
Motion Planning by Search in Derivative Space and Convex
Optimization with Enlarged Solution Space

Jialun Li1, Xiaojia Xie2, Qin Lin3, Jianping He1 and John M. Dolan4

Abstract— To efficiently generate safe trajectories for an
autonomous vehicle in dynamic environments, a layered motion
planning method with decoupled path and speed planning is
widely used. This paper studies speed planning, which mainly
deals with dynamic obstacle avoidance given a planned path.
The main challenges lie in the optimization in a non-convex
space and the trade-off between safety, comfort, and efficiency.
First, this work proposes to conduct a search in second-order
derivative space for generating a comfort-optimal reference
trajectory. Second, by combining abstraction and refinement,
an algorithm is proposed to construct a convex feasible space for
optimization. Finally, a piecewise Bézier polynomial optimiza-
tion approach with trapezoidal corridors is presented, which
theoretically guarantees safety and significantly enlarges the so-
lution space compared with the existing rectangular corridors-
based approach. We validate the efficiency and effectiveness of
the proposed approach in simulations.

Index Terms— Speed planning, derivative space search,
Bézier polynomial, safe trapezoidal corridors

I. INTRODUCTION

Autonomous vehicles are promising to revolutionize trans-
portation systems and change the ways in which people
travel. To interact with other agents on road, a self-driving
car adjusts its path and speed over time constantly based
on perception information. This task can be formulated as
a problem to optimize a trajectory in terms of comfort and
energy saving while satisfying safety and dynamic feasibility
constraints. However, solving the original constrained opti-
mization problem is intractable in real-time.

To fulfill the real-time performance requirement, there are
two major trajectory generation frameworks: spatio-temporal
planning [1]–[3] and path-speed decoupled planning (also
called layered planning) [4]–[7]. These two approaches share
the same hierarchical ideas, i.e., finding a heuristic solution
as a reference first and optimizing to refine later.

Spatio-temporal planning considers spatial and temporal
maneuvers simultaneously. The search and optimization pro-
cesses are completed in three-dimensional space (i.e., the 2D
position dimensions plus the time dimension). Correspond-
ingly, the decoupled method decomposes a 3D planning

This work is supported by the NSF of China under Grant 61973218.
1: the Department of Automation, Shanghai Jiao Tong University, and

Key Laboratory of System Control and Information Processing, Min-
istry of Education of China, Shanghai 200240, China {jialunli,
jphe}@sjtu.edu.cn.

2: Megvii (Face++) Technology Inc., Beijing, China
xiexiaojia@megvii.com.

3: the Electrical Engineering and Computer Science Department, Cleve-
land State University, Cleveland, OH, USA q.lin80@csuohio.edu.

4: the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
USA jdolan@andrew.cmu.edu.

(a) (b)

Fig. 1: Examples of yielding and overtaking maneuvers in the
merging scenario and its S-T graph (ego vehicle : red).

problem into two stages: path planning and speed planning.
In the first stage, path planning is executed to generate a
path to avoid static, oncoming, and low-speed obstacles. In
the second stage, we use speed planning to adjust a vehicle’s
speed to keep a safe distance from dynamic obstacles which
block the formed path. Although the layered approach is
prone to be suboptimal with the appearance of dynamic
obstacles compared to the 3D optimization approach, its
separated design process is more flexible. In addition, the
computational complexity can be significantly reduced, as
discussed in [4]–[6].

In the layered planning framework, speed planning plays
a critical role in avoiding dynamic vehicles. For example,
when another vehicle merges into the same lane as the ego
vehicle (see Fig. 1(a)), the ego vehicle may follow the lane-
changing vehicle while maintaining a safe distance. During
this process, the speed of the ego vehicle is expected to
conduct an evasive maneuver, e.g., slowing down first and
then accelerating smoothly.

The most common approach to speed planning is to use
an S-T graph describing the relationship between station
and time. However, the S-T graph is more suitable as
a position control tool for collision avoidance. The first
research question is that can we directly control acceleration
and jerk for generating a comfort-optimal trajectory? To
address this question, we propose to use an S̈-T graph
instead. A multistage graph can be established to trans-
form the original comfort-optimality problem into a shortest
pathfinding problem, which is solvable by off-the-shelf tools,
e.g. greedy algorithms and depth first search (DFS) strategies.

Another common drawback of existing speed planning
methods is that the safety constraints are indeed imposed
at discretized time instants. However, we expect to assure
safety for the whole planning horizon. Many works tackle
this problem in a straightforward way by refining the time
interval. However, this solution leads to more decision vari-
ables, higher computation costs, and a lack of theoretical
guarantee. The second research question we address in
this paper is that how can we provably ensure safety in

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 23-27, 2022, Kyoto, Japan

978-1-6654-7927-1/22/$31.00 ©2022 IEEE 13500

20
22

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

79
27

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S4

76
12

.2
02

2.
99

81
96

1

Authorized licensed use limited to: Beijing Xiaomi Technology Co.Ltd. Downloaded on June 08,2024 at 06:56:33 UTC from IEEE Xplore. Restrictions apply.

Jian Wen
高亮

Jian Wen
高亮

Jian Wen
附注
1. 在 \ddot_s-T 图下直接搜索粗解，保证纵向体感舒适性；
2. 利用贝塞尔曲线的凸包性，保证在连续时间下是安全的；
3. 计算效率高。

continuous-time space?, i.e., the safety between any two
consecutive sampling timestamps must be guaranteed as
well. To address this problem, we leverage the appealing
convex hull property of Bézier polynomials to enforce that
the continuous trajectory always fall into a safe region. In
addition, such an optimization problem’s solution space is
enlarged via our proposed trapezoidal corridors.

The pipeline of our framework can be briefly described
as i) we generate a comfort-optimal trajectory as a refer-
ence using the S̈-T graph; ii) we construct convex regions
by using a novel convexification algorithm; iii) trapezoidal
corridors are constructed from the convex regions for Bézier
polynomial-based trajectory optimization. Our work has a
superior trade-off among comfort, safety, feasibility, and effi-
ciency. a) Comfort and safety: Since an autonomous vehicle
is a safety-critical system, safety should be always priori-
tized. The comfort-optimal trajectory serves as a reference
and compromises safety in the final trajectory optimization
stage when collision avoidance has been taken into account.
However, the degree of compromise is manageable since in
the final optimization, we penalize the deviation from the
comfort-optimal reference. b) Feasibility: The solution space
is maximized by using our trapezoidal corridors’ construc-
tion. c) Efficiency: Our proposed planner fulfills the real-time
requirement. For a 7s planning horizon, the average runtime
costs are around 6ms and 12ms in numeric simulations and
the CommonRoad simulations [8], respectively.

The contributions of our work are summarized as follows:

• We propose to use a S̈-T graph for the optimization of
a comfort reference trajectory. A multistage graph can
be established to transform the original comfort-optimal
finding problem into a shortest path finding problem,
which is easily solvable.

• We propose an efficient convexification algorithm
through combining abstraction and refinement to con-
struct a safe convex space for optimization.

• We provide a sufficient condition on coefficients of the
Bézier polynomials to guarantee trajectory’s safety in
trapezoidal corridors theoretically. Compared with ex-
isting rectangular corridors [1], the condition is relaxed
and the solution space is significantly enlarged, which
leads to a higher chance of finding an optimal solution.
Moreover, existing condition of the solution shows that
one piece of the speed profile by a trapezoidal corridor
is hardly achieved by multiple rectangular corridors.

The remainder of this paper is structured as follows. We
review related works in Sec. II. We introduce necessary
notations and background materials on the S-T graph for
speed planning and Bézier polynomials in Sec. III. The
heuristic search for reference trajectory and the convex safe
region construction are presented in Sec. IV. In Sec. V, we
present our optimization formulation. The simulation results
and analysis can be found in Sec. VI. We make concluding
remarks in Sec. VII.

II. RELATED WORKS

Speed Planning. The techniques of (speed) planning
approaches can be classified into three categories: (i) search
and optimization; (ii) sampling lattices and selecting the
minimum cost trajectory; (iii) approximated optimization.
The methods in the first category search the best candidate
speed profile and construct convex regions for smoothing by
optimization. Xu et al. first present a method of selecting the
best lattice solution and conducting a post-optimization [5].
Baidu EM motion planner uses dynamic programming for
search and piecewise monomial polynomials for optimization
[9]. With a similar search approach, [10] optimizes speed
using piecewise jerk speed optimization. Most of works in
the first category conduct search directly on an S-T graph.
In this work, we argue that using an S̈-T graph can directly
control and minimize the acceleration and jerk to generate
comfort-optimal trajectories (more details will be discussed
in Sec. IV). Besides, many works pose safety constraints in
discredited time domain. However, we expect the trajectory
to have provable safety in continuous time domain. To tackle
this challenge, we propose to use trapezoidal corridors-
based Bézier polynomials optimization. Some control-related
optimization methods are also in this category, such as model
predictive control (MPC) [11] and constrained iterative linear
quadratic regulator (CiLQR) [12]. The advantage of these
approaches is that they mitigate the planning and control
inconsistency problem, since the dynamic model has already
been considered in the planning layer. However, the disad-
vantage is the high computation cost. Our proposed planner
fulfills the real-time requirement. For a 7s planning horizon,
the average runtime costs are 5ms and 10ms in numeric
simulation and the CommonRoad simulation, respectively.
For the second category, different speed lattices are sampled
and combined with path lattices. The generated local spatial-
temporal trajectories are evaluated and the best one with
the minimum cost is selected. Related works see [4], [6].
For the third category, the formulated non-convex trajectory
optimization problem is solved by off-the-shelf solvers or
approximated by sequential convex problems [13]–[15].

Bézier Polynomials-Based Planning. In the area of
unmanned aerial vehicles (UAVs), Bézier polynomials are
widely used with rectangular corridors for trajectory opti-
mization [16], [17]. Ding et al. borrow this idea and propose
to use similar approaches for unmanned ground vehicles
(UGVs) [1]. However, due to dynamic traffic participants,
the safe regions of UGVs are time-variant and different from
scenarios considered for UAVs. Accordingly, corridors for
Bézier curves are also time-variant and a common convex
hull property does not hold. Therefore, it becomes non-trivial
to directly transfer corridor construction methods from UAVs
to UGVs. The challenges lie in generations of collision-free
convex corridors and enforcing Bézier curves in these time-
dependent corridors for safety. In our work, we propose to
use time-dependent trapezoidal corridors and give sufficient
safety condition for Bézier curves. It is theoretically proved
that the trapezoidal corridors can enlarge the solution space

13501

Authorized licensed use limited to: Beijing Xiaomi Technology Co.Ltd. Downloaded on June 08,2024 at 06:56:33 UTC from IEEE Xplore. Restrictions apply.

Jian Wen
高亮

Jian Wen
高亮

Jian Wen
高亮

Jian Wen
高亮

Jian Wen
高亮

for improved optimization.

III. S-T GRAPH AND TRAJECTORY REPRESENTATION

A. S-T Graph
Speed planning decides when an autonomous vehicle

should reach a point from a planned path. To do so, we
introduce Frenét coordinates to describe the position of a
vehicle with respect to a road for analytical convenience. In
the Frenét frame, S represents the longitudinal displacement
along the road. L represents lateral position with respect
to the reference, e.g., the road centerline. An L-S graph
and an S-T graph are commonly used in practice. L-S
graph describes the lateral coordinate against longitudinal
coordinate. S-T graph illustrates the change of longitudinal
position with respect to time. The vehicle’s trajectory is
determined by combining planning results from the S-L and
the S-T graphs. In planning process, obstacles are projected
onto the L-S graph and a collision-free path is generated.
Then, the dynamic obstacles that block the path at certain
time interval are projected onto the S-T graph.

As an example, in Fig.1(b), two dynamic obstacles consid-
ered are projected onto S-T graph as a set of blue rectangles.
The width of each rectangle equals to the length of the
obstacle vehicle plus half length of ego vehicle. To ensure
safety, the feasible space of the station curve should not have
any overlap with the regions projected from obstacles. The
solution space is non-convex in general. The station profile
of the ego vehicle on the S-T graph reflects its distances
from obstacles with respect to time and its decisions such
as yielding, overtaking, following, etc. For example, the red
curve between the blue areas implies yielding to the car in
front, while the green curve illustrates overtaking.

B. Bézier Polynomials and Properties
A Bézier polynomial is a polynomial function represented

by a linear combination of Bernstein bases. The n-th order
Bézier polynomial is written as

B(t) = c0b
0
n(t) + c1b

1
n(t) + · · ·+ cnb

n
n(t),

where the Bernstein basis is bin(t) = Ci
n · ti · (1− t)n−i, t ∈

[0, 1]. The coefficients of the polynomial ci (i = 0, 1, . . . , n)
are called control points. Compared with a monomial poly-
nomial, a Bézier curve has the following properties.

• The Bézier polynomial starts at the control point
B(0) = c0 and ends at the control point B(1) = cn.

• Convex hull property: B(t) is confined within a
convex hull consisting of control points, i.e.

B(t) ∈

{
n∑

i=1

µici
∣∣µi = bin(t)

}
.

• Hodograph property: The derivative of B(t), denoted
by Ḃ(t), can also be written as a Bézier polynomial with
control points c

(1)
i = n · (ci+1− ci), i = 0, 1, . . . , n− 1.

Generally, the recurrence of control points between
the l-th-order derivative dlB(t)

dtl
and (l + 1)-th-order

derivative dl+1B(t)
dtl+1 of B(t) can be established by

c
(l+1)
i = (n− l)(c

(l)
i+1 − c

(l)
i).

C. Trajectory Representation using Bézier Polynomials

With the appealing convex hull property, the trajectory
B(t) is guaranteed to fall into the convex hull of control
points. If the convex hull are generated from a collision-
free region, then B(t) is guaranteed to be safe as well. Note
that such a provable safety guarantee applies to the whole
continuous planning horizon.

To mitigate the numerical instability issue, piecewise
Bézier polynomials with lower orders are used instead of
using a high-order Bézier polynomial for the whole planning
horizon. Note that B(t) is defined on a fixed time interval
[0, 1]. For a whole trajectory with m + 1 pieces, in each
piece [Tk, Tk+1] (k = 0, 1, · · · ,m, T0 = 0), we use a scaling
transformation and a translation transformation in the time
domain to map it into the interval [0, 1] [16]. Then, the whole
piece-wise trajectory can be represented as

s(t) = hkB

(
t− Tk

hk

)
, t ∈ [Tk, Tk+1], (1)

where hk is the scaling transformation factor and Tk is the
translation transformation factor for k = 0, 1, · · · ,m.

IV. HEURISTIC SEARCHING AND CORRIDOR
GENERATIONS

In this section, we introduce our proposed method for
generating a comfort-optimal reference trajectory and the
efficient convexification algorithm for the construction of
convex safe regions.

A. Search in Derivate Space

In most of the existing literature on layered motion plan-
ning, an S-T graph is directly used for searching reference
trajectories for further optimization. However, even if sample
intervals and fitting methods are carefully designed, the
second-order (acceleration) and the third-order derivatives
(jerk) of lateral and longitudinal displacements may still be
uncomfortable to passengers. Indeed, we can reduce search
resolution and introduce more variables for consecutive
(T, S) and similarly treat acceleration and jerk. However,
it is imaginable that we will introduce excessive variables
for search. Instead, in this work, we propose to search in
an S̈-T graph for a direct control for acceleration and jerk.
This motivation can be explained by an analogy with position
control and force control in a robot control problem. The
position control (by analogy with the S-T optimization) is
more suitable for a direct collision-avoidance optimization,
while the force control (by analogy with the S̈-T) is more
suitable for directly generating an acceleration-smooth and
jerk-minimized trajectory.

B. Search for Longitudinal Planning

In an S̈-T graph, feasible interval of s̈, [s̈min, s̈max], are
discretized with a user-defined step ∆s̈ with ∆ts as time
interval. For search, we first illustrate how to generate a
child node with a father node. Suppose that the state of
the father node is (sfather, ṡfather, s̈father). The second-order
derivate component of child node, s̈child, is selected from

13502

Authorized licensed use limited to: Beijing Xiaomi Technology Co.Ltd. Downloaded on June 08,2024 at 06:56:33 UTC from IEEE Xplore. Restrictions apply.

uniformly sampled candidate values in the S̈-T graph. Then,
we generate ns fitting points between s̈father and s̈child on the
S̈-T graph by minimizing longitudinal acceleration and jerk
(maximizing comfort) as

min
s̈[1],...,s̈[ns]

w2

ns∑
k=1

(s̈[k])
2
+ w3

ns∑
k=0

(s̈[k + 1]− s̈[k])
2

s.t. s̈[0] = s̈father, s̈[ns + 1] = s̈child,

(2)

where w2 and w3 are tunable parameters. Once the second-
order derivate s̈ of fitting nodes are achieved, the states of
ns fitting nodes and child node are calculated by, for k =
0, . . . , ns,

ṡ[k + 1] = ṡ[k] +
1

2
s̈[k]∆t+

1

2
s̈[k + 1]∆t,

s[k + 1] = s[k] + ṡ[k]∆t+
1

3
s̈[k](∆t)2 +

1

6
ṡ[k + 1](∆t)2,

with ṡ[0] = ṡfather, s[0] = sfather and ∆t = ∆ts
ns+1 . The state

of child node is (s[ns + 1], ṡ[ns + 1], s̈[ns + 1]). Then, the
cost of child node is calculated by

costchild =costfather + costcomfort + costobstacle

+ costvref + costheuritsic.
(3)

The search procedure is summarized in Algorithm 1.

Algorithm 1: Search for Heuristic s-t Profile
Input: Intial state x0, end state xend of ego vehicle and S-T

graph
Output: sref, ṡref and s̈ref

1: Initialize root node0 with x0

2: Calculate s̈ of fitting nodes by solving Eq. (2)
3: priority queue.push(node0)
4: while !priority queue.empty() do
5: nodefather = priority queue.pop() //pops the node with the

lowest cost
6: if nodefather.t == tend then
7: break
8: end if
9: for s̈child in S̈candidate do

10: Calculate nodechild and nodefitting with S̈-T graph
11: if IsCollisionFree(nodechild) and

IsCollisionFree(nodefitting) then
12: Caculate costchild with Eq. (3)
13: priority queue.push(nodechild)
14: end if
15: end for
16: end while
17: return sref, ṡref and s̈ref

In Proposition 1, we show that the solution of the problem
in Eq. (2) also satisfies the constraints of s̈ ∈ [s̈min, s̈max].

Proposition 1. Suppose that s̈father, s̈child ∈ [s̈min, s̈max]. Then,
the solution of problem (2) satisfies the constraints of s̈, i.e.,
s̈[1], . . . , s̈[ns] ∈ [s̈min, s̈max].

The detailed proof can be found the supplement materials
[18]. We derive a closed-form solution of Eq. (2) instead
of leveraging an optimization tool. Let the gradient of the
objective function with respect to s̈[k] be zero and we obtain

s̈[k] =
w3

w2 + 2w3
(s̈[k − 1] + s̈[k + 1]) (4)

where k = 1, 2, · · · , ns. We have the boundary conditions
s̈[0] = sfather and s̈[ns + 1] = schild. Let λ = w3

w2+2w3
, and

via solving a set of linear equations, we have


s̈[1]

...
s̈[ns]

 =


1 −λ

−λ 1
. . .

. . .
. . . −λ
−λ 1



−1 
λ 0
0 0

...
...

0 λ


[

s̈[0]
s̈[ns + 1]

]
.

The matrix under the inverse operation is tridiagonal. The
time complexity of solving such a matrix is O(n), which
is significantly more efficient than O(n2.8) of solving a
general matrix inverse problem [18]. The resulting linear-
time complexity implies that the optimization of fitting two
nodes in the S̈-T has superior efficiency.

Non-convex safe region

(a) Nonconvex safe regions. (b) DP search and piecewise convex
safe regions.

…

…

𝑇𝑇𝑘

𝑘

𝑘 + 1

𝑇𝑘+1

safe region

𝑝0
𝑘 + 𝑝1

𝑘 𝑡 − 𝑇𝑘

𝑝0
𝑘 + 𝑝1

𝑘 𝑡 − 𝑇𝑘

(c) Representations of safe regions.

s

tO

𝑘

new

𝑇𝑘 𝑇𝑘+1

𝑠𝑚

𝑠𝑚

new region test line

(d) Generations of safe regions.

Fig. 2: Safety Regions and their Generations on S-T graph.

C. Piecewise Convex Safe Regions Representations
One of the main challenges of motion planning is that the

free space is nonconvex (see the grey region in Fig. 2(a)).
Suppose that the region can be divide into m+1 pieces with
time intervals [T0, T1], . . . , [Tm, T] and T = Tm+1 (see the
piecewise-convex quadrilaterals in Fig. 2(b)). The details of
such a convexification algorithm will be introduced in Sec.
IV.C. As shown in Fig.2(c), the k-th convex safe region can
be represented as

Sk = {(ti, si)|pk0 + hkp
k
1

ti − Tk

hk
≤ si ≤

pk0 + hkpk1
ti − Tk

hk
, ti ∈ [Tk, Tk+1]},

(5)

where pk0 , p
k
1 are the bias and the skew of the lower bound,

pk0 , p
k
1 are the bias and the skew of the upper bound. hk

denotes the length of the k-th time interval and satisfies hk =
Tk+1 − Tk, k = 0, 1, . . . ,m.

Then, the whole safe region is the union of a set of
piecewise-safe sub-regions: S = S0 ∪ · · · ∪ Sm The speed
planning is safe if ∀t0 ∈ [0, T], s(t0) ∈ S , or for t0 ∈
[Tk, Tk+1], s(t0) ∈ Sk, k = 0, 1, . . . ,m, i.e.

pk0 + hkp
k
1

t0 − Tk

hk
≤ s(t0) ≤ pk0 + hkpk1

t0 − Tk

hk
. (6)

13503

Authorized licensed use limited to: Beijing Xiaomi Technology Co.Ltd. Downloaded on June 08,2024 at 06:56:33 UTC from IEEE Xplore. Restrictions apply.

D. Construction of Piecewise Convex Safe Regions

Alg. 2 is the main routine for the construction of
piecewise-convex safe regions. The original nonconvex space
shown in Fig.2(a) is evenly chunked into nums pieces
(called meta-pieces) with identical time duration ∆t. The
upper boundaries ub and lower boundaries lb are from the
free space in meta-pieces, of which the size is also nums.
Note that for the space divided by obstacles, we select
the unique space enclosing the comfort-optimal reference
trajectory. regions is the resulting convex regions. The first
meta-piece is considered as the first convex region appended
to regions (see Line 1, Alg. 1). As a subroutine in Alg.
3, SingleRegionGeneration() computes the region’s bias and
skews of the lower bound and the lower bound, respective.
In the loop of Alg. 2 (Lines 4-15), we iteratively evaluate
two consecutive meta-pieces. If they can form a new skew
(of upper bound or lower bound), which has a significant
difference between the previously region (see the condition
in Line 7, Alg. 2), a new single region will be established
(see the illustration in Fig. 2(d)).

RegionsSplit() is used to check the length of each region.
If it is above a user-defined threshold (e.g., 1s in our
simulation setting), it will be split into multiple sub-regions,
of which the time intervals are all below the threshold. This
refinement operation aims to avoid underfitting. Conversely,
the abstraction operation RegionsMerge() aims to merge
the small regions into a larger one, which aims to avoid
overfitting and speed up the process.

Note that the linear lower and upper edges of the blue
regions in Fig. 2 are formed due to the constant obstacle’s
velocity assumption. In practice, we suggest that when the
predicted velocity is not constant, an extra fitting into lines
or an overapproximation into a larger quadrilateral can be
done in a pre-processing step.

V. PIECEWISE BÉZIER POLYNOMIAL OPTIMIZATION

In this section, we introduce our proposed trapezoidal
corridors generation compared with the commonly used rect-
angular corridors, which have feasibility limitation. Then, the
formulation of quadratic optimization using the trapezoidal
corridors will be introduced.

A. Limitations of Enforcement in Rectangular Corridors

To enforce that the trajectory in the S-T graph stays in
the safe region S, the convex hull property of the Bézier
function is used and a corridor is defined as follows.

Definition 1. Let the coefficients of the Bézier Polynomial
be ci ∈ Ω, i = 0, 1, . . . , n, and these control points in the
safe region S form a subset Scor ⊆ S. Then, the subset is
called a corridor.

Rectangular corridors are the most commonly used. Con-
straints of the control points of rectangular corridors are
given by the following proposition.

Proposition 2. If a trajectory has control points in each time
interval satisfying cki ∈ Ωk

rec, where Ωk
rec = {ck|pk0+hkp

k
1 ≤

Algorithm 2: Piecewise Convex Regions Generation
Input: lb, ub, nums,∆t, ε
Output: regions

1: Initialize: i = 0, j = 1 // i and j are counters for
longitudinal boundaries and resulting convex regions,
respectively

2: region = SingleRegionGeneration(lb, ub, 1) // i = 1
3: regions.append(region)
4: for i = 2 to nums− 1 do
5: lskew = (lb[i]− lb[i− 1])/∆t // lower meta-piece skew
6: uskew = (ub[i]− ub[i− 1])/∆t // upper meta-piece skew
7: if ∥lskew − regions[j − 1].lskew∥ > ε or

∥uskew − regions[j − 1].uskew∥ > ε then
8: regions[j − 1].tend = i− 1
9: regions[j − 1].t = (regions[j − 1].tend

10: −regions[j − 1].tbeg)∆t
11: region = SingleRegionGeneration(lb, ub, i)
12: regions.append(region)
13: j ← j + 1
14: end if
15: end for
16: regions[j − 1].tend = nums− 1
17: regions[j − 1].t = (regions[j − 1].tend

18: −regions[j − 1].tbeg)∆t
19: RegionsSplit(regions)
20: RegionsMerge(regions)
21: Return regions

Algorithm 3: SingleRegionGeneration(lb, ub, i)
Input: lb, ub, i
Output: region

1: region.tbeg = i− 1
2: region.lskew = (lb[i]− lb[i− 1])/∆t
3: region.lbias = lb[i− 1]
4: region.uskew = (ub[i]− ub[i− 1])/∆t
5: region.ubias = ub[i− 1]
6: return region

ck ≤ pk0 , i = 0, . . . , n, k = 0, . . . ,m}, s(t) is guaranteed
to be safe, and the upper bounds and lower bounds form
rectangular corridors Srec.

Proof. Suppose that for i = 0, . . . , n, pk0 +hkp
k
1 ≤ cki ≤ pk0 .

According to the convex hull property of Bezier polynomial,
we have

B(t) ≤

(
n∑

i=1

bin(t)

)
pk0 = pk0 . (7)

Similarly, we have B(t) ≥ pk0 +hkp
k
1 . With conditions cki ∈

Ωk
1 , for ∀t ∈ [Tk, Tk+1], it follows that

s(t) ∈ Srec
k = {(t, s)| pk0 + hkp

k
1 ≤ si ≤ pk0 ,

t ∈ [Tk, Tk+1]} ⊆ Sk.
(8)

Further, we have Srec ⊆ S.

Note that when we have pk0 + hkp
k
1 > pk0 (i.e., the lower

bound is greater than the upper bound), there is no feasible
solution for the optimization. In order to avoid this case, the

time intervals of k-th corridor must satisfy hk ≤ pk
0−pk

0

pk
1

.

13504

Authorized licensed use limited to: Beijing Xiaomi Technology Co.Ltd. Downloaded on June 08,2024 at 06:56:33 UTC from IEEE Xplore. Restrictions apply.

(a) Optimization in piecewise rect-
angular corridors (failure).

(b) Optimization in piecewise rect-
angular corridors (success).

(c) Suboptimal of optimization in
rectangular corridors.

(d) Optimization in piecewise trape-
zoidal corridors.

Fig. 3: Optimization in trapezoidal and rectangular corridors.

Besides, if ∃ pk1 > 0 or pk1 > 0, the safe regions
are not fully covered by rectangular corridors. As a result,
constraints on control points to enforce the station curve in
rectangular corridors are overtighten with reduced solution
space (see the illustrations in Fig. 3(a) and 3(c)). In the
next subsection, we will introduce our proposed trapezoidal
corridors with enlarged solution space.

B. Safety Enforcement in Trapezoidal Corridors

The sufficient conditions of control points ci to keep the
longitudinal trajectory in our proposed trapezoidal corridors
and safe are built upon the following lemma (see proof in
[18]).

Lemma 1. Let M ∈ R(n+1)×(n+1) denote the transition
matrix from the Bernstein basis {b0n(t), b1n(t), . . . , bnn(t)} to
the monomial basis {1, t, . . . , tn}. We have Mi,0 = 1, 0 ≤
Mi,j ≤ 1, i = 0, 1, . . . , n, j = 0, 1, . . . , n.

With Lemma 1, the constraints on control points are
provided by Theorem 1 to guarantee one piece of trajectory
in time-dependent trapezoidal corridor (see proof in [18]).

Theorem 1. For a trajectory, if it has control points in each
time interval satisfying cki ∈ Ωk, where Ωk = {ck|pk0 +

hkp
k
1Mi,1 ≤ cki ≤ pk0 + hkpk1Mi,1, i = 0, 1, . . . , n, k =

0, 1, . . . ,m}, s(t) is guaranteed to be safe. The upper bounds
and lower bounds form a trapezoidal corridor Stra.

In Theorem 1, conditions on ci is pk0 + hkp
k
1Mi,1 ≤

cki ≤ pk0 + hkpk1Mi,1. Compared to safety enforcement
in rectangular corridors in Proposition 2, we have pk0 +

hkp
k
1Mi,1 ≤ pk0 + hkp

k
1 and pk0 + hkpk1Mi,1 ≥ pk0 . The

advantage of having trapezoidal corridors is twofold:
• Existence of solution: In the trapezoidal safe regions

represented by Eq. (8), by setting t = Tk +hkMi,1, we
have pk0 +hkp

k
1Mi,1 < pk0 +hkpk1Mi,1. This means that

the lower boundaries are guaranteed to be smaller than

the upper boundaries all the time. Then, there always
exists control points ci to satisfy the safety constraints.
Recall that for the rectangular corridors, we need to

always check hk ≤ pk
0−pk

0

pk
1

.
• Optimality of solution: The constraints are relaxed,

therefore the solution space is enlarged compared with
the rectangular corridors (see the illustration for the
comparison in Fig. 3).

C. Trajectory Optimization Formulation
The objective function is established as

J = w1

m∑
k=1

(ckn − sref[

k∑
l=1

ml])
2 + w2

∫ T

0

(ṡ(t)− ṡref)
2 dt

+ w3

∫ T

0

s̈(t)2dt+ w4

∫ T

0

...
s (t)2dt+ w5

(
cmn − sref[

m∑
l=1

ml]

)2

,

where sref(t) is the reference longitudinal trajectory as
the output from heuristic search and ṡ is the longitudinal
reference velocity. The first term penalizes the deviation
from the reference. The second one penalizes the deviation
between the actual and reference speed. The third and fourth
terms penalize acceleration and jerk, respectively. The last
term penalizes the deviation of the ending station from the
reference.

The optimization considers the following constraints.
• Boundary Constraints. The piecewise curve starts from

fixed position, speed, and acceleration, i.e.

c0,li h
(1−l)
k =

dls(t)

dtl

∣∣∣∣
t=0

, l = 0, 1, 2,

where ck,li is the control point for the l-th-order
derivative of the k-th Bézier curve.

• Continuity Constraints. The precewise curve must be
continuous at the connected time points for position,
speed, and acceleration.

ck,ln h
(1−l)
k = ck+1,l

0 h
(1−l)
k+1 , l = 0, 1, 2; k = 0, . . . ,m− 1.

• Safety Constraints. With our proposed trapezoidal cor-
ridors, safety constraints can be represented as

pk0 + hkp
k
1Mi,1 ≤ ck,0i ≤ pk0 + hkpk1Mi,1, k = 0, . . . ,m.

• Physical Constraints. The physical constraints under
consideration include the limit of a vehicle’s veloc-
ity, acceleration, and jerk. We can use the hodograph
property (iv) of a Bézier curve to calculate velocity,
acceleration, and jerk. The constraints are given by

βk,1 ≤ ck,li ≤ βk,1;βl ≤ ck,li ≤ βl, l = 2, 3,

where k = 0, . . . ,m and it follows that ck,l+1
i = (n −

l)(ck,li+1 − ck,li). The upper bound βk,1 is determined
by the speed limit on road. Let acm be the maximum
acceleration and κk be the maximum curvature of the
path for t ∈ [Tk, Tk+1] (see [19] for details). The lateral
acceleration constraints are ck,li ≤ βk,1 =

√
acm

κk
.

13505

Authorized licensed use limited to: Beijing Xiaomi Technology Co.Ltd. Downloaded on June 08,2024 at 06:56:33 UTC from IEEE Xplore. Restrictions apply.

(a) Bézier curves with obstacles
(Both types of corridors have solu-
tions).

(b) Bézier curves with obstacles
(Only trapezoidal corridors have the
solution).

(c) Speed profiles. (d) Acceleration profiles.

Fig. 4: Bézier curves within trapezoidal and rectangular corridors.

Finally, the trajectory optimization process can be formu-
lated as a quadratic programming (QP) problem. We refer
readers to the detailed formulation process in [18]. This
problem can be solved in real-time by a modern solver such
as OSQP [20].

VI. SIMULATIONS AND RESULTS ANALYSIS

Our framework has been implemented using C++11. All
simulations are carried out on a personal computer with a
dual-core 2.90GHz Intel i5-4210H processor.

A. Numerical Simulations

We conduct numerical simulations to validate the opti-
mality and the low failure rate of the proposed approach
compared to Bézier polynomial with rectangular corridors.
In the simulation, we consider a similar scenario in Fig.1 (see
the similar S-T graphs in 1(b), 4(a), and 4(a)). The initial
velocity and the acceleration of the ego vehicle runs are v(0)
= 10.0m/s and a(0) = 0m/s2, respectively. The parameters
are set to be w1 = 0.1, w2 = 0.1, w3 = 10.0, w4 = 5.0 and
w5 = 3.0.

Fig.4(a) and Fig.4(b) show Bézier curves generated by
using rectangular and trapezoidal corridors in a normal case
and a corner case. We observe that in the corner case
in which the planned trajectory is close to the obstacle,
rectangular corridor-based approach fails to find a solution.
Fig. 4(c) and 4(d) illustrate corresponding speed profile and
acceleration profile for the normal case from Fig. 4(a). They
clearly show that the trajectory generated by the trapezoidal
corridors is smoother. Table I summarizes the maximum
accelerations and the average accelerations for two cases.

TABLE I: Comfort of planners by different corridors.

case in Fig. 4(a) case in Fig. 4(b)
Max. Acc. Ave. Acc. Max. Acc. Ave. Acc.

Rectangular 0.95 0.62 - -
Trapezoidal 0.78 0.54 0.96 0.59

(a) t = 0. (b) t = 2s.

(c) t = 4s. (d) t = 8s.

Fig. 5: Illustrations of the slowing down and yielding scenario.

B. Simulations in CommonRoad platform

The simulations in this part are conducted in Common-
Road, which is a platform provides interactive simulated and
non-interactive real traffic data. As an example shown in Fig.
5, the ego vehicle is illustrated as a green box and other traffic
participants are blue boxes. A given scenairo of problem
is considered as “solved” when the ego vehicle reaches the
yellow region and no collision happens.

• Case 1: Slowing down and yielding scenario
In this scenario, there is a front vehicle running ahead
of the ego vehicle at the same lane (see Fig. 5(a)). When
the front vehicle gets closer to the intersection, it slows
down and turns right (Fig. 5(b), 5(c)). To keep a safe
distance from the front and the behind vehicles, the
ego vehicle also slows down(Fig. 5(c)). The ego vehicle
safely reaches the target region and turns left (Fig. 5(d)).

• Case 2: Merging scenario
In this scenario, the ego vehicle turns right at the
intersection (see Fig. 6(a)). A vehicle moves at high
speed and merges into the same lane from the left rear of
the ego vehicle. The ego vehicle first slow down to avoid
the vehicle (see Fig. 6(b)). When the vehicle passes in
front of the ego vehicle. The ego vehicle accelerates to
reach the goal region (see Fig. 6(c), 6(d)).

• Case 3: Lane changing scenario
In this scenario, the ego vehicle changes lane at the
intersection. It adjusts its speed to keep a safe distance
from the front vehicle (see Fig. 7).

VII. CONCLUSION

In this paper, we investigate speed planning for au-
tonomous vehicles. We first use dynamic programming to
search a comfort-optimal reference trajectory. Then, a con-
vexification algorithm generating trapezoidal corridors is pro-
posed. We provide the sufficient conditions of control points
in the trapezoidal corridors to provebly guarantee the safety

13506

Authorized licensed use limited to: Beijing Xiaomi Technology Co.Ltd. Downloaded on June 08,2024 at 06:56:33 UTC from IEEE Xplore. Restrictions apply.

(a) t = 2s. (b) t = 4s.

(c) t = 6s. (d) t = 8s.

Fig. 6: Illustrations of the merging scenario.

(a) t = 2s. (b) t = 4s.

(c) t = 6s. (d) t = 8s.

Fig. 7: Illustrations of the lane changing scenario.

of trajectories represented by Bézier polynomials. Compared
with the existing rectangular corridors-based method, this
work is proved to have enlarged solution space. Finally, we
formulate the trajectory optimization as a solvable QP prob-
lem. The numeric simulations show that proposed approach
is superior in terms of optimality and low failure rates. We
also validate our method in real complex traffic environment
in the CommonRoad platform.

REFERENCES

[1] W. Ding, L. Zhang, J. Chen, and S. Shen, “Safe trajectory genera-
tion for complex urban environments using spatio-temporal semantic
corridor,” IEEE RAL, 2019.

[2] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha—a local, continuous method,” in 2014 IEEE IV.

[3] T. Mercy, W. Van Loock, and G. Pipeleers, “Real-time motion planning
in the presence of moving obstacles,” in 2016 European Control
Conference (ECC).

[4] T. Gu, J. M. Dolan, and J.-W. Lee, “Runtime-bounded tunable motion
planning for autonomous driving,” in 2016 IEEE IV.

[5] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion
planner with trajectory optimization for autonomous vehicles,” in 2012
IEEE ICRA.

[6] X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu, “Real-time trajectory
planning for autonomous urban driving: Framework, algorithms, and
verifications,” IEEE/ASME Trans. on Mechatronics, vol. 21, no. 2, pp.
740–753, 2015.

[7] C. Qu, J. He, J. Li, C. Fang, and Y. Mo, “Moving target interception
considering dynamic environment,” 2022 American Control Confer-
ence (ACC).

[8] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable
benchmarks for motion planning on roads,” in 2017 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2017, pp. 719–726.

[9] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu,
H. Li, and Q. Kong, “Baidu apollo EM motion planner,” arXiv preprint
arXiv:1807.08048, 2018.

[10] J. Zhou, R. He, Y. Wang, S. Jiang, Z. Zhu, J. Hu, J. Miao, and Q. Luo,
“Autonomous driving trajectory optimization with dual-loop iterative
anchoring path smoothing and piecewise-jerk speed optimization,”
IEEE Robotics and Automation Letters, 2020.

[11] S. Khaitan, Q. Lin, and J. M. Dolan, “Safe planning and control
under uncertainty for self-driving,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 10, pp. 9826–9837, 2021.

[12] Y. Pan, Q. Lin, H. Shah, and J. M. Dolan, “Safe planning for self-
driving via adaptive constrained iLQR,” in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2020, pp. 2377–2383.

[13] C. Liu, W. Zhan, and M. Tomizuka, “Speed profile planning in
dynamic environments via temporal optimization,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 154–159.

[14] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Autonomous parking
using optimization-based collision avoidance,” in 2018 IEEE Confer-
ence on Decision and Control (CDC). IEEE, 2018, pp. 4327–4332.

[15] H. Wang, X. Ding, J. He, K. Margellos, and A. Papachristodoulou,
“Safety-aware optimal control in motion planning,” arXiv preprint
arXiv:2204.13380, 2022.

[16] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory gener-
ation for quadrotors using fast marching method and Bernstein basis
polynomial,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 344–351.

[17] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[18] J. L. et al., “Motion Planning by Search in Derivative Space
and Convex Optimization with Enlarged Solution Space,”
https://github.com/JialunLi/Derivate-Space-Search-Supplement-
Material-, 2022, [extended version].

[19] Y. Zhang, H. Sun, J. Zhou, J. Hu, and J. Miao, “Optimal trajectory
generation for autonomous vehicles under centripetal acceleration
constraints for in-lane driving scenarios,” in 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). IEEE, 2019, pp. 3619–
3626.

[20] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, pp. 1–36, 2020.

13507

Authorized licensed use limited to: Beijing Xiaomi Technology Co.Ltd. Downloaded on June 08,2024 at 06:56:33 UTC from IEEE Xplore. Restrictions apply.

