: 3SN6 and 2RH1) for the active and inactive β2AR. Water and
other small molecules, such as the activator and inhibitor, should be removed. The missing loops
and mutations in 3SN6 should be repaired by Modeller. And the missing side chains of 2RH1 should
be added. Lastly, residues of proteins should be trimmed to have the same length. In this case, we
reserve residues 30-230 and 265-341 of β2AR.

(2) Generate the Gō-Martini model for the active β2AR. We utilize martinize2 to generate the Martini
topology of 3SN6 with flags to assign the Gō-like model.

martinize2 -f 3SN6_clean.pdb -o system.top -x Protein_Active_cg.pdb -dssp d

ssp -p backbone -ff martini3001 -govs-include -govs-moltype Active -cys aut

o -scfix

http://info.ifpan.edu.pl/~rcsu/rcsu/index.html
http://cgmartini.nl/index.php/2021-martini-online-workshop/tutorials/564-2-proteins-basic-and-martinize-2
http://cgmartini.nl/index.php/2021-martini-online-workshop/tutorials/564-2-proteins-basic-and-martinize-2
http://cgmartini.nl/index.php/2021-martini-online-workshop/tutorials/564-2-proteins-basic-and-martinize-2

Tutorial 2

We also need to upload the atomistic pdb file to web-server and generate the contact map with
default settings. Download and uncompress the generated .tgz file. Then, we use the script
create_goVirt_for_multimer.py modified based on create_goVirt.py to generate all additional files.
This script can be used for monomers or multimers. CG structure of the protein in pdb format (-s),
the number of CG beads in the protein excluding the virtual Gō beads (–Natoms), the contact map
file (-f), the reference atomistic structure in pdb format (-r), the prefix of the generated files (–
moltype), and importantly, the dissociation energy of the Lennard-Jones potentials (–go_eps) are
needed by this script.

python create_goVirt_for_multimer.py -r 3SN6_clean.pdb -s Protein_Active_c

g.pdb -f 3SN6_clean.map --moltype Active --go_eps 12 --Natoms 681

Then, we download the martini 3.0 force field and add statements (#include) to the file followed by
renaming the file to martini_v3.0.0_Active.itp. Move these .itp files into a new directory for better
management.

download the martini_v3.0.0.itp

sed -i "s/\\[nonbond_params \\]/\\#ifdef GO_VIRT\\n\\#include \\"BB-part-d

ef_VirtGoSites.itp\\"\\n\\#endif\\n\\n\\[nonbond_params \\]/" martini_v3.

0.0.itp

echo -e "\\n#ifdef GO_VIRT \\n#include \\"go-table_VirtGoSites.itp\\"\\n#en

dif" >> martini_v3.0.0.itp

mv martini_v3.0.0.itp martini_v3.0.0_Active.itp

mkdir ActiveITP

mv *.itp ActiveITP

(3) Generate the Gō-Martini model for the inactive β2AR as we just did for the active state of β2AR.

martinize2 -f 2RH1_clean.pdb -o system.top -x Protein_Inactive_cg.pdb -dssp

dssp -p backbone -ff martini3001 -govs-include -govs-moltype Inactive -cys

auto -scfix

upload 2RH1_clean.pdb to the web-server and download the contact map.

python create_goVirt_for_multimer.py -r 2RH1_clean.pdb -s Protein_Inactive_

cg.pdb -f 2RH1_clean.map --moltype Inactive --go_eps 12 --Natoms 681

download the martini_v3.0.0.itp again.

sed -i "s/\\[nonbond_params \\]/\\#ifdef GO_VIRT\\n\\#include \\"BB-part-d

ef_VirtGoSites.itp\\"\\n\\#endif\\n\\n\\[nonbond_params \\]/" martini_v3.

0.0.itp

echo -e "\\n#ifdef GO_VIRT \\n#include \\"go-table_VirtGoSites.itp\\"\\n#en

dif" >> martini_v3.0.0.itp

mv martini_v3.0.0.itp martini_v3.0.0_Inactive.itp

mkdir InactiveITP

mv *.itp InactiveITP

(4) Insert the CG protein of the active β2AR into a POPC membrane and solvate the system with
water and ions by using the script insane.py. Be aware that there are issues with ion names and

http://info.ifpan.edu.pl/~rcsu/rcsu/index.html
http://www.cgmartini.nl/images/martini_v300.zip
http://www.cgmartini.nl/images/tools/insane/insane.py

Tutorial 3

counts for the added ions that require manual correction.

wget http://www.cgmartini.nl/images/tools/insane/insane.py

python2 insane.py -f Protein_Active_cg.pdb -box 8,8,10 -l POPC -o ions.gro

-salt 0.15 -charge auto -center -sol W 2>system.top

Repair the wrong ion names and ion counts.

sed -i "s/NA+ NA+/NA NA/g" ions.gro

sed -i "s/CL- CL-/CL CL/g" ions.gro

sed -i "s/NA+/NA /g" system.top

sed -i "s/CL-/CL /g" system.top

vi system.top # Delete 2 CL in system.top and ions.gro. The error is becaus

e the virtual atoms without charges are also calculated by insane.py.

vi ions.gro

(5) Prepare the following files: system_Active.top, system_Inactive.top, .ndx index file (containing
Protein, Membrane, Solvent), and the .mdp files (em.mdp, npt.mdp, md.mdp, and md_relax.mdp).
Particularly, the md_relax.mdp is important, in which a short-time relaxation is conducted for 1000
steps with a time step of 0.002 ps to smooth the transition and reduce the risk of system crashes.

cp system.top system_Active.top

vi system_Active.top # add #define GO_VIRT and #include the topol files (.i

tp) we need.

cp system_Active.top system_Inactive.top

sed -i 's/Active/Inactive/g' system_Inactive.top

gmx make_ndx -f ions.gro -o index.ndx # Protein, Membrane and Solvent

If everything goes well, our next step is to run the simulations as follows.

Minimization

gmx grompp -f em.mdp -c ions.gro -p system_Active.top -o em.tpr -n index.nd

x

gmx mdrun -v -deffnm em

Equilibration

gmx grompp -f npt.mdp -o npt.tpr -c em.gro -r em.gro -p system_Active.top -

n index.ndx

gmx mdrun -v -deffnm npt

Production

gmx grompp -f md.mdp -o md1.tpr -c npt.gro -p system_Active.top -n index.nd

x

gmx mdrun -deffnm md1 -v

gmx grompp -f md_relax.mdp -o md2_1.tpr -c md1.gro -p system_Inactive.top -

n index.ndx

gmx mdrun -deffnm md2 -v -s md2_1.tpr

Tutorial 4

gmx grompp -f md.mdp -o md2.tpr -c md1.gro -p system_Inactive.top -n index.

ndx

gmx mdrun -deffnm md2 -v -cpi md2.cpt -s md2.tpr -append

(6) Finally, analyze the simulations we just obtained. The first thing we should do is to use trjconv to
post-process the trajectories by concatenating them, correcting periodicity, and removing protein
translation and rotation. Then, utilize VMD for simulation viewing and analysis as needed.

gmx trjcat -f md[1-2].xtc -o md_whole.xtc -settime -dt 100 << EOF

c

c

EOF

echo 1 0 |gmx trjconv -s md1.tpr -f md_whole.xtc -o md_nojump.xtc -pbc noju

mp -center

echo 1 0 |gmx trjconv -s md1.tpr -f md_nojump.xtc -o md_mol.xtc -pbc mol -c

enter

echo 1 0 |gmx trjconv -s md1.tpr -f md_mol.xtc -o md_rottrans.xtc -fit rot+

trans

echo 0 | gmx trjconv -s md1.tpr -f md_rottrans.xtc -o md_start.pdb -dump 0

