蛍光表示管規格 Specification of Vacuum Fluorescent Display

伊勢電子工業株式会社

Ise Electronics Corporation

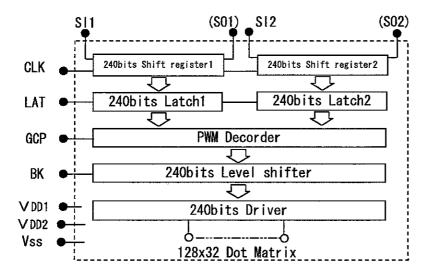
Sheet 1/10

MN12832L (T-167)

ltem No.

適用規格	規格No.
蛍光表示管納入規格	TT-93-3336
蛍光表示管信頼性試験規格	TT-99-3050A
蛍光表示管品質保証水準規格	TT-91-3602

DSJ1314	
Spec. No.	Date(M-D-Y)
P-R	0ct01-01
P-R1	0ct05-01
	· · ·
	Spec. No. P–R


絶対	最大定格 Absolute	e maximum ratings	Та=2	5°C			
	項	目	記号	端	子	定格	単位
		Parameter	Symbol	Teri	minal	Rating	Unit
フィ	ラメント電圧	Filament volt.	Ef	F1-F2	Note 1	3. 5	Vac
保存		Storage Temperature	Τs	-	<u> </u>	-50~+85	°C
	ロジック電源電圧	Logic supply volt.	V DD1	V DD1	Note 2	-0.3~6.5	V
BD	ディスプレイ電源電圧	Display supply volt.	V DD2	V DD2	Note 2	-0.3~53.0	V
系	入力電圧	Input volt	VIN	SI1, SI2, LAT, BK	, CLK, Note 2	∨\$\$-0.3~∨DD1+0.3	V
	Note 1: 交流50/60	旧の実効値。	Effect	ive valu	e of 50 o	r 60Hz	

Note 2: Vss=0Vを基準とした値。

ffective value of 50 or 60Hz

Voltage based Vss=OV.

内部ロジック図/BD Internal logic figure.

電源シーケンス/BD Power-supply sequence.

Note 3: VDD2の電源投入はVDD1と同時またはVDD1の投入後であること。 VDD1の電源遮断はVDD2と同時またはVDD2の遮断後であること。 VDD2の印加中はVDD1をフローティング又は3.0V未満にしないこと。 VDD1 and VDD2 should be on at the same time, or VDD2 Should be on after VDD1 is on. VDD1 and VDD2 should be off at the same time, or VDD1 Fig. 1 Should be off after VDD2 is off. Don't make VDD1 into floating or less than 3V during impression of VDD2.

推奨動作条件 Recommended operating conditions

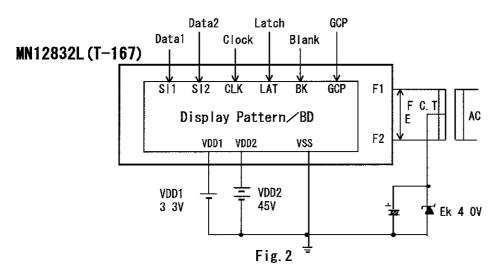
	<u>项</u>	B	記号	条	件	最 /	い 標	準	最大	単位
		Parameter	Symbol	Condi	tion	MIN	-	ΓYP	MAX	Unit
フィラメント電圧		Filament volt.	Ef	See Fig.2	Note 1	2.6		2.9	3.2	Vac
	ロジック電源電圧	Logic supply volt.	V DD1	See Fig.1,2	Note 2,3	3.0		3. 3	3.7	V
	ディスプレイ電源電圧	Display supply volt.	V DD2	See Fig.1,2	Note 2,3,5	—	4	5.0	50.0	V
	入力電圧	Input Volt.	VIN			0			V DD1	V
	バイアス電圧	Filament bias Volt.	Ek	See Fig.2	Note 4	3.5		1.0	4.5	V
ВD	クロック周波数	Clock frequency	f CLK	See Fig.3				_	2.5	MHz
系	クロックパルス幅	Clock pulse width	twCLK	See Fig.3		200		_	<u> </u>	ns
	データ構成時間	Data setup time	t DS	See Fig.3		40		_		ns
	データ保持時間	Data hold time	t DH	See Fig.3		30		_		ns
	ラッチパルス幅	Latch Pulse width	t wL	See Fig.3		300				ns
	ラッチ構成時間	Latch setup time	t LS	See Fig.3		250			<u> </u>	ns
	ラッチ保持時間	Latch hold time	t LH	See Fig.3		120			l —	ns
動作	温度	Operating Temperature	Τo		-)~+8	-	°C ∩ T)

Note 5: 電流制限抵抗RD=22Ωの挿入を推奨。 RD=22Ω to be connected in series.

Note 4: フィラメントトランスセンタータップに印加すること。 With respect to filament cennter-tap (F.C.T).

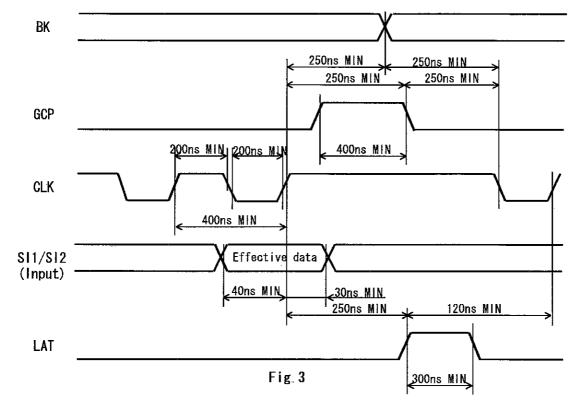
電気的光学的特性 Electrical and optical characteristics

电刈	的工子的特性 Lieu	strical and optical of		CI ISLIGS									
BD	BD系条件:fCLK=2MHz Ta=-40~85℃ VSS=0V VDD1=3.3V VDD2=45V Segments are all lights												
	項		記号	テスト条件	最 小	標準	最 大	単位					
		Parameter	Symbol	Test conditions	MIN	TYP	MAX	Unit					
フィ	ラメント電流	Filament current	If	All segment off VDD1=VDD2=OV Note 1,7	135. 0	150. 0	165, 0	mAac					
	ロジック電源電流	Logic supply current	I DD1	fclk=2MHz Note 6	-	1.0	2.0	mA					
	ディスプレイ電源電流	Display supply current	I DD2	Note 6	ote 6 📃 —	10.0	15.0	mA					
	日レベル入力電流	Hi-level input current	I IH	VIH=VDD1	_		5.0	μA					
	Lレベル入力電流	Low-level input current	IIL	VIL=VSS	-250	-70	-35	μA					
BD	日レベル入力電圧	Hi-level input volt.	VIH		Vss+2.4		V DD1	V					
系	レレベル入力電圧	Low-level input volt.	VIL		VSS		V SS+0. 7	V					
	輝度	Luminance	L (G)	Ta=25°C 発光Du=1/44	350	(800)		cd/m*					
	発光色		Green	(G)									
				EDD1									


Note 6 · ES検証後、値を見直すことがあります。IDD1 and IDD2 may be changed after evaluating the engineering samples. Value of Ef=2 9V. Note 7: Ef=2.9Vでの値。

Specification of V.F.D. MN12832L (T-167)

	防波用E Terminia Tun		
	ピン名	機能	Function
	F1, F2	フィラメント電圧入力	Filament voltage input
	NP	ノーピン	No Pin
	CLK	シフトレジスタクロック	Shift register clock
	S I 1	シリアルデータ入力1	Serial data input 1
	SI2	シリアルデータ入力2	Serial data input 2
	S 01	シリアルデータ出力1	Serial data output 1
ВD	S O 2	シリアルデータ出力2	Serial data output 2
系	GCP	輝度階調コントロールパルス	Tone control pulse
	LAT	データラッチコントロール	Data latch control
	BK	ディスプレイブランキング	Display blanking input
	Vss	グランド	Ground
	VDD1	ロジック電源入力	Logic supply voltage input
	∨DD2	ディスプレイ電源入力	Display supply voltage input


ピン機能 Terminal function

回路例/BD The example of a circuit.

Specification of V.F.D. MN12832L(T-167)

AC特性/BD AC Characteristics/BD

Note 8: 誤動作防止の為、下記の点についてご注意下さい。

Please be careful about the following point for prevention of operation. ・データ書込み時以外はCLKをHighにしておいて下さい。

When you don't write the data, Please set CLK to High.

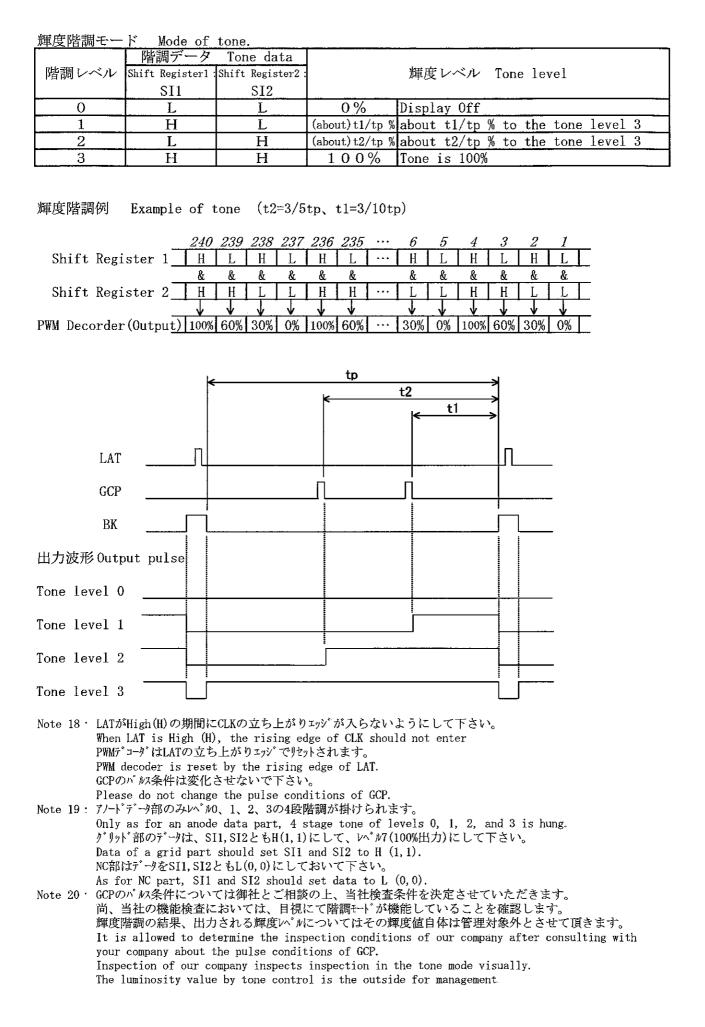
・データ書込み中はBKを変化させないで下さい。

Please don't change BK during data transmission.

- ・CLKがLowの状態でBKを変化させないで下さい。
- When CLK is Low, please do not change BK.
- ・LATがHigh(H)且つBKがLow(L)の状態でCLKをL→Hにしないで下さい。

When LAT is High and BK is Low, please don't change CLK from Low to High.

Note 9: GCPに関しては、Sheet 5/10のタイミングチャート内および、Sheet 6/10の輝度階調モードの 制約事項をご参照下さい。


- Please refer to Sheet 5/10 and Sheet 6/10 about GCP.
- Note 10: LATパルス幅は最小限にして下さい。LATは桁間ブランキング時(BK=H)に入れて下さい。 また桁間ブランキング中のLATタイミングに制約がありますので、Sheet 5/10をご参照下さい。 Please make LAT-pulse width into the minimum Refer to Sheet 5/10 for nter-Digit-Blanking and LAT-timing
- Note 11: BKに関してはデータトランスファータイミング チャートをご参照下さい。 Please refer to the Data transfer timing chart about BK

お取り扱い上のご注意 Attention on handling.

半導体製品ですので静電気には十分ご注意お願いします。故障の原因になります。 環境温度の上昇により、誤動作することがあります。ご使用に当っては放熱にご配慮下さい。 This is a semiconductor product Please be careful of static electricity. It becomes the cause of failure It may incorrect-operate by the rise of environmental temperature. Please consider heat dissipation.

bata transfer timing chart/BD SI1. S12 <u>240 7 7 250nsW1N</u> CCP 250nsW1N 250nsW1N 250nsW1N 250nsW1N 250nsW1N $\frac{1}{250nsM1N}$ 250nsW1N $\frac{1}{250nsM1N}$ $\frac{1}{$	<pre>Specification of V.F.D. MN12832L(T-167) : Data</pre>	Data transfer timing chart(1/2)/BD	Sheet 5/10
240 1 2 3 1239 240 250nsMIN 250nsMIN 250nsMIN 250nsMIN 250nsMIN 250nsMIN 0000000 0000000 0000000 1000000 000_00000 0000000 0000000 1000000 1000000 10000000 0000000 0000000 0000000 1000000 10000000 0000000 0000000 0000000 1000000 10000000 0000000 0000000 0000000 10000000 10000000 0000000 0000000 0000000 0000000 10000000 0000000 0000000 0000000 0000000 10000000 0000000 0000000 0000000 0000000 10000000 0000000 0000000 0000000 0000000 10000000 0000000 0000000 0000000 0000000 10000000 000000 0000000 0000000 0000000 10000000 000000 0000000 0000000 0000000 10000000 000000 0000000 0000000 0000000 10000000 000000 0000000 0000000 0000000 10000000 0000000 00000000 0000000 00000000	Data transfer timing		
250nsWIN 250nsWIN 250nsWIN 250nsWIN 250nsMIN 250nsWIN 250nsWIN 250nsMIN 000000 1000000 0000000 0000000 1000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000000 00000000 00000000 00000000 00000000 00000000 0000000 0000000000 000000000 000000000	H	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
250nsMIN 250nsMIN 250nsMIN 250nsMIN 250nsMIN 1000000 + 250nsMIN 190 μ sec. MAX 190 μ sec. MAX + 250nsMIN 1000000 1000000 - + 250nsMIN 1000000 1000000 - - + 190 μ sec. MAX 1000000 - - - 190 μ sec. MAX 1000000 - - - 1000000 - 0 μ sec. MAX - - 1000000 - 0 μ sec. MAX - - 1000000 - - - - - 1000000 - - - - - 1000000 - - - - - 1000000 - - - - - 1000000 - - - - - 1000000 - - - - - 1000000 - - - - - 1000000 - - - - - 1000000 - - - - - 1000000 - - - - <td< td=""><td></td><td></td><td></td></td<>			
250nsMIN 250nsMIN 250nsMIN 000_0000 190 μ sec. MAX + 1 190 μ sec. MAX 190 μ sec. MAX 1 1 190 μ sec. MAX 1 0 μ sec. MAX	GCP	Z5008MIN Z5008MIN	
190 μ sec. MAX 100 μ s	` 	L00000L000000L000000L	
Display OFF Display ON Inter-Digit Blanking tp	LAT	190 µ sec.MAX Digit cycle (Timing Tn)	
Display OFF Display ON Inter-Digit Blanking tp			
*		Display ON	
		*	
	Pin Assignment Pin No. 1 Assignment F1]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	38 F2

Specification of V.F.D. <u>MN12832L(T-167)</u> : Data transfer timing chart(2/2)/BD

	sequence/BD
	data
Ď.	Serial
Specification of V.F.D.	MN12832L (T-167) :

~ 240		Vo Vonnection	Note 25	Note 25	Note 25	Note 25	Note 25	Note 25	Note 25	Note 25	Note 26	Note 25	Note 25	Note 25	Note 25	Note 25	Note 25	Note 25
237			Ň	Ž	Ň	Ž	Ž	Ž	ž	Ň	M	Ň	Ň	Ň	Ň	Ň	ž	ž
5 236		3 G44															┛	
4 235		2 643	<u> </u>													┛		
3 234		1 642													┍┛	┝	E	
32 23		40 G41												┍┛		E		
31 20		G39 G40											┍┛	H	E			
230 231 232 233	a a	G38 G3		L L	L L				 L	 ت_ر						Г	L.	
~ 2	σ					,					e 26							
	Grid scan	G8 (Γ	Ē	Note							
199 2	Grid	G7						┍┛	H	Ч								
198		G6					Γ	H	7									
197		G5					H											
196		64			Γ	Н												
193 194 195 196 197 198 199 200		G3			E													
194		G2	L	E														
		G1	H	Ц	Ц	Г		1	ц.			Г	Ц	Ц	۲.	<u>ب</u>	Ц	Ц
1 192																		
0 19																		
39 I 5				23		23		23		33			8				<u> </u>	
\sim 187 188 189 190 191				Note 2		Note 2		Note (Note (Note 23		Note 23		Note 23	
87 1	ta			<u>×</u>		<u>×</u>		<u> </u>		N			N		N		N	
$r \sim 1$	e data										Note 26							
9	Anode										Not							
5			22		ŝ		33		22			2 7		22		22		×7
4			Note		Note		Note 22		Note			Note		Note 22		Note 22		Note 24
3																		
2																		
Ι																		
Data No.		Grid No.	T 1	T2	T3	T4	T5	T6	T7	T8	• •	T37	T38	T39	T40	T41	T42	T43

波形中のHはHigh (ON)、LはLow (OFF)を示す。 Note 21 Note 22

、タイミング内のd, e, f列ドット(1d~32d, 1e~32e, 1f~32f)に限り点灯選択可。 H=High Level(ON)、L=Low Level(OFF) :タイミング内のa, b,c列ドット(1a~32a,1b~32b,1a~32c)に限り点灯選択可。 この時d,e,f列ドット(1d~32d,1e~32e,1f~32f)は、LにしてOFF。 Set data ON(H) or OFF(L) for anode group a (la to 32a), group b this timing. Then other anodes d, e, and f should be all OFF(L) (1b to 32b), and group c (1c to 32c) in the selected Grids in Note 23

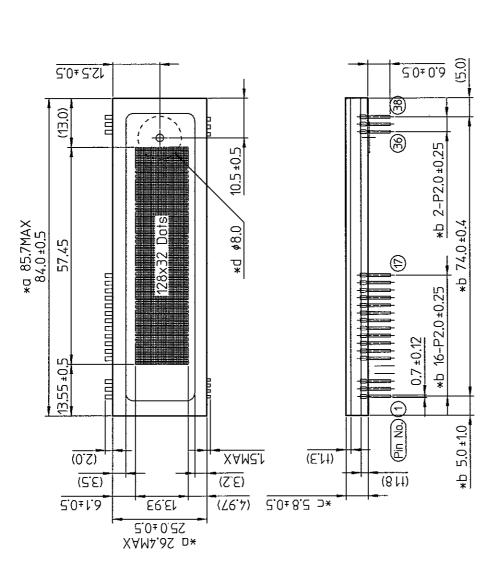
Set data ON(H) or OFF(L) for anode group d (1d to 32d), group e この時a, b, c列ドット(Ia~32a, 1b~32b, 1a~32c)は、Lにして0FF。 this timing. Then other anodes a, b, and c should be all OFF(L). (le to 32e), and group f (lf to 32f) in the selected Grids in

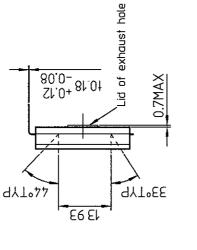
flickering prevention.

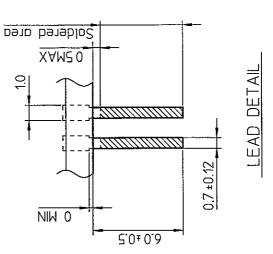
この時c, d, e, f列ドット(lc~32c, ld~32d, le~32e, lf~32f)は、LにしてOF T9~T36は中略。T1~T42は奇数同士、偶数同士のタイミングで同様の使い方です。 ちらつき防止の為、連続したT1~T43の繰り返しスキャンレートは120Hz以上のこと。 Set data ON(H) or OFF(L) for anode group a (la to 32a), and group b The scanning rate of T1-T43 should be 120Hz or more because of Note 24 。タイミング内のa, b列ドット(1a~32a, 1b~32b)に限り点灯選択可。 Then other anodes c, d, e, and f should be all <u>OFF(L)</u>. 選択出来るデータはありません。データはTowとして下さい。 (1b to 32b) in the selected Grids in this timing. There is no data which can be chosen. T9 to T36 omit. Note 26 Note 25 Note 27

Sheet 7/10

Specificatin of V.F.D. MN12832L(T-167) : Data map/BD

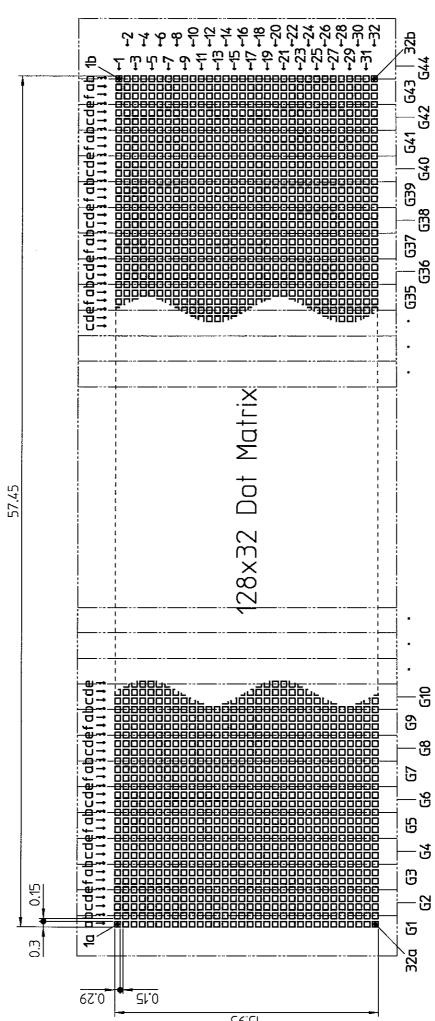

Upper row Data No. Lower row Assignment


シフトレジスタ割り当て順 〔シフトレジスタ1~2(SI1, SI2)共通〕 The order of shift register assignment (SI1 and SI2 are common.)


		×		1											
	-					-	-					10			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
la	1f	1b	1e	1c	1d	2a	<u>2f</u>	2b	2e	2c	2d	<u>3a</u>	3f	3b	3e
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
3c	3d	4a	4f	4b	4e	4c	4d	5a	<u>5f</u>	5b	5e	<u>5c</u>	5d	6a	6f
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
6b	6e	6c	6d	7a	7f	7b	7e	7c	7d	8a	8f	8b	8e	8c	8d
49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
9 <u>a</u>	9f	9b	9e	9c	9d	10a	10f	10b	10e	10c	10d	<u>11a</u>	<u>11</u> f	11b	11e
65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
11c	11d	12a	12f	12b	12e	12c	12d	_13a	13f	13b	13e	13c	13d	14a	14f
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
14b	14e	14c	14d	15a	15f	15b	15e	15c	15d	16a	16f	16b	16e	16c	16d
. 97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
17a	17f	17b	17e	<u>17c</u>	_17d	18a	18f	18b	18e	18c	18d	19a	19f	19b	19e
113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
19c	19d	20a	20f	20b	20e	20c	20d	21a	21f	21b	21e	21c	21d	22a	22f
129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
22b	22e	22c	22d	23a	23f	23b	23e	23c	23d	24a	24f	24b	24e	24c	24d
145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
25a	25f	25b	25e	25c	25d	26a .	26f	26b	26e	26c	26d	27a	27f	27b	27e
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176
27c	27d	28a	28f	28b	28e	28c	28d	29a	29f	29b	29e	29c	29d	30a	30f
177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192
30b	30e	30c	30d	31a	31f	31b	31e	31c	31d	32a	32f	32b	32e	32c	32d
193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	G13	G14	G15	G16
209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224
G17	G18	G19	G20	G21	G22	G23	G24	G25	G26	G27	G28	G29	G30	G31	G32
225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
G33	G34	G35	G36	G37	G38	G39	G40	G41	642	G43	G44	NC	NC	NC	NC
		,	·												
シフト	レジス	スタ	Shift	Regis	ter										
				0											
SI1	\rightarrow	240	239	238	237	236	~	6	5	4	3	2	1	\rightarrow	S01
	Ĩ									· · · · · · · · · · · · · · · · · · ·				1	
SI2	\rightarrow	240	239	238	237	236	\sim	6	5	4	3	2	1	\rightarrow	S02
	•	I				• · · ·									

Note 28: P** = Anode G1 to G44 = Grid NC = No Connection

Specification of V.F.D. MN12832L(T-167) : Outer dimension


- *a Included extra frif glass.
 *b Within 3mm from 3mm bottom of the glass substrate.
 *c This size does not include the thickness of a lid.
 *d This lid is settled in the range of 6mm radius from the center of a hale.

Sheet 9/10 ISE ELECTRONICS CORP. Scale 1:1 Unit : mm ():Reference only

MN12832L(T-167) : Display pattern

Sheet 10/10 ISE ELECTRONICS CORP. Scale (5:1) Unit : mm

():Reference only

and a sequence (a to f). Anode numbers are expressd with composition of a line(1 to 32) Anode sequence is repeated in the order of a,b,c,d,e,and f. Color of illumination is green.

TT-01-3358

ご注意

- ・本仕様書の記載内容は、改良のため予告なく変更をすることがあります。ご使用の際には情報が最新のものであることをご確認ください。
- ・本仕様書によって工業所有権その他の権利を実施する保証または実施件の許諾を行うものではありません。本仕様書に掲載されている応用例、回路例は、本製品をご理解いただくためのものであり、これを用いたことによる回路上の諸問題についての責任は負いかねますのでご了承ください。
- ・弊社の承諾なく、本仕様書の一部または全部の転載複製は堅くお断りを申し上げます。
- ・本製品は、軍事用機器、航空宇宙機器、原子力制御システム、生命維持のための医療用機器などへのご 使用を意図しておりません。これらに類する用途にご使用をお考えのお客さまは、事前に販売窓口までご 相談をいただきますようお願いします。
- ・本製品は耐放射線設計をしておりません。

本製品を安全かつ適切にお取り扱いおよびご使用いただく上で、下記の諸注意事項をお守りいただくようお 願い申し上げます。また、製品本来の性能を最大に発揮した状態でご使用いただくために、各種のアプリケ ーションノートをご用意しておりますので、これらも必ずお読みいただきますようお願い申し上げます。

【お取り扱いについて】

- ・ガラスエッジ部分は研磨等の加工は行っておりませんので、ケガに注意して下さい。
- ・ガラス容器から突起した部分(排気管)は割れやすいので、取扱時には力を加えないように注意して下さい。
- ・フィラメント断線や蛍光体の脱落を生じることがありますので、本製品の超音波洗浄は行わないでください。

【駆動について】

・本製品の本来の性能に最大限発揮させるために、仕様書記載の定格条件を守ってご使用してください。特にフィラメント電圧は本製品を適正に作動させるための最も重要なファクターのひとつであり、適正値を外れると製品寿命に重大な影響を与える危険性があります。必ず仕様書に示された定格電圧(TYP値)に合わせて電源の設計をいただくようお願いいたします。

【保管について】

- ・仕様書記載の環境条件を守って保管してください。高湿、多湿または塩分や硫黄分の多い環境での保管 は避けてください。リードピンのはんだづけ性やリードピン間の絶縁が劣化することがあります。
- 本製品は構造上長期保管により若干輝度低下することがありので、納品後3ヶ月以内にご使用いただくこと をお奨めいたします。なお、輝度低下は定格条件で1~2時間程度全点灯動作させることにより正常に回復 します。

【廃棄時のご注意】

・Green(ブルーグリーン)以外の蛍光体には微量のカドミウムを含有しているものがあります。また、外容器の 一部には鉛を含んだ材料を使用しておりますので、廃棄の際は関連法規に従ってください。

【保証期間について】

・本製品の保証期間に関しましては、別途納入仕様書、または購買基本契約にて取り交しをさせていただきます。なお、基本的に保証期間は本製品出荷後1年間となります。

Notice and Caution

The content of this specification is subject to change for improvements without notice.

We do not authorize the use of any patents that may be inherent in these specifications. The application and circuit examples in these specifications are for better product understanding only. The examples are illustrated for general use. We do not guarantee these examples to be suitable for your particular application. It is your responsibility to determine their appropriateness for your use. We take no responsibility for circuitry problems in your application. Neither whole nor partial copying of these specifications are permitted without our approval.

This product is not designed for military, aerospace, medical or other life-critical applications. If you choose to use this product for these applications, please ask for our prior consultation. This product is not designed to work in a high radiation atmosphere.

Warrantee Period:

The specifications or purchase contract will provide details of our warrantee. The basic warrantee period is one year from purchase.

Handling and Usage Precautions:

Please follow the available appropriate product application notes for proper usage, safety and for operation standards within maximum performance.

Safety:

The edge of the glass is not perfectly smooth so handle with caution. The exhaust pipe is not designed for high stress so be careful to avoid breakage. If disposing of this product, do not break for safety concerns.

Assembly:

Please handle carefully to avoid surface scratching and breakage of the exhaust pipe during the assembly process. We recommend the use of gloves and finger shields to keep the product clean and the solder surface smooth at the lead pins.

Please provide enough space around the process area to avoid accidentally breaking the exhaust pipe and avoid applying too much stress to your fixture that may also break the exhaust pipe.

Please use shock absorbers when the product is secured with stands inside the fixture to avoid cracking the glass.

The lead pins should not be touched by conductive material because they are the display electrodes.

When designing your application, please consider the sealing glass paste that surrounds the vacuum fluorescent display.

When cutting the lead pins after soldering avoid applying shock and vibration that exceeds specifications.

When bending the lead pins, avoid stress to the corner of the glass where the pins are bent. Overstress may cause glass cracking or breakage and unstable conductivity.

When securing the circuit board to the application, avoid warping of the circuit board that may cause damage to the glass or pins. The sealing glass materials may be damaged by acid and alkaline substance. Please carefully select chemicals and fluxes. When chemicals and flues are applied, please provide a sufficient washing process.

Do not apply ultrasonic cleaning that may cause damage to the filament wires and phosphor materials.

Drive:

Please follow the rating in the specifications to maximize performance.

Filament voltage (Ef) is the most important factor to drive the display properly. Exceeding the recommended conditions will result in a severe reduction in life expectancy and possibly cause other damage. Please refer to the power design applying the typical voltage recommendations in the specifications.

We define the recommended operating conditions to guarantee the operation, performance and quality of the product. If the product is operated outside the maximum and minimum ratings, the product may be damaged. When designing the circuit, please apply the typical conditions in the specifications as your design center.

The absolute maximum rating is defined as the value that cannot be exceeded. You cannot apply conditions that exceed the maximum absolute value. When you exceed conditions that are greater than the maximum absolute value, damage may occur to the product.

When designing the circuitry, please closely consider the variation of power voltage, the variation in components, environmental temperatures, surge, and spikes.

Brightness controls (dimming) by the filament voltage, anode and grid voltage, or display driving voltage, the display may appear with uneven brightness. If brightness control is required, please adjust the blanking pulse width of anode and grid voltage, or blanking control (BK) in BD series. See the application note.

Due to the product characteristics, there may appear a brightness difference between the segments that are frequently used and those that are less frequently on. Please try to design your display patterns where there is an even distribution of segments that are turned on. Try to avoid using some segments that are excessively or permanently on when compared with the rest. If this cannot be avoided, please consult us.

Storage:

Please follow the environmental conditions described in the specifications. Please avoid storing in high humidity, saline and sulfur rich environments. These environmental factors may result in deterioration of the characteristics for soldering lead pins and insulation between lead pins.

Extended time storage may result in initial dimming due to the characteristics of the product. We recommend using the product within three months of receipt. The brightness level returns after tuning the product on for several hours (one to two hours) under typical conditions.

Precaution for disposal:

Some of the phosphor material excluding blue-green, contain a very small quantity of cadmium. Also part of the display glass package contains lead glass. Please follow the prescribed related regulation and legislation for industrial wastes.