
Preprint, 2024, 1–14
doi: xx.xxxx/xxxx
Manuscript in Preparation
Paper

P A P E R

Analysis-ready VCF at Biobank scale using Zarr
Eric Czech1,*, Timothy R. Millar2,3*, Tom White4,*, Ben Jeffery5, AlistairMiles6, Sam Tallman7, Rafal Wojdyla1, Shadi Zabad8, Jeff Hammerbacher1,† andJerome Kelleher5,†,‡
1Related Sciences and 2The New Zealand Institute for Plant & Food Research Ltd, Lincoln, New Zealand and3Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand and 4TomWhite Consulting Ltd. and 5Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Universityof Oxford, UK and 6Wellcome Sanger Institute and 7Genomics England and 8School of Computer Science, McGillUniversity, Montreal, QC, Canada
*Joint first author.†Joint senior author.‡jerome.kelleher@bdi.ox.ac.uk

Abstract
Background: Variant Call Format (VCF) is the standard file format for interchanging genetic variation data and associated qualitycontrol metrics. The usual row-wise encoding of the VCF data model (either as text or packed binary) emphasises efficientretrieval of all data for a given variant, but accessing data on a field or sample basis is inefficient. Biobank scale datasets currentlyavailable consist of hundreds of thousands of whole genomes and hundreds of terabytes of compressed VCF. Row-wise data storageis fundamentally unsuitable and a more scalable approach is needed.
Results: We present the VCF Zarr specification, an encoding of the VCF data model using Zarr which makes retrieving subsets ofthe data much more efficient. Zarr is a cloud-native format for storing multi-dimensional data, widely used in scientificcomputing. We show how this format is far more efficient than standard VCF based approaches, and competitive with specialisedmethods for storing genotype data in terms of compression ratios and calculation performance. We demonstrate the VCF Zarrformat (and the vcf2zarr conversion utility) on a subset of the Genomics England aggV2 dataset comprising 78,195 samples and59,880,903 variants, with a 5X reduction in storage and greater than 300X reduction in CPU usage in some representativebenchmarks.
Conclusions: Large row-encoded VCF files are a major bottleneck for current research, and storing and processing these filesincurs a substantial cost. The VCF Zarr specification, building on widely-used, open-source technologies has the potential togreatly reduce these costs, and may enable a diverse ecosystem of next-generation tools for analysing genetic variation datadirectly from cloud-based object stores.
Key words: Variant Call Format; Zarr; Analysis ready data.

Background1

Variant Call Format (VCF) is the standard format for interchanging2 genetic variation data, encoding information about DNA sequence3 polymorphisms among a set of samples with associated quality4 control metrics and metadata [1]. Originally defined specifically5 as a text file, it has been refined and standardised [2] and the un-6

derlying data-model is now deeply embedded in bioinformatics 7practice. Dataset sizes have grown explosively since the introduc- 8tion of VCF as part of 1000 Genomes project [3], with Biobank scale 9initiatives such as Genomics England [4], UK Biobank [5, 6, 7, 8], 10and the All of Us research program [9] collecting genome sequence 11data for hundreds of thousands of humans. Large genetic varia- 12tion datasets are also being generated for other organisms and a 13

Compiled on: June 11, 2024.Draft manuscript prepared by the author.

1

2 | Preprint, 2024, Vol. 00, No. 0

Key Points

• VCF is widely supported, and the underlying data model entrenched in bioinformatics pipelines.• The standard row-wise encoding as text (or binary) is inherently inefficient for large-scale data processing.• The Zarr format provides an efficient solution, by encoding fields in the VCF separately in chunk-compressed binary format.

variety of purposes including agriculture [10, 11], conservation [12]14 and infectious disease surveillance [13]. VCF’s simple text-based15 design and widespread support [14] makes it an excellent archival16 format, but it is an inefficient basis for analysis. Methods that re-17 quire efficient access to genotype data either require conversion to18 the PLINK [15, 16] or BGEN [17] formats [e.g. 18, 19, 20] or use be-19 spoke binary formats that support the required access patterns [e.g.20 21, 22, 23]. While PLINK and BGEN formats are more efficient to21 access than VCF, neither can accommodate the full flexibility of the22 VCF data model and conversion is lossy. PLINK’s approach of stor-23 ing the genotype matrix in uncompressed packed-binary format24 provides efficient access to genotype data, but file sizes are substan-25 tially larger than the equivalent compressed VCF (see Fig 2). For26 example, at two bits per diploid genotype, the full genotype matrix27 for the GraphTyper SNP dataset in the 500K UKB WGS data [8] is28 116 TiB.29

Processing of Biobank scale datasets can be split into a few30 broad categories. The most basic analysis is quality control (QC).31 Variant QC is an involved and multi-faceted task [24, 25, 26], of-32 ten requiring interactive, exploratory analysis and incurring sub-33 stantial computation over multiple QC fields. Genotype calls are34 sometimes refined via statistical methods, for example by phas-35 ing [27, 28, 23, 29], and imputation [21, 30, 31, 32] creating ad-36 ditional dataset copies. A common task to perform is a genome37 wide association study (GWAS) [33]. The majority of tools for per-38 forming GWAS and related analyses require data to be in PLINK or39 BGEN formats [e.g 16, 20, 34, 19], and so data must be “hard-called”40 according to some QC criteria and exported to additional copies. Fi-41 nally, variation datasets are often queried in exploratory analyses,42 to find regions or samples of interest for a particular study [e.g. 35].43

VCF cannot support any of these workflows efficiently at the44 Biobank scale. The most intrinsically limiting aspect of VCF’s de-45 sign is its row-wise layout of data, which means that (for example)46 information for a particular sample or field cannot be obtained47 without retrieving the entire dataset. The file-oriented paradigm48 is also unsuited to the realities of modern datasets, which are too49 large to download and often required to stay in-situ by data-access50 agreements. Large files are currently stored in cloud environments,51 where the file systems that are required by classical file-oriented52 tools are expensively emulated on the basic building blocks of object53 storage. These multiple layers of inefficiencies around processing54 VCF data at scale in the cloud mean that it is time-consuming and55 expensive, and these vast datasets are not utilised to their full po-56 tential.57

To achieve this full potential we need a new generation of tools58 that operate directly on a primary data representation that sup-59 ports efficient access across a range of applications, with native60 support for cloud object storage. Such a representation can be61 termed “analysis-ready” and “cloud-native” [36]. For the rep-62 resentation to be FAIR [37], it must also be accessible, using proto-63 cols that are “open, free, and universally implementable”. There64 is currently no efficient, FAIR representation of genetic variation65 data suitable for cloud deployments. Hail [38, 39] has become66 the dominant platform for quality control of large-scale varia-67 tion datasets, and has been instrumental in projects such as gno-68 madAD [40, 26]. While Hail is built on open components from the69 Hadoop distributed computing ecosystem [41], the details of its70 MatrixTable format are not documented or intended for external71

reuse. Similarly, commercial solutions that have emerged to facil- 72itate the analysis of large-scale genetic variation data are either 73based on proprietary [42, 43, 44, 45, 46] or single-vendor technolo- 74gies [e.g. 47, 48]. The next generation of VCF analysis methods 75requires an open, free and transparent data representation with 76multiple independent implementations. 77

In this article, we decouple the VCF data model from its row- 78oriented file definition, and show how the data can be compactly 79stored and efficiently analysed in a cloud-native, FAIR manner. We 80do this by translating VCF data into Zarr format, a method of storing 81large-scale multidimensional data as a regular grid of compressed 82chunks. Zarr’s elegant simplicity and first-class support for cloud 83object stores have led to it gaining substantial traction across the 84sciences, and it is now used in multiple petabyte-scale datasets in 85cloud deployments (see Methods for details). We present the VCF 86Zarr specification that formalises this mapping, and the vcf2zarr 87utility to reliably convert large-scale VCFs to Zarr. We show that 88VCF Zarr is much more compact than VCF and is competitive with 89state-of-the-art file-based VCF compression tools. Moreover, we 90show that Zarr’s storage of data in an analysis-ready format greatly 91facilitates computation, with various benchmarks being substan- 92tially faster than bcftools based pipelines, and again competitive 93with state-of-the-art file-oriented methods. Finally, we show the 94utility of VCF Zarr on the Genomics England aggV2 dataset, demon- 95strating that common bcftools queries can be performed orders of 96magnitude more quickly using simple Python scripts. 97

Results 98

Storing genetic variation data 99

Although VCF is the standard format for exchanging genetic vari- 100ation data, its limitations both in terms of compression and 101query/compute performance are well known [e.g. 49, 50, 51], and 102many methods have been suggested to improve on these properties. 103Most approaches balance compression with performance on partic- 104ular types of queries, typically using a command line interface (CLI) 105and outputting VCF text [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. Sev- 106eral specialised algorithms for compressing the genotype matrix 107(i.e., just the genotype calls without additional VCF information) 108have been proposed [60, 61, 62, 63, 64, 65] most notably the Po- 109sitional Burrows–Wheeler Transform (PBWT) [66]. See [67] for 110a review of the techniques employed in genetic data compression. 111The widely-used PLINK binary format stores genotypes in a packed 112binary representation, supporting only biallelic variants without 113phase information. The PLINK 2 PGEN format [68] is more gen- 114eral and compact than PLINK, compressing variant data using spe- 115cialised algorithms [62]. Methods have also been developed which 116store variation data along with annotations in databases to facilitate 117efficient queries [e.g. 69, 70] which either limit to certain classes of 118variant [e.g. 71] or have storage requirements larger than uncom- 119pressed VCF [72]. The SeqArray package [73] builds on the Genomic 120Data Storage container format [74] to store VCF genotype data in a 121packed and compressed format, and is used in several downstream 122R packages [e.g. 75, 76]. 123

VCF is a row-wise format in which observations and metadata 124for a single variant are encoded as a line of text [1]. BCF [77], the 125

Czech et al. | 3

sample_id

...

va
ri

an
t_

co
nt

ig

...

va
ri

an
t_

po
si

ti
on

...

call_genotype

100/0/0

...

2/0/0

1/0/0

0/0/0

100/1/0

...

2/1/0

1/1/0

0/1/0

...

...

...

...

...

100/10/0

...

2/10/0

1/10/0

0/10/0

samples ploidy

var
ian

ts

Filter & compress

Blosc
Zstandard
BitShuffle

Storage

Cloud, file or blob
call_genotype

0/0/0

...

1/10/0

...

100/10/0

sample_id

...

Figure 1. Chunked compressed storage of VCF data using Zarr. The call_genotype
array is a three-dimensional (variants, samples, ploidy) array of integers, split
into a uniform grid of chunks determined by the variant and sample chunk sizes
(10,000 and 1,000 by default in vcf2zarr). Each chunk is associated with a key
defining its location in this grid, which can be stored in any key-value store such as
a standard file-system or cloud object store. Chunks are compressed independently
using standard codecs and pre-compression filters, which can be specified on a
per-array basis. Also shown are the one-dimensional variant_contig (CHROM) and
variant_position arrays (POS). Other fields are stored in a similar fashion.

standard binary representation of VCF, is similarly row-wise, as126 are the majority of proposed alternative storage formats. Row-wise127 storage makes retrieving all information for a given record straight-128 forward and efficient, and works well when records are either rela-129 tively small or we typically want to analyse each record in its entirety.130 When we want to analyse only a subset of a record, row-wise stor-131 age can be inefficient because we will usually need to retrieve more132 information than required from storage. In the case of VCF (and133 BCF) where records are not of a fixed size and are almost always134 compressed in blocks, accessing any information for a set of rows135 means retrieving and decompressing all information from these136 rows.137

The usual alternative to row-wise storage is columnar storage:138 instead of grouping together all the fields for a record, we group139 together all the records for a given field. Columnar storage for-140 mats such as Parquet [78] make retrieving particular columns141 much more efficient and can lead to substantially better compres-142 sion. While columnar techniques have been successfully applied143 in alignment storage [e.g. 79, 80, 81], the use of columnar tech-144 nologies for storing and analysing variation data have had limited145 success [82, 83]. Mapping VCF directly to a columnar layout, in146 which there is a column for the genotypes (and other per-call QC147 metrics) for each sample leads to a large number of columns, which148 can be cumbersome and cause scalability issues. Fundamentally,149 columnar methods are one-dimensional, storing a vector of values150 associated with a particular key, whereas genetic variation data is151 usually modelled as a two-dimensional matrix in which we are in-152 terested in accessing both rows and columns. Just as row-oriented153 storage makes accessing data for a given sample inefficient, colum-154 nar storage makes accessing all the data for a given variant ineffi-155 cient.156

VCF is at its core an encoding of the genotype matrix, where157 each entry describes the observed genotypes for a given sample158 at a given variant site, interleaved with per-variant information159 and other call-level matrices (e.g., the GQ or AD fields). The data is160 largely numerical and of fixed dimension, and is therefore a natural161 mapping to array-oriented or “tensor” storage. We propose the VCF162 Zarr specification which maps the VCF data model into an array-163 oriented layout using Zarr (Fig 1). In the VCF Zarr specification, each164 field in a VCF is mapped to a separately-stored array, allowing for165 efficient retrieval and high levels of compression. See the Methods166 for more detail on Zarr and the VCF Zarr specification.167

One of the key benefits of Zarr is its cloud-native design, but it168 also works well on standard file systems, where arrays and chunks169

101 102 103 104 105 106

Number of samples

106

107

108

109

1010

1011

1012

St
or

ag
e

siz
e

(b
yt

es
)

1.6T
81G
52G22G21G11G

2bit
vcf.gz
bcf
zarr
sav
genozip

116 k 205 k 404 k 864 k 2.37 M 7.25 M
Number of variants

Figure 2. Compression performance on simulated genotypes. Comparison of to-
tal stored bytes for VCF data produced by subsets of a large simulation of French-
Canadians. Sizes for 106 samples are shown on the right. Sizes for Savvy (21.25GiB)
and Zarr (22.06GiB) are very similar. Also shown for reference is the size of genotype
matrix when encoded as two bits per diploid genotype (2bit), as used in the PLINK
binary format.

are stored hierarchically in directories and files (storage as a sin- 170gle Zip archive is also supported). To enable comparison with the 171existing file-based ecosystem of tools, we focus on Zarr’s file sys- 172tem chunk storage in a series of illustrative benchmarks in the 173following sections. (See [84, 85, 86] for Zarr benchmarks in cloud 174settings.) We compare primarily with VCF/BCF based workflows us- 175ing bcftools because this is the standard practice, used in the vast 176majority of cases. We also compare with two representative recent 177specialised utilities; see [53, 59] for further benchmarks of these 178and other tools. Genozip [55, 56] is a tool focused on compression 179performance, which uses a custom file format and a CLI to extract 180VCF as text with various filtering options. Savvy [57] is an extension 181of BCF which takes advantage of sparsity in the genotype matrix 182as well as using PBWT-based approaches for improved compres- 183sion. Savvy provides a CLI as well as a C++ API. Our benchmarks 184are based on genotype data from subsets of a large and highly real- 185istic simulation of French-Canadians [87] (see Methods for details 186on the dataset and benchmarking methodology). Note that while 187simulations cannot capture all the subtleties of real data, the allele 188frequency and population structure patterns in this dataset have 189been shown to closely follow observations [87] and so it provides 190a reasonable and easily reproducible data point when comparing 191such methods. The simulations only contain genotypes without 192any additional high-entropy QC fields, which is unrealistic (see the 193Genomics England case-study for benchmarks on a large human 194dataset that includes many such fields). Note, however, that such 195minimal, genotype-only data is something of a best-case scenario 196for specialised genotype compression methods using row-wise 197storage. 198

Fig 2 shows compression performance on up to a million sam- 199ples for chromosome 21, with the size of the genotype-matrix en- 200coded as 1-bit per haploid call included for reference. Gzip com- 201pressed VCF performs remarkably well, compressing the data to 202around 5% of the minimal binary encoding of a biallelic genotype 203matrix for 1 million samples. BCF provides a significant improve- 204ment in compression performance over VCF (note the log-log scale). 205Genozip has superb compression, having far smaller file sizes that 206the other methods (although somewhat losing its advantage at 207larger sample sizes). Zarr and Savvy have almost identical compres- 208sion performance in this example. It is remarkable that the simple 209approach of compressing two dimensional chunks of the genotype 210matrix using the Zstandard compressor [88] and the bit-shuffle 211filter from Blosc [89] (see Methods for details) produces compres- 212

4 | Preprint, 2024, Vol. 00, No. 0

101 102 103 104 105 106

Number of samples

100

102

104

106

Ti
m

e
(s

ec
on

ds
) 21h

7h
2h

308h*
86h*genocat <FILE> | bcftools +af-dist

bcftools +af-dist <VCF_FILE>
bcftools +af-dist <BCF_FILE>
zarr-python API
savvy C++ API

116 k 205 k 404 k 864 k 2.37 M 7.25 M
Number of variants

Figure 3. Whole-matrix compute performance with increasing sample size. Total
CPU time required to run bcftools +af-dist and equivalent operations in a single
thread for various tools. Elapsed time is also reported (dotted line). Run-time
for genozip and bcftools on VCF at 106 samples were extrapolated by fitting an
exponential. See Methods for full details.

sion levels competitive with the highly specialised methods used213 by Savvy.214

Calculating with the genotype matrix215

Storing genetic variation data compactly is important, but it is also216 important that we can analyse the data efficiently. Bioinformatics217 workflows tend to emphasise text files and command line utilities218 that consume and produce text [e.g. 90]. Thus, many tools that com-219 press VCF data provide a command line utility with a query language220 to restrict the records examined, perform some pre-specified cal-221 culations and finally output some text, typically VCF or tab/comma222 separated values [50, 51, 53, 54, 55, 56, 59]. These pre-defined223 calculations are by necessity limited in scope, however, and the224 volumes of text involved in Biobank scale datasets make the clas-225 sical approach of custom analyses via Unix utilities in pipelines226 prohibitively slow. Thus, methods have begun to provide Applica-227 tion Programming Interfaces (APIs), providing efficient access to228 genotype and other VCF data [e.g. 49, 57, 58]. By providing pro-229 grammatic access, the data can be retrieved from storage, decoded230 and then analysed in the same memory space without additional231 copies and inter-process communication through pipes.232

To demonstrate the accessibility of genotype data and efficiency233 with which calculations can be performed under the different for-234 mats, we use the bcftools +af-dist plugin (which computes a ta-235 ble of deviations from Hardy-Weinberg expectations in allele fre-236 quency bins) as an example. We chose this particular operation for237 several reasons. First, it is a straightforward calculation that re-238 quires examining every element in the genotype matrix, and can be239 reproduced in different programming languages without too much240 effort. Secondly, it produces a small volume of output and therefore241 the time spent outputting results is negligible. Finally, it has an242 efficient implementation written using the htslib C API [91], and243 therefore running this command on a VCF or BCF file provides a244 reasonable approximation of the limit of what can be achieved in245 terms of whole-matrix computation on these formats.246

Fig 3 shows timing results for running bcftools +af-dist and247 equivalent operations on the data of Fig 2. There is a large difference248 in the time required (note the log-log scale). The slowest approach249 uses Genozip. Because Genozip does not provide an API and only250 outputs VCF text, the best approach available is to pipe its output251 into bcftools +af-dist. This involves first decoding the data from252 Genozip format, then generating large volumes of VCF text (ter-253 abytes, in the largest examples here), which we must subsequently254

101 102 103 104 105 106

Number of samples

10 1

100

101

102

103

Ti
m

e
(s

ec
on

ds
)

1714s

52s29s

0.6s

genozip + bcftools pipeline
bcftools pipeline
savvy C++ API
zarr-python API

116 k 205 k 404 k 864 k 2.37 M 7.25 M
Number of variants

Figure 4. Compute performance on subsets of the matrix. Total CPU time required
to run the af-dist calculation for a contiguous subset of 10,000 variants × 10 samples
from the middle of the matrix for the data in Fig 2. Elapsed time is also reported
(dotted line). The genozip and bcftools pipelines involve multiple commands re-
quired to correctly calculate the AF INFO field required by bcftools +af-dist. See
the Methods for full details on the steps performed.

parse before finally doing the actual calculation. Running bcftools 255

+af-dist directly on the gzipped VCF is substantially faster, indicat- 256ing that Genozip’s excellent compression performance comes at a 257substantial decompression cost. Using a BCF file is again signifi- 258cantly faster, because the packed binary format avoids the overhead 259of parsing VCF text into htslib’s internal data structures. We only 260use BCF for subsequent bcftools benchmarks. 261

The data shown in Fig 3 for Zarr and Savvy is based on custom 262programs written using their respective APIs to implement the 263

af-dist operation. The Zarr program uses the Zarr-Python pack- 264age to iterate over the decoded chunks of the genotype matrix and 265classifies genotypes within a chunk using a 14 line Python function, 266accelerated using the Numba JIT compiler [92]. The allele frequen- 267cies and genotype counts are then analysed to produce the final 268counts within the allele frequency bins with 9 lines of Python using 269NumPy [93] functions. Remarkably, this short and simple Python 270program is substantially faster than the equivalent compiled C us- 271ing htslib APIs on BCF (6.9 hours vs 20.6 hours for 1 million sam- 272ples). The fastest method is the C++ program written using the 273Savvy API. This would largely seem to be due to Savvy’s excellent 274genotype decoding performance (up to 6.6GiB/s vs 1.2GiB/s for Zarr 275on this dataset; Fig S1). Turning off the BitShuffle filter for the Zarr 276dataset, however, leads to a substantial increase in decoding speed 277(3.9GiB/s) at the cost of a roughly 25% increase in storage space 278(29.9GiB up from 22.1GiB for 1 million samples; data not shown). 279Given the relatively small contribution of genotypes to the overall 280storage of real datasets (see the Genomics England example) and 281the frequency that they are likely to be accessed, this would seem 282like a good tradeoff in most cases. This ability to easily tune com- 283pression performance and decoding speed on a field-by-field basis 284is a major strong point of Zarr. The vcf2zarr utility also provides 285functionality to aid with such storage schema tuning. 286

Subsetting the genotype matrix 287

As datasets grow ever larger, the ability to efficiently access subsets 288of the data becomes increasingly important. VCF/BCF achieve effi- 289cient access to the data for genomic ranges by compressing blocks of 290adjacent records using bgzip, and storing secondary indexes along- 291side the original files with a conventional suffix [94]. Thus, for a 292given range query we decompress only the necessary blocks and 293can quickly access the required records. The row-wise nature of 294VCF (and most proposed alternatives), however, means that we can- 295

Czech et al. | 5

101 102 103 104 105 106

Number of samples

10 1

101

103

Ti
m

e
(s

ec
on

ds
)

209s

5s

21418s*

0.5s

bcftools query
Savvy C++
Zarr + pandas to_csv
Zarr (memory)

116 k 205 k 404 k 864 k 2.37 M 7.25 M
Number of variants

116 k 205 k 404 k 864 k 2.37 M 7.25 M
Number of variants

Figure 5. Time to extract the genome position and write to a text file. Total CPU time
required to extract the POS field for BCF, sav and Zarr formats for the data in Figure 2.
For the BCF file we used bcftools query -f"%POS\n". For sav, we used the Savvy C++
API to extract position for each variant and output text using the std::cout stream.
For Zarr, we read the variant_position array into a NumPy array, and then wrote to a
text file using the Pandas write_csv method. Zarr CPU time is dominated by writing
the text output; we also show the time required to populate a NumPy array with the
data in Zarr, which is less than a second. Wall-clock time (dotted line) is dominated
in this case by file I/O. Time to output text for Savvy is not significant for > 1000
samples (not shown).

not efficiently subset by sample (e.g., to calculate statistics within a296 particular cohort). In the extreme case, if we want to access only the297 genotypes for a single sample we must still retrieve and decompress298 the entire dataset.299

We illustrate this cost of row-wise encoding in Fig 4, where300 we run the af-dist calculation on a small fixed-size subset of the301 genotype matrices of Fig 2. The two-dimensional chunking of Zarr302 means that this sub-matrix can be efficiently extracted, and there-303 fore the execution time depends very weakly on the overall dataset304 size, with the computation requiring around 1 second for 1 million305 samples. Because of their row-wise encoding, CPU time scales with306 the number of samples for all the other methods. Fig S2 shows per-307 formance for the same operation when selecting half of the samples308 in the dataset.309

Extracting, inserting and updating fields310

We have focused on the genotype matrix up to this point, contrast-311 ing Zarr with existing row-wise methods. Real-world VCFs encap-312 sulate much more than just the genotype matrix, and can contain313 large numbers of additional fields. Fig 5 shows the time required314 to extract the genomic position of each variant in the simulated315 benchmark dataset, which we can use as an indicative example316 of a per-variant query. Although Savvy is many times faster than317

bcftools query here, the row-wise storage strategy that they share318 means that the entire dataset must be read into memory and de-319 compressed to extract just one field from each record. Zarr excels at320 these tasks: we only read and decompress the information required.321

Many of the additional fields that we find in real-world VCFs are322 variant-level annotations, extensively used in downstream applica-323 tions. For example, a common workflow is to add or update variant324 IDs in a VCF using a reference database such as dbSNP [95]. The325 standard approach to this (using e.g. bcftools annotate) is to cre-326 ate a copy of the VCF which includes these new annotations. Thus,327 even though we may only be altering a single field comprising a tiny328 fraction of the data, we still read, decompress, update, compress329 and write the entire dataset to a new file. With Zarr, we can update330 an existing field or add arbitrary additional fields without touching331 the rest of the data or creating redundant copies.332

Table 1. Summary for a selection of the largest VCF Zarr columnsproduced for Genomics England aggV2 VCFs on chromosome 2 using
vcf2zarr default settings. Each field is stored independently as a Zarrarray with the given type (sufficient to represent all values in the data).We show the total storage consumed (reported via du) in power-of-twounits, and the compression ratio achieved on that array. We also showthe percentage of the overall storage that each array consumes (omittingvalues < 0.01%).

Field type storage compress %total
/call_AD int16 658.4G 26 25.35 %/call_GQ int16 654.5G 13 25.20%/call_DP int16 570.0G 15 21.95%/call_DPF int16 447.1 G 20 17.22%/call_PL int16 162.6G 160 6.26%/call_GQX int16 41.0G 210 1.58%/call_FT string 25.0G 1400 0.96%/call_genotype int8 21.5G 410 0.83%/call_genotype_mask bool 12.8G 680 0.49%/call_genotype_phased bool 2.4G 1900 0.09%/call_PS int8 383.4M 12 000 0.01 %/variant_position int32 111.6M 2/variant_quality float32 87.4M 2.6/variant_allele string 69.3M 13/variant_AN int32 47.3M 4.8/variant_filter bool 6.4M 570/sample_id str 268.1 K 2.3

Case study: Genomics England 100,000 genomes 333

In this section we demonstrate the utility of VCF Zarr on a large 334human dataset and the scalability of the vcf2zarr conversion utility. 335Genomics England’s multi-sample VCF dataset (aggV2) is an ag- 336gregate of 78,195 gVCFs from rare disease and cancer participants 337recruited as part of the 100,000 Genomes Project [4]. The dataset 338comprises approximately 722 million annotated single-nucleotide 339variants and small indels split into 1,371 roughly equal chunks and 340totalling 165.3 TiB of VCF data after bgzip compression. The dataset 341is used for a variety of research purposes, ranging from GWAS [96] 342and imputation [97] to simple queries involving single gene re- 343gions [98, 99]. 344

As described in the Methods, conversion to Zarr using vcf2zarr 345is a two-step process. We first converted the 106 VCF files (12.81 TiB) 346for chromosome 2 into the intermediate columnar format (ICF). 347This task was split into 14,605 partitions, and distributed using the 348Genomics England HPC cluster. The average run-time per partition 349was 20.7 min. The ICF representation used a total of 9.94 TiB over 3503,960,177 data storage files. We then converted the ICF to Zarr, 351partitioned into 5989 independent jobs, with an 18.6 min average 352run time. This produced a dataset with 44 arrays, consuming a 353total of 2.54 TiB of storage over 6,312,488 chunk files. This is a 354roughly 5X reduction in total storage space over the original VCF. 355The top fields in terms of storage are detailed in Table 1. We do not 356compare with other tools such as Genozip and Savvy here because 357they have fundamental limitations (as shown in earlier simulation- 358based benchmarks), and conversion of these large VCFs is a major 359undertaking. 360

Table 1 shows that the dataset storage size is dominated by a few 361columns with the top four (call_AD, call_GQ, call_DP and call_DPF) 362accounting for 90% of the total. These fields are much less com- 363pressible than genotype data (which uses < 1% of the total space 364here) because of their inherent noisiness [54]. Note that these top 365four fields are stored as 16 bit integers because they contain rare 366outliers that cannot be stored as 8 bits. While the fields could likely 367be truncated to have a maximum of 127 with minimal loss of infor- 368mation, the compression gains from doing so are relatively minor, 369and we therefore opt for fully lossless compression here for simplic- 370ity. The call_PS field here has an extremely high compression ratio 371

6 | Preprint, 2024, Vol. 00, No. 0

because it consists entirely of missing data (i.e., it was listed in the372 header but never used in the VCF).373

To demonstrate the computational accessibility of Zarr on this374 large human dataset, we performed some illustrative benchmarks.375 As these benchmarks take some time to run, we focus on a sin-376 gle 132GiB compressed VCF file covering positions 58,219,159–377 60,650,943 (562,640 variants) from the middle of the list of 106 files378 for chromosome 2. We report both the total CPU time and elapsed379 wall-clock time here as both are relevant. First, we extracted the380 genome position for each variant in this single VCF chunk using381

bcftools query and Python Zarr code as described in Fig 5. The382

bcftools command required 55.42 min CPU and 85.85 min elapsed.383 The Zarr code required 2.78 sec CPU and 1.73 min elapsed. This is a384 1196X smaller CPU burden and a 50X speed-up in elapsed time. The385 major difference between CPU time and wall-time is noteworthy386 here, and indicates some opportunities for improvement in VCF387 Zarr in high-latency environments such as the shared file system388 in the Genomics England HPC system. Currently VCF Zarr does not389 store any specialised index to map genomic coordinates to array390 positions along the variants dimension. Instead, to find the relevant391 slice of records corresponding to the range of positions in the target392 VCF file, we load the entire variant_position array and binary search.393 This entails reading 5,989 chunk files (the chunk size is 100,000394 variants) which incurs a substantial latency penalty on this system.395 Later versions of the specification may solve this problem by storing396 an array of size (approximately) the number variant chunks which397 maps ranges of genome coordinates to chunk indexes, or a more398 specialised structure that supports overlap queries.399

We then ran the af-dist calculation (Figs 3 and 4) on the VCF400 file using bcftools +af-dist as before. The elapsed time for this401 operation was 716.28 min CPU, 716.3 min elapsed. Repeating this402 operation for the same coordinates in Zarr (using Python code de-403 scribed in previous sections) gave a total CPU time of 2.32 min and404 elapsed time of 4.25 min. This is a 309X reduction in CPU burden405 and a 169X speed-up in elapsed time. It is worth noting here that406

bcftools +af-dist cannot be performed in parallel across multi-407 ple slices of a chromosome, and if we did want to run it on all of408 chromosome 2 we would need to concatenate the 106 VCF files.409 While af-dist itself is not a common operation, many tasks share410 this property of not being straightforwardly decomposable across411 multiple VCF files.412

Finally, to illustrate performance on a common filtering task,413 we created a copy of the VCF chunk which contains only vari-414 ants that pass some common filtering criteria using bcftools view415

-I –include "FORMAT/DP>10 & FORMAT/GQ>20", following standard416 practices [e.g. 100, 96, 26]. This used 689.46 min CPU time, with417 an elapsed time of 689.48 min. In comparison, computing and418 storing a variant mask (i.e., a boolean value for each variant de-419 noting whether it should be considered or not for analysis) based420 on the same criteria using Zarr consumed 1.96 min CPU time with421 an elapsed time of 11 min. This is a 358X reduction in CPU usage,422 and 63X reduction in elapsed time. There is an important distinc-423 tion here between creating a copy of the data (an implicit part of424 VCF based workflows) and creating an additionalmask. As Table 1425 illustrates, call-level masks are cheap (the standard genotype miss-426 ingness mask, call_genotype_mask, uses 0.49% of the overall stor-427 age) and variant or sample level masks require negligible storage.428 If downstream software can use configurable masks (at variant,429 sample and call level) rather than expecting full copies of the data,430 major storage savings and improvements in processing efficiency431 can be made. The transition from the manifold inefficiencies of432 present-day “copy-oriented” computing, to the “mask-oriented”433 analysis of large immutable, single-source datasets is a potentially434 transformational change enabled by Zarr.435

Discussion 436

VCF is a central element of modern genomics, facilitating the ex- 437change of data in a large ecosystem of interoperating tools. Its 438current row-oriented form, however, is fundamentally inefficient, 439profoundly limiting the scalability of the present generation of 440bioinformatics tools. Large scale VCF data cannot currently be pro- 441cessed without incurring a substantial economic (and environmen- 442tal [101]) cost. We have shown here that this is not a necessary 443situation, and that greatly improved efficiency can be achieved by 444using more appropriate storage representations tuned to the real- 445ities of modern computing. We have argued that Zarr provides a 446powerful basis for cloud-based storage and analysis of large-scale 447genetic variation data. We propose the VCF Zarr specification which 448losslessly maps VCF data to Zarr, and provide an efficient and scal- 449able tool to perform conversion. 450

Zarr provides pragmatic solutions to some of the more pressing 451problems facing the analysis of large-scale genetic variation data, 452but it is not a panacea. Firstly, any dataset containing a variant with 453a large number of alleles (perhaps due to indels) will cause problems 454because the dimensions of fields are determined by theirmaximum 455dimension among all variants. In particular this is problematic 456for fields like PL in which the dimension depends quadratically 457on the number of alleles (although practical solutions have been 458suggested that we plan to implement [102]). Secondly, the design 459of VCF Zarr emphasises efficiency of analysis for a fixed dataset, 460and does not consider how samples (and the corresponding novel 461variants) should be added. Thirdly, Zarr works best for numerical 462data of a fixed dimension, and therefore may not suitable for repre- 463senting the unstructured data often included in VCF INFO fields. 464

Nonetheless, there are numerous datasets that exist today that 465would likely reap significant benefits from being deployed in a 466cloud-native fashion using Zarr. Object stores typically allow for 467individual objects (chunks, in Zarr) to be associated with “tags”, 468which can then be used to associate storage class, user access con- 469trol and encryption keys. Aside from the performance benefits we 470have focused on here provided by Zarr, the ability to (for exam- 471ple) use high-performance storage for commonly used data such 472as the variant position and more cost-effective storage classes for 473infrequently used bulk QC data should provide significant oper- 474ational benefits. Granular access controls would similarly allow 475non-identifiable variant-level data to be shared relatively freely, 476with genotype and other data more tightly controlled as required. 477Even finer granularity is possible if samples are grouped by access 478level within chunks (padding partially filled chunks as needed and 479using an appropriate sample mask). Providing client applications 480direct access to the data over HTTP and delegating access control to 481the cloud provider makes custom web APIs [103] and cryptographic 482container formats [104] largely unnecessary in this setting. 483

The VCF Zarr specification and scalable vcf2zarr conversion 484utility provided here are a necessary starting point for such cloud- 485native biobank repositories and open up many possibilities, but 486significant investment and development would be needed to pro- 487vide a viable alternative to standard bioinformatics workflows. Two 488initial directions for development, however, may quickly yield suf- 489ficient results to both greatly improve researcher productivity on 490large, centrally managed datasets such as Genomics England and 491motivate further research and development. The first direction is 492to provide compatibility with existing workflows via a “vcztools” 493command line utility which implements a subset of bcftools func- 494tionality (such as view and query) on a VCF Zarr dataset. Such a tool 495would speed up some common queries by orders of magnitude, and 496reduce the need for user orchestration of operations among man- 497ually split VCF chunks (large VCF datasets are typically split into 498hundreds of files; see the Genomics England case study). Datasets 499could then be hosted in cloud object stores, while still presenting 500file-like semantics for existing workflows. This could provide an 501evolutionary path, allowing established analysis workflows to co- 502

Czech et al. | 7

exist with new Zarr-native approaches, working from the same503 primary data.504 The second natural direction for development is to create these505 Zarr-native applications, which can take advantage of the effi-506 cient data representation across multiple programming languages507 (see Methods). The Python data science ecosystem, in particu-508 lar, has a rich suite of powerful tools [e.g. 105, 92, 106, 93, 107]509 and is increasingly popular in recent biological applications [e.g.510 108, 109, 110, 111]. Xarray [112] provides a unified interface for511 working with multi-dimensional arrays in Python, and libraries512 like Dask [113] and Cubed [114] allow these operations to be scaled513 out transparently across processors and clusters. This scaling is514 achieved by distributing calculations over grid-based array repre-515 sentations like Zarr, where chunks provide the basic unit for parallel516 computation. The VCF Zarr specification introduced here was cre-517 ated to facilitate work on a scalable genetics toolkit for Python [115]518 built on Xarray. While the high-level facilities for distributed com-519 putation provided by Xarray are very powerful, they are not needed520 or indeed appropriate in all contexts. Our benchmarks here illus-521 trate that working at the lowest level, by sequentially applying opti-522 mised kernels on a chunk-by-chunk basis is both straightforward523 to implement and highly performant. Thus, a range of possibilities524 exist in which developers can build utilities using the VCF Zarr spec-525 ification using the appropriate level of abstraction and tool chain526 on a case-by-case basis.527 While Zarr is now widely used across the sciences (see Meth-528 ods) it was originally developed to store genetic variation data from529 the Anopheles gambiae 1000 Genomes Project [116] and is in ac-530 tive use in this setting [e.g. 117, 118]. The VCF Zarr specification531 presented here builds on this real-world experience but is still a532 draft proposal that would benefit from wider input across a range of533 applications. With some refinements and sufficient uptake it may534 be suitable for standardisation [2]. The benefits of Zarr are sub-535 stantial, and, in certain settings, worth the cost of retooling away536 from classical file-oriented workflows. For example, the Malar-537 iaGEN Vector Observatory currently uses Zarr to store data from538 whole-genome sequencing of 23,000 Anophelesmosquitoes from539 31 African countries [119]. The data is hosted in Google Cloud Stor-540 age and can be analysed interactively using free cloud computing541 services like Google Colab, enabling the use of data by scientists542 in malaria-endemic countries where access to local computing in-543 frastructure and sufficient network bandwidth to download large544 datasets may be limited. VCF Zarr could similarly reduce the costs545 of analysing large-scale human data, and effectively open access to546 biobanks for a much broader group of researchers than currently547 possible.548

Methods549

Zarr and block-based compression550

In the interest of completeness it is useful to provide a high-level551 overview of Zarr and the technologies that it depends upon. Zarr552 is a specialised format for storing large-scale n-dimensional data553 (arrays). Arrays are split into chunks, which are compressed and554 stored separately. Chunks are addressed by their indexes along555 the dimensions of the array, and the compressed data associated556 with this key. Chunks can be stored in individual files (as we do557 here), but a wide array of different storage backends are supported558 including cloud object stores and NoSQL databases; in principle,559 Zarr can store data in any key-value store. Metadata describing the560 array and its properties is then stored in JSON format along with the561 chunks. The simplicity and transparency of this design has substan-562 tial advantages over other technologies such as HDF5 [120] which563 are relatively complex and opaque. This simplicity has led to nu-564 merous implementations of the Zarr specification being developed,565 ranging from the mature Zarr-Python [121] and TensorStore [122]566

implementations to more experimental extensions to packages like 567GDAL [123], NetCDF [124], N5 [125] and xtensor [126] as well as 568standalone libraries for JavaScript [127], Julia [128], Rust [129] and 569R [130]. 570

Zarr is flexible in allowing different compression codecs and pre- 571compression filters to be specified on a per-array basis. Two key 572technologies often used in conjunction with Zarr are the Blosc meta- 573compressor [89] and Zstandard compression algorithm [88]. Blosc 574is a high-performance compressor optimised for numerical data 575which uses “blocking” [89] to optimise CPU-cache access patterns, 576as well as highly optimised bit and byte shuffle filters. Remarkably, 577on highly compressible datasets, Blosc decompression can be faster 578than memcpy. Blosc is written in C, with APIs for C, Python, Julia, 579Rust and others. Blosc is a “meta-compressor” because it provides 580access to several different compression codecs. The Zstandard codec 581is of particular interest here as it achieves very high compression 582ratios with good decompression speeds (Figs S1, S3). Zstandard is 583also used in several recent VCF compression methods [e.g. 57, 58]. 584

Scientific datasets are increasingly overwhelming the classical 585model of downloading and analysing locally, and are migrating to 586centralised cloud repositories [36, 85]. The combination of Zarr’s 587simple and cloud-friendly storage of data chunks with state-of- 588the-art compression methods has led to Zarr gaining significant 589traction in these settings. Multiple petabyte-scale datasets are now 590stored using Zarr [e.g. 86, 131, 132] or under active consideration for 591migration [84, 133]. The Open GeoSpatial consortium has formally 592recognised Zarr as a community standard [134] and has formed a 593new GeoZarr Standards Working Group to establish a Zarr encoding 594for geospatial data [135]. 595

Zarr has recently been gaining popularity in biological ap- 596plications. The Open Microscopy Environment has developed 597OME-Zarr [136] as one of its “next generation” cloud ready file 598formats [85]. OME-Zarr already has a rich suite of supporting 599tools [136, 137]. Zarr has also seen recent uptake in single-cell 600single-cell genomics [138, 139] and multimodal spatial omics 601data [140, 141]. Recent additions using Zarr include the application 602of deep learning models to genomic sequence data [142], storage 603and manipulation of large-scale linkage disequilibrium matrices 604[143], and a browser for genetic variation data [144]. 605

The VCF Zarr specification 606

The VCF Zarr specification is a direct mapping from the VCF data 607model to a chunked binary array format using Zarr, and is an evo- 608lution of the Zarr format used in the scikit-allel package [145]. 609VCF Zarr takes advantage of Zarr’s hierarchical structure by repre- 610senting a VCF file as a top-level Zarr group containing Zarr arrays. 611Each VCF field (fixed fields, INFO fields, and FORMAT fields) is 612represented as a separate array in the Zarr hierarchy. Some of the 613structures from the VCF header are also represented as arrays, in- 614cluding contigs, filters, and samples. 615

The specification defines the name, shape, dimension names, 616and data type for each array in the Zarr store. These “logical” prop- 617erties are mandated, in contrast to “physical” Zarr array properties 618such as chunk sizes and compression, which can be freely chosen by 619the implementation. This separation makes it straightforward for 620tools and applications to consume VCF Zarr data since the data has 621a well-defined structure, while allowing implementations enough 622room to optimise chunk sizes and compression according to the 623application’s needs. 624

The specification defines a clear mapping of VCF field names 625(keys) to array names, VCF Number to array shape, and VCF 626Type to array data type. To take one example, consider the 627VCF AD genotype field defined by the following VCF header: 628

##FORMAT=<ID=AD,Number=A,Type=Integer,Description="Allele 629

Depths">. The FORMAT key ID maps to an array name of call_AD 630(FORMAT fields have a call_ prefix, while INFO fields have a 631

8 | Preprint, 2024, Vol. 00, No. 0

variant_ prefix; both are followed by the key name). Arrays632 corresponding to FORMAT fields are 3-dimensional with shapes633 that look like (variants, samples, <Number>) in general. In634 this case, the Number A entry indicates that the field has one635 value per alternate allele, which in VCF Zarr is represented as636 the alt_alleles dimension name, so the shape of this array is637

(variants, samples, alt_alleles). The VCF Integer type can be638 represented as any Zarr integer type, and the specification doesn’t639 mandate particular integer widths. The vcf2zarr (see the next640 section) conversion utility chooses the narrowest integer width641 that can represent the data in each field.642

An important aspect of VCF Zarr is that field dimensions are643 global and fixed, and defined as the maximum across all rows. Con-644 tinuing the example above, the third dimension of the array is the645 maximum number of alternate alleles across all variants. For vari-646 ants at which there are less than the maximum number of alter-647 native alleles, the third dimension of the call_AD array is padded648 with a sentinel value (-2 for integers and a specific non-signalling649 NaN for floats). While this is not a problem in practice for datasets650 in which all four bases are observed, it is a substantial issue for651 fields that have a quadratic dependency on the number of alleles652 (Number=G) such as PL. Such fields are already known to cause653 significant problems, and the “local alleles” proposal provides an654 elegant solution [102]. As this approach is on a likely path to stan-655 dardisation [146], we plan to include support in later versions of656 VCF Zarr.657

The VCF Zarr specification can represent anything described658 by BCF (which is somewhat more restrictive than VCF) except for659 two corner cases related to the encoding of missing data. Firstly,660 VCF Zarr does not distinguish between a field that is not present661 and one that is present but contains missing data. For example,662 a variant with an INFO field NS=. is represented in the same way663 in VCF Zarr as an INFO field with no NS key. Secondly, because of664 the use of sentinel values to represent missing and fill values for665 integers (-1 and -2, respectively), a field containing these original666 values cannot be stored. In practice this doesn’t seem to be much667 of an issue (we have not found a real VCF that contains negative668 integers). However, if -1 and -2 need to be stored, a float field can669 be used without issues.670

The VCF Zarr specification is general and can be mapped to file671 formats such as PLINK [15, 16] and BGEN [17] with some minor672 extensions.673

vcf2zarr674

Converting VCF to Zarr at Biobank scale is challenging. One prob-675 lem is to determine the dimension of fields, (i.e., finding the maxi-676 mum number of alternate alleles and the maximum size of Number=.677 fields) which requires a full pass through the data. Another chal-678 lenge is to keep memory usage within reasonable limits: although679 we can view each record in the VCF one-by-one, we must buffer a680 full chunk (10,000 variants is the default in vcf2zarr) in the vari-681 ants dimension for each of the fields to convert to Zarr. For VCFs682 with many FORMAT fields and large numbers of samples this can683 require tens of gigabytes of RAM per worker, making parallelism684 difficult. Reading the VCF multiple times for different fields is pos-685 sible, but would be prohibitively slow for multi-terabyte VCFs.686

The vcf2zarr utility solves this problem by first converting the687 VCF data (which can be split across many files) into an Intermediate688 Columnar Format (ICF). The vcf2zarr explode command takes a689 set of VCFs, and reads through them using cyvcf2 [147], storing690 each field independently in (approximately) fixed-size compressed691 chunks. Large files can be partitioned based on information ex-692 tracted from the CSI or Tabix indexes, and so different parts of a693 file can be converted to ICF in parallel. Once all partitions have com-694 pleted, information about the number of records in each partition695 and chunk of a given field is stored so that the record at a particular696

index can be efficiently retrieved. Summaries such as maximum 697dimension and the minimum and maximum value of each field are 698also maintained, to aid choice of data types later. A set of VCF files 699can be converted to intermediate columnar format in parallel on a 700single machine using the explode command, or can be distributed 701across a cluster using the dexplode-init, dexplode-partition and 702

dexplode-finalise commands. 703

Once the VCF data has been converted to the intermediate colum- 704nar format, it can then be converted to Zarr using the vcf2zarr 705

encode command. By default we choose integer widths based on 706the maximum and minimum values observed during conversion to 707ICF along with reasonable compressor defaults (see next section). 708Default choices can be modified by generating a JSON-formatted 709storage schema, which can be edited and supplied as an argument 710to encode. Encoding a given field (for example, call_AD) involves 711creating a buffer to hold a full variant-chunk of the array in ques- 712tion, and then sequentially filling this buffer with values read from 713ICF and flushing to file. Similar to the explode command, en- 714coding to Zarr can be done in parallel on a single machine using 715the encode command, or can be distributed across a cluster using 716the dencode-init, dencode-partition and dencode-finalise com- 717mands. The distributed commands are fault-tolerant, reporting 718any failed partitions so that they can be retried. 719

Choosing default compressor settings 720

To inform the choice of compression settings across different fields 721in VCF data, we analysed their effect on compression ratio on recent 722high-coverage WGS data from the 1000 Genomes project [148]. We 723began by downloading the first 100,000 lines of the VCF for chro- 724mosome 22 (giving a 1.1GiB compressed VCF) and converted to Zarr 725using vcf2zarr with default settings. We then systematically ex- 726amined the effects of varying chunk sizes and compressor settings 727on the compression ratio for call-level fields. We excluded call_PL 728from this analysis as it requires conversion to a “local alleles” en- 729coding [102] to be efficient, which is planned for implementation 730in a future version of vcf2zarr. 731

Fig S3 shows the effect of varying compression codecs in Blosc. 732The combination of outstanding compression performance and 733competitive decoding speed (Fig S1) makes zstd a good default 734choice. 735

The shuffle parameter in the Blosc meta-compressor [89] can 736result in substantially better compression, albeit at the cost of some- 737what slower decoding (see Fig S1). Fig S4 shows the effect of bit 738shuffle (grouping together bits at the same position across bytes 739before compression), and byte shuffle (grouping together bytes 740at the sample position across words before compression) on com- 741pression ratio. Bit shuffle provides a significant improvement in 742compression for the call_genotype field because the vast major- 743ity of genotype calls will be 0 or 1, and therefore bits 1 to 7 will 744be 0. Thus, grouping these bits together will lead to significantly 745better compression. This strategy also works well when compress- 746ing boolean fields stored as 8 bit integers, where the top 7 bits are 747always 0. In practice, boolean fields stored in this way have very 748similar compression to using a bit-packing pre-compression filter 749(data not shown). Although byte shuffle leads to somewhat better 750compression for call_AD and call_DP, it gives substantially worse 751compression on call_AB than no shuffling. The default in vcf2zarr 752is therefore to use bit shuffle for call_genotype and all boolean 753fields, and to not use byte shuffling on any field. These defaults can 754be easily overruled, however, by outputting and modifying a JSON 755formatted storage schema before encoding to Zarr. 756

Fig S5 shows that chunk size has a weak influence on compres- 757sion ratio for most fields. Increasing sample chunk size slightly 758increases compression on call_AB, and has no effect on less com- 759pressible fields. Variant chunk size appears to have almost no effect 760on compression ratio. Interestingly, the choice of chunk size along 761

Czech et al. | 9

the sample dimension for the genotype matrix does have a signifi-762 cant effect. With six evenly spaced points between 100 and 2504,763 Fig S5A shows a somewhat unpredictable relationship between764 sample chunk size and compression ratio. The more fine-grained765 analysis of Fig S6 shows that three distinct trend lines emerge de-766 pending on the chunk size divisibility, with the modulus (i.e., the767 remainder in the last chunk) also having a minor effect. At greater768 than 40X, compression ratio is high in all cases, and given that geno-769 types contribute relatively little to the total storage of real datasets770 (Table 1) the effect will likely be fairly minor in practice. Thus, we771 do not expect the choice of chunk size to have a significant impact772 on overall storage usage, and so choice may be determined by other773 considerations such as expected data access patterns.774

Benchmarks775

In this section we describe the methodology used for the simulation-776 based benchmarks of Figs 2,3, 4 and 5. The benchmarks use data777 simulated by conditioning on a large pedigree of French-Canadians778 using msprime [149], which have been shown to follow patterns779 observed in real data from the same population to a remarkable780 degree [87]. We begin by downloading the simulated ancestral781 recombination graph [150, 151, 152] for chromosome 21 from Zen-782 odo [153] in compressed tszip format. This 552M file contains the783 simulated ancestry and mutations for 1.4 million present-day sam-784 ples. We then subset the full simulation down to 101, 102, . . . , 106
785 samples using ARG simplification [154, 152], storing the subsets in786

tskit format [155]. Note that this procedure captures the growth787 in the number of variants (shown in the top x-axis labels) as we in-788 crease sample sizes as a natural consequence of population-genetic789 processes. As a result of simulated mutational processes, most sites790 have one alternate allele, with 7.9% having two and 0.2% having791 three alternate alleles in the 106 samples dataset. We then export the792 variation data from each subset to VCF using tskit vcf subset.ts793

| bgzip > subset.vcf.gz as the starting point for other tools.794

We used bcftools version 1.18, Savvy 2.1.0, Genozip 5.0.26,795 vcf2zarr 0.0.9, and Zarr-Python 2.17.2. All tools used default set-796 tings, unless otherwise stated. All simulation-based benchmarks797 were performed on a dual CPU (Intel Xeon E5-2680 v2) server798 with 256GiB of RAM running Debian GNU/Linux 11. To ensure799 that the true effects of having data distributed over a large num-800 ber of files were reported, benchmarks for Zarr and Savvy were801 performed on a cold disk cache by running echo 3 | sudo tee802

/proc/sys/vm/drop_caches before each run. The I/O subsystem803 used is based on a RAID 5 of 12 SATA hard drives. For the CPU804 time benchmarks we measure the sum of the total user and sys-805 tem times required to execute the full command (as reported by806 GNU time) as well as elapsed wall-clock time. Total CPU time is807 shown as a solid line, with wall-clock time as a dashed line of the808 same colour. In the case of pipelines, where some processing is809 conducted concurrently wall-clock time can be less than total CPU810 (e.g. genozip in Fig 3). When I/0 costs are significant, wall-clock811 time can be greater than total CPU (e.g. Zarr and Savvy in Fig 4).812 Each tool was instructed to use one thread, where the options were813 provided. Where possible in pipelines we use uncompressed BCF814 output (-Ou) to make processing more efficient [146]. We do not815 use BCF output in genozip because it is not supported directly.816

Because bcftools +af-dist requires the AF INFO field and this817 is not kept in sync by bcftools view (although the AC and AN fields818 are), the subset calculation for Fig 4 requires an additional step. The819 resulting pipeline is bcftools view -r REGION -S SAMPLESFILE820

-IOu BCFFILE | bcftools +fill-tags -Ou | bcftools +af-dist.821 Genozip similarly requires a +fill-tags step in the pipeline.822

Availability of source code and requirements 823

The VCF Zarr specification is available on GitHub at https://github. 824

com/sgkit-dev/vcf-zarr-spec/. All source code for running bench- 825marks, analyses and creating plots in this article is available at 826

https://github.com/sgkit-dev/vcf-zarr-publication. Vcf2zarr 827is freely available under the terms of the Apache 2.0 license as part 828of the bio2zarr suite (https://github.com/sgkit-dev/bio2zarr/) 829and can be installed from the Python Package Index (https://pypi. 830

org/project/bio2zarr/). 831

List of abbreviations 832

• ICF: Intermediate Columnar Format 833• GWAS: Genome Wide Association Study 834• PBWT: Positional Burrows-Wheeler Transform 835• QC: Quality Control 836• UKB: UK Biobank 837• VCF: Variant Call Format 838• WGS: Whole Genome Sequence 839

Funding 840

JK acknowledges the Robertson Foundation and NIH (research 841grants HG011395 and HG012473). JK and AM acknowledge the Bill & 842Melinda Gates Foundation (INV-001927). TM acknowledges fund- 843ing from The New Zealand Institute for Plant & Food Research Ltd 844Kiwifruit Royalty Investment Programme. 845

Acknowledgements 846

This research was made possible through access to data in the Na- 847tional Genomic Research Library, which is managed by Genomics 848England Limited (a wholly owned company of the Department of 849Health and Social Care). The National Genomic Research Library 850holds data provided by patients and collected by the NHS as part 851of their care and data collected as part of their participation in re- 852search. The National Genomic Research Library is funded by the 853National Institute for Health Research and NHS England. The Well- 854come Trust, Cancer Research UK and the Medical Research Council 855have also funded research infrastructure. 856

Computation used the Oxford Biomedical Research Computing 857(BMRC) facility, a joint development between the Wellcome Centre 858for Human Genetics and the Big Data Institute supported by Health 859Data Research UK and the NIHR Oxford Biomedical Research Centre. 860The views expressed are those of the author(s) and not necessarily 861those of the NHS, the NIHR or the Department of Health. 862

Genozip was used under the terms of the free Genozip Academic 863license. Genozip was only used on simulated data, in compliance 864with the “No Commercial Data” criterion. 865

References 866

1. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo 867MA, et al. The variant call format and VCFtools. Bioinformatics 8682011;27(15):2156–2158. 8692. Rehm HL, Page AJ, Smith L, Adams JB, Alterovitz G, Babb 870LJ, et al. GA4GH: International policies and standards for 871data sharing across genomic research and healthcare. Cell 872Genomics 2021;1(2). 8733. 1000 Genomes Project Consortium, et al. A global reference 874for human genetic variation. Nature 2015;526(7571):68. 8754. Turnbull C, Scott RH, Thomas E, Jones L, Murugaesu N, Pretty 876D Freya Boardmanand Halai, et al. The 100 000 Genomes 877

https://github.com/sgkit-dev/vcf-zarr-spec/
https://github.com/sgkit-dev/vcf-zarr-spec/
https://github.com/sgkit-dev/vcf-zarr-spec/
https://github.com/sgkit-dev/vcf-zarr-publication
https://github.com/sgkit-dev/bio2zarr/
https://pypi.org/project/bio2zarr/
https://pypi.org/project/bio2zarr/
https://pypi.org/project/bio2zarr/

10 | Preprint, 2024, Vol. 00, No. 0

Project: bringing whole genome sequencing to the NHS. BMJ878 2018;361:k1687.879 5. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K,880 et al. The UK Biobank resource with deep phenotyping and881 genomic data. Nature 2018;562:203–209.882 6. Backman JD, Li AH, Marcketta A, Sun D, Mbatchou J, Kessler883 MD, et al. Exome sequencing and analysis of 454,787 UK884 Biobank participants. Nature 2021;599(7886):628–634.885 7. Halldorsson BV, Eggertsson HP, Moore KH, Hauswedell H,886 Eiriksson O, Ulfarsson MO, et al. The sequences of 150,119887 genomes in the UK Biobank. Nature 2022;607(7920):732–740.888 8. UK Biobank Whole-Genome Sequencing Consortium, Li S,889 Carss KJ, Halldorsson BV, Cortes A. Whole-genome sequencing890 of half-a-million UK Biobank participants. medRxiv 2023;p.891 2023–12.892 9. of Us Research Program Genomics Investigators A, et al.893 Genomic data in the All of Us Research Program. Nature894 2024;627(8003):340.895 10. Ros-Freixedes R, Whalen A, Chen CY, Gorjanc G, Herring WO,896 Mileham AJ, et al. Accuracy of whole-genome sequence impu-897 tation using hybrid peeling in large pedigreed livestock popu-898 lations. Genetics Selection Evolution 2020;52:1–15.899 11. Wang T, He W, Li X, Zhang C, He H, Yuan Q, et al. A rice900 variation map derived from 10 548 rice accessions reveals901 the importance of rare variants. Nucleic Acids Research902 2023;51(20):10924–10933.903 12. Shaffer HB, Toffelmier E, Corbett-Detig RB, Escalona M, Er-904 ickson B, Fiedler P, et al. Landscape genomics to enable conser-905 vation actions: the California Conservation Genomics Project.906 Journal of Heredity 2022;113(6):577–588.907 13. Hamid MMA, Abdelraheem MH, Acheampong DO, Ahouidi A,908 Ali M, Almagro-Garcia J, et al. Pf7: an open dataset of Plas-909 modium falciparum genome variation in 20,000 worldwide910 samples. Wellcome open research 2023;8.911 14. Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins912 P. A spectrum of free software tools for processing the VCF913 variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar.914 PLoS computational biology 2022;18(5):e1009123.915 15. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA,916 Bender D, et al. PLINK: a tool set for whole-genome association917 and population-based linkage analyses. The American journal918 of human genetics 2007;81(3):559–575.919 16. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee920 JJ. Second-generation PLINK: rising to the challenge of larger921 and richer datasets. Gigascience 2015;4(1):s13742–015.922 17. Band G, Marchini J. BGEN: a binary file format for imputed923 genotype and haplotype data. BioRxiv 2018;p. 308296.924 18. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for925 genome-wide complex trait analysis. The American Journal926 of Human Genetics 2011;88(1):76–82.927 19. Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA,928 Ziyatdinov A, et al. Computationally efficient whole-genome929 regression for quantitative and binary traits. Nature genetics930 2021;53(7):1097–1103.931 20. Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finu-932 cane HK, Salem RM, et al. Efficient Bayesian mixed-model933 analysis increases association power in large cohorts. Nature934 genetics 2015;47(3):284–290.935 21. Browning BL, Zhou Y, Browning SR. A one-penny imputed936 genome from next-generation reference panels. The Ameri-937 can Journal of Human Genetics 2018;103(3):338–348.938 22. Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G.939 Inferring whole-genome histories in large population datasets.940 Nature Genetics 2019;51(9):1330–1338.941 23. Hofmeister RJ, Ribeiro DM, Rubinacci S, Delaneau O. Ac-942 curate rare variant phasing of whole-genome and whole-943 exome sequencing data in the UK Biobank. Nature Genetics944 2023;55(7):1243–1249.945

24. Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, 946Marie-Claire C, et al. A tutorial on conducting genome- 947wide association studies: Quality control and statistical analy- 948sis. International journal of methods in psychiatric research 9492018;27(2):e1608. 95025. Panoutsopoulou K, Walter K. Quality control of common and 951rare variants. Genetic Epidemiology: Methods and Protocols 9522018;p. 25–36. 95326. Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang 954Q, et al. A genomic mutational constraint map using variation 955in 76,156 human genomes. Nature 2024;625(7993):92–100. 95627. Browning BL, Tian X, Zhou Y, Browning SR. Fast two-stage 957phasing of large-scale sequence data. The American Journal 958of Human Genetics 2021;108(10):1880–1890. 95928. Browning BL, Browning SR. Statistical phasing of 150,119 960sequenced genomes in the UK Biobank. The American Journal 961of Human Genetics 2023;110(1):161–165. 96229. Williams CM, O’Connell J, Freyman WA, 23andMe Re- 963search Team, Gignoux CR, Ramachandran S, et al. Phasing 964millions of samples achieves near perfect accuracy, enabling 965parent-of-origin classification of variants. bioRxiv 2024;p. 9662024–05. 96730. Rubinacci S, Delaneau O, Marchini J. Genotype imputation us- 968ing the positional burrows wheeler transform. PLoS genetics 9692020;16(11):e1009049. 97031. Barton AR, Sherman MA, Mukamel RE, Loh PR. Whole- 971exome imputation within UK Biobank powers rare coding vari- 972ant association and fine-mapping analyses. Nature genetics 9732021;53(8):1260–1269. 97432. Rubinacci S, Hofmeister RJ, Sousa da Mota B, Delaneau O. Im- 975putation of low-coverage sequencing data from 150,119 UK 976Biobank genomes. Nature Genetics 2023;55(7):1088–1090. 97733. Uffelmann E, Huang QQ, Munung NS, De Vries J, Okada Y, 978Martin AR, et al. Genome-wide association studies. Nature 979Reviews Methods Primers 2021;1(1):59. 98034. Abraham G, Qiu Y, Inouye M. FlashPCA2: principal component 981analysis of Biobank-scale genotype datasets. Bioinformatics 9822017;33(17):2776–2778. 98335. Chen Y, Dawes R, Kim HC, Stenton SL, Walker S, Ljungdahl A, 984et al. De novo variants in the non-coding spliceosomal snRNA 985gene RNU4- are a frequent cause of syndromic neurodevelop- 986mental disorders. medRxiv 2024;p. 2024–04. 98736. Abernathey RP, Augspurger T, Banihirwe A, Blackmon-Luca 988CC, Crone TJ, Gentemann CL, et al. Cloud-native repositories 989for big scientific data. Computing in Science & Engineering 9902021;23(2):26–35. 99137. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Ax- 992ton M, Baak A, et al. The FAIR Guiding Principles for scientific 993data management and stewardship. Scientific data 2016;3(1):1– 9949. 99538. Ganna A, Genovese G, Howrigan DP, Byrnes A, Kurki MI, Zeka- 996vat SM, et al. Ultra-rare disruptive and damaging mutations 997influence educational attainment in the general population. 998Nature neuroscience 2016;19(12):1563–1565. 99939. Hail;. Accessed: 2024-04-24. https://hail.is. 100040. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi 1001J, Wang Q, et al. The mutational constraint spectrum 1002quantified from variation in 141,456 humans. Nature 10032020;581(7809):434–443. 100441. White T. Hadoop: The definitive guide. " O’Reilly Media, Inc."; 10052012. 100642. Illumina BaseSpace;. Accessed: 2024-05-24. https://help. 1007

basespace.illumina.com/. 100843. Seven Bridges GRAF;. Accessed: 2024-05-24. https://www. 1009

sevenbridges.com/graf/. 101044. Google Cloud Life Sciences;. Accessed: 2024-05-24. https: 1011

//cloud.google.com/life-sciences/. 101245. AWS HealthOmics;. Accessed: 2024-05-24. https://aws. 1013

https://hail.is
https://help.basespace.illumina.com/
https://help.basespace.illumina.com/
https://help.basespace.illumina.com/
https://www.sevenbridges.com/graf/
https://www.sevenbridges.com/graf/
https://www.sevenbridges.com/graf/
https://cloud.google.com/life-sciences/
https://cloud.google.com/life-sciences/
https://cloud.google.com/life-sciences/
https://aws.amazon.com/healthomics/
https://aws.amazon.com/healthomics/
https://aws.amazon.com/healthomics/
https://aws.amazon.com/healthomics/

Czech et al. | 11

amazon.com/healthomics/.1014 46. Microsoft Genomics;. Accessed: 2024-05-24. https://azure.1015

microsoft.com/en-gb/products/genomics.1016 47. TileDB;. Accessed: 2024-04-24. https://tiledb.com/data-1017

types/vcf/.1018 48. GenomicsDB;. Accessed: 2024-05-24. https://www.1019

genomicsdb.org/.1020 49. Kelleher J, Ness RW, Halligan DL. Processing genome scale tab-1021 ular data with wormtable. BMC bioinformatics 2013;14(1):1–5.1022 50. Layer RM, Kindlon N, Karczewski KJ, Exome Aggregation Con-1023 sortium, Quinlan AR. Efficient genotype compression and1024 analysis of large genetic-variation data sets. Nature methods1025 2016;13(1):63–65.1026 51. Li H. BGT: efficient and flexible genotype query across many1027 samples. Bioinformatics 2016;32(4):590–592.1028 52. Tatwawadi K, Hernaez M, Ochoa I, Weissman T. GTRAC: fast1029 retrieval from compressed collections of genomic variants.1030 Bioinformatics 2016;32(17):i479–i486.1031 53. Danek A, Deorowicz S. GTC: how to maintain huge geno-1032 type collections in a compressed form. Bioinformatics1033 2018;34(11):1834–1840.1034 54. Lin MF, Bai X, Salerno WJ, Reid JG. Sparse Project VCF: efficient1035 encoding of population genotype matrices. Bioinformatics1036 2020;36(22-23):5537–5538.1037 55. Lan D, Tobler R, Souilmi Y, Llamas B. genozip: a fast1038 and efficient compression tool for VCF files. Bioinformatics1039 2020;36(13):4091–4092.1040 56. Lan D, Tobler R, Souilmi Y, Llamas B. Genozip: a univer-1041 sal extensible genomic data compressor. Bioinformatics1042 2021;37(16):2225–2230.1043 57. LeFaive J, Smith AV, Kang HM, Abecasis G. Sparse al-1044 lele vectors and the savvy software suite. Bioinformatics1045 2021;37(22):4248–4250.1046 58. Wertenbroek R, Rubinacci S, Xenarios I, Thoma Y, Delaneau O.1047 XSI–a genotype compression tool for compressive genomics1048 in large biobanks. Bioinformatics 2022;38(15):3778–3784.1049 59. Zhang L, Yuan Y, Peng W, Tang B, Li MJ, Gui H, et al. GBC:1050 a parallel toolkit based on highly addressable byte-encoding1051 blocks for extremely large-scale genotypes of species. Genome1052 biology 2023;24(1):1–22.1053 60. Qiao D, Yip WK, Lange C. Handling the data management1054 needs of high-throughput sequencing data: SpeedGene, a1055 compression algorithm for the efficient storage of genetic data.1056 BMC bioinformatics 2012;13:1–7.1057 61. Deorowicz S, Danek A, Grabowski S. Genome compres-1058 sion: a novel approach for large collections. Bioinformatics1059 2013;29(20):2572–2578.1060 62. Sambo F, Di Camillo B, Toffolo G, Cobelli C. Compression and1061 fast retrieval of SNP data. Bioinformatics 2014;30(21):3078–1062 3085.1063 63. Deorowicz S, Danek A. GTShark: genotype compression in1064 large projects. Bioinformatics 2019;35(22):4791–4793.1065 64. Deorowicz S, Danek A, Kokot M. VCFShark: how to squeeze a1066 VCF file. Bioinformatics 2021;37(19):3358–3360.1067 65. DeHaas D, Pan Z, Wei X. Genotype Representation Graphs:1068 Enabling Efficient Analysis of Biobank-Scale Data. bioRxiv1069 2024;.1070 66. Durbin R. Efficient haplotype matching and storage using the1071 positional Burrows–Wheeler transform (PBWT). Bioinformat-1072 ics 2014;30(9):1266–1272.1073 67. McVean G, Kelleher J. Linkage disequilibrium, recombination1074 and haplotype structure. Handbook of Statistical Genomics:1075 Two Volume Set 2019;p. 51–86.1076 68. PLINK 2 File Format Specification Draft;. Accessed: 2024-05-1077 24. https://github.com/chrchang/plink-ng/tree/master/1078

pgen_spec.1079 69. Paila U, Chapman BA, Kirchner R, Quinlan AR. GEMINI: inte-1080 grative exploration of genetic variation and genome annota-1081

tions. PLoS computational biology 2013;9(7):e1003153. 108270. Lopez J, Coll J, Haimel M, Kandasamy S, Tarraga J, Furio-Tari 1083P, et al. HGVA: the human genome variation archive. Nucleic 1084acids research 2017;45(W1):W189–W194. 108571. Greene D, Genomics England Research Consortium, Pirri D, 1086Frudd K, Sackey E, Al-Owain M, et al. Genetic association anal- 1087ysis of 77,539 genomes reveals rare disease etiologies. Nature 1088Medicine 2023;29(3):679–688. 108972. Al-Aamri A, Kamarul Azman S, Daw Elbait G, Alsafar H, Hen- 1090schel A. Critical assessment of on-premise approaches to scal- 1091able genome analysis. BMC bioinformatics 2023;24(1):354. 109273. Zheng X, Gogarten SM, Lawrence M, Stilp A, Conomos 1093MP, Weir BS, et al. SeqArray–a storage-efficient high- 1094performance data format for WGS variant calls. Bioinformatics 10952017;33(15):2251–2257. 109674. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. 1097A high-performance computing toolset for relatedness and 1098principal component analysis of SNP data. Bioinformatics 10992012;28(24):3326–3328. 110075. Gogarten SM, Sofer T, Chen H, Yu C, Brody JA, Thornton 1101TA, et al. Genetic association testing using the GENESIS 1102R/Bioconductor package. Bioinformatics 2019;35(24):5346– 11035348. 110476. Fernandes SB, Lipka AE. simplePHENOTYPES: SIMulation of 1105pleiotropic, linked and epistatic phenotypes. BMC bioinfor- 1106matics 2020;21:1–10. 110777. Li H. A statistical framework for SNP calling, mutation dis- 1108covery, association mapping and population genetical pa- 1109rameter estimation from sequencing data. Bioinformatics 11102011;27(21):2987–2993. 111178. Apache Parquet;. Accessed: 2024-05-03. https://parquet. 1112

apache.org. 111379. Bonfield JK. The Scramble conversion tool. Bioinformatics 11142014;30(19):2818. 111580. Nothaft FA, Massie M, Danford T, Zhang Z, Laserson U, Yeksi- 1116gian C, et al. Rethinking data-intensive science using scalable 1117analytics systems. In: Proceedings of the 2015 ACM SIGMOD 1118International Conference on Management of Data; 2015. p. 631– 1119646. 112081. Bonfield JK. CRAM 3.1: advances in the CRAM file format. 1121Bioinformatics 2022;38(6):1497–1503. 112282. Boufea A, Finkers R, van Kaauwen M, Kramer M, Athanasiadis 1123IN. Managing variant calling files the big data way: Using 1124HDFS and apache parquet. In: Proceedings of the Fourth 1125IEEE/ACM International Conference on Big Data Computing, 1126Applications and Technologies; 2017. p. 219–226. 112783. Fan J, Dong S, Wang B. Variant-Kudu: An Efficient Tool kit 1128Leveraging Distributed Bitmap Index for Analysis of Massive 1129Genetic Variation Datasets. Journal of Computational Biology 11302020;27(9):1350–1360. 113184. Durbin C, Quinn P, Shum D. Task 51-cloud-optimized format 1132study; 2020. 113385. Moore J, Allan C, Besson S, Burel JM, Diel E, Gault D, et al. OME- 1134NGFF: a next-generation file format for expanding bioimaging 1135data-access strategies. Nature methods 2021;18(12):1496– 11361498. 113786. Gowan TA, Horel JD, Jacques AA, Kovac A. Using cloud comput- 1138ing to analyze model output archived in Zarr format. Journal 1139of Atmospheric and Oceanic Technology 2022;39(4):449–462. 114087. Anderson-Trocmé L, Nelson D, Zabad S, Diaz-Papkovich A, 1141Kryukov I, Baya N, et al. On the genes, genealogies, and ge- 1142ographies of Quebec. Science 2023;380(6647):849–855. 114388. Collet Y, RFC 8878: Zstandard Compression and the ‘applica- 1144tion/zstd’ Media Type. RFC Editor; 2021. 114589. Alted F. Why modern CPUs are starving and what can be done 1146about it. Computing in Science & Engineering 2010;12(2):68– 114771. 114890. Buffalo V. Bioinformatics data skills: Reproducible and robust 1149

https://aws.amazon.com/healthomics/
https://aws.amazon.com/healthomics/
https://aws.amazon.com/healthomics/
https://azure.microsoft.com/en-gb/products/genomics
https://azure.microsoft.com/en-gb/products/genomics
https://azure.microsoft.com/en-gb/products/genomics
https://tiledb.com/data-types/vcf/
https://tiledb.com/data-types/vcf/
https://tiledb.com/data-types/vcf/
https://www.genomicsdb.org/
https://www.genomicsdb.org/
https://www.genomicsdb.org/
https://github.com/chrchang/plink-ng/tree/master/pgen_spec
https://github.com/chrchang/plink-ng/tree/master/pgen_spec
https://github.com/chrchang/plink-ng/tree/master/pgen_spec
https://parquet.apache.org
https://parquet.apache.org
https://parquet.apache.org

12 | Preprint, 2024, Vol. 00, No. 0

research with open source tools. " O’Reilly Media, Inc."; 2015.1150 91. Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A,1151 et al. HTSlib: C library for reading/writing high-throughput1152 sequencing data. Gigascience 2021;10(2):giab007.1153 92. Lam SK, Pitrou A, Seibert S. Numba: a LLVM-based Python1154 JIT compiler. In: Proceedings of the Second Workshop on the1155 LLVM Compiler Infrastructure in HPC; 2015. p. 1–6.1156 93. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,1157 Cournapeau D, et al. Array programming with NumPy. Nature1158 2020;585(7825):357–362.1159 94. Li H. Tabix: fast retrieval of sequence features from generic1160 TAB-delimited files. Bioinformatics 2011;27(5):718–719.1161 95. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigiel-1162 ski EM, et al. dbSNP: the NCBI database of genetic variation.1163 Nucleic Acids Research 2001 01;29(1):308–311.1164 96. Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A,1165 Odhams CA, Walker CD Susanand Russell, et al. Whole-1166 genome sequencing reveals host factors underlying critical1167 COVID-19. Nature 2022;607(7917):97–103.1168 97. Shi S, Rubinacci S, Hu S, Moutsianas L, Stuckey A, Need AC,1169 et al. A Genomics England haplotype reference panel and the1170 imputation of the UK Biobank. medRxiv 2023;.1171 98. Leggatt G, Cheng G, Narain S, Briseño-Roa L, Annereau JP,1172 Gast C, et al. A genotype-to-phenotype approach suggests1173 under-reporting of single nucleotide variants in nephrocystin-1174 1 (NPHP1) related disease(UK 100,000 Genomes Project). Sci-1175 entific Reports 2023;13(1):9369.1176 99. Lam T, Rocca C, Ibanez K, Dalmia A, Tallman S, Hadjivas-1177 siliou M, et al. Repeat expansions in NOP56 are a cause of1178 spinocerebellar ataxia Type 36 in the British population. Brain1179 Communications 2023;5(5):fcad244.1180 100. Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q,1181 Danecek P, et al. Insights into human genetic variation1182 and population history from 929 diverse genomes. Science1183 2020;367(6484):eaay5012.1184 101. Grealey J, Lannelongue L, Saw WY, Marten J, Méric G, Ruiz-1185 Carmona S, et al. The carbon footprint of bioinformatics.1186 Molecular biology and evolution 2022;39(3):msac034.1187 102. Poterba T, Vittal C, King D, Goldstein D, Goldstein J, Schultz P,1188 et al. The Scalable Variant Call Representation: Enabling Ge-1189 netic Analysis Beyond One Million Genomes. bioRxiv 2024;p.1190 2024–01.1191 103. Kelleher J, Lin M, Albach CH, Birney E, Davies R, Gourtovaia1192 M, et al. htsget: a protocol for securely streaming genomic1193 data. Bioinformatics 2019;35(1):119–121.1194 104. Senf A, Davies R, Haziza F, Marshall J, Troncoso-Pastoriza1195 J, Hofmann O, et al. Crypt4GH: a file format standard1196 enabling native access to encrypted data. Bioinformatics1197 2021;37(17):2753–2754.1198 105. McKinney W. Data Structures for Statistical Computing in1199 Python. In: Stéfan van der Walt, Jarrod Millman, editors. Pro-1200 ceedings of the 9th Python in Science Conference; 2010. p. 561201 – 61.1202 106. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier1203 M, Frederic J, et al. Jupyter Notebooks – a publishing for-1204 mat for reproducible computational workflows. In: Loizides F,1205 Schmidt B, editors. Positioning and Power in Academic Pub-1206 lishing: Players, Agents and Agendas IOS Press; 2016. p. 87 –1207 90.1208 107. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,1209 Cournapeau D, et al. SciPy 1.0: Fundamental Algorithms for1210 Scientific Computing in Python. Nature Methods 2020;17:261–1211 272.1212 108. Abdennur N, Mirny LA. Cooler: scalable storage for Hi-C1213 data and other genomically labeled arrays. Bioinformatics1214 2020;36(1):311–316.1215 109. Rand KD, Grytten I, Pavlovic M, Kanduri C, Sandve GK. BioN-1216 umPy: Fast and easy analysis of biological data with Python.1217

bioRxiv 2022;p. 2022–12. 1218110. Open2C, Abdennur N, Fudenberg G, Flyamer IM, Galitsyna 1219AA, Goloborodko A, et al. Bioframe: operations on genomic in- 1220tervals in pandas dataframes. Bioinformatics 2024;p. btae088. 1221111. Hou K, Gogarten S, Kim J, Hua X, Dias JA, Sun Q, et al. Admix- 1222kit: an integrated toolkit and pipeline for genetic analyses of 1223admixed populations. Bioinformatics 2024;p. btae148. 1224112. Hoyer S, Hamman J. xarray: N-D labeled arrays and datasets 1225in Python. Journal of Open Research Software 2017;5(1). 1226113. Rocklin M, et al. Dask: Parallel computation with blocked 1227algorithms and task scheduling. In: Proceedings of the 14th 1228python in science conference, vol. 130 SciPy Austin, TX; 2015. 1229p. 136. 1230114. Cubed;. Accessed: 2024-06-07. https://cubed-dev.github. 1231

io/cubed. 1232115. Sgkit: Scalable genetics toolkit;. Accessed: 2024-06-07. https: 1233

//sgkit-dev.github.io/sgkit/. 1234116. Anopheles gambiae 1000 Genomes Consortium and others. 1235Genetic diversity of the African malaria vector Anopheles gam- 1236biae. Nature 2017;552(7683):96. 1237117. Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Ama- 1238ratunga C, Amato R, et al. An open dataset of Plasmodium fal- 1239ciparum genome variation in 7,000 worldwide samples. Well- 1240come Open Research 2021;6. 1241118. Trimarsanto H, Amato R, Pearson RD, Sutanto E, Noviyanti 1242R, Trianty L, et al. A molecular barcode and web-based data 1243analysis tool to identify imported Plasmodium vivax malaria. 1244Communications biology 2022;5(1):1411. 1245119. Malaria Vector Genome Observatory;. Accessed: 2024-05- 124624. https://www.malariagen.net/malaria-vector-genome- 1247

observatory/. 1248120. Folk M, Heber G, Koziol Q, Pourmal E, Robinson D. An 1249overview of the HDF5 technology suite and its applications. 1250In: Proceedings of the EDBT/ICDT 2011 workshop on array 1251databases; 2011. p. 36–47. 1252121. Zarr Python;. Accessed: 2024-04-29. https://zarr. 1253

readthedocs.io/en/stable/. 1254122. TensorStore;. Accessed: 2024-04-29. https://google.github. 1255

io/tensorstore/index.html. 1256123. GDAL Zarr raster driver;. Accessed: 2024-04-30. https:// 1257

gdal.org/drivers/raster/zarr.html. 1258124. NetCDF C;. Accessed: 2024-04-30. https://github.com/ 1259

Unidata/netcdf-c. 1260125. n5-zarr;. Accessed: 2024-04-30. https://github.com/ 1261

saalfeldlab/n5-zarr. 1262126. xtensor-zarr;. Accessed: 2024-04-29. https://xtensor-zarr. 1263

readthedocs.io/en/latest/. 1264127. Zarr.js;. Accessed: 2024-04-30. https://guido.io/zarr.js/ 1265

#/. 1266128. Zarr.jl;. Accessed: 2024-04-30. https://github.com/JuliaIO/ 1267

Zarr.jl. 1268129. Zarrs;. Accessed: 2024-04-30. https://github.com/LDeakin/ 1269

zarrs. 1270130. Pizzarr;. Accessed: 2024-04-30. https://keller-mark. 1271

github.io/pizzarr/. 1272131. Fahnestock JR, Dow DE. Mappin: A Web Native Browse Tool 1273for the NASA JPL ITS_LIVE Project’s Ice Velocity Dataset. In: 12742023 IEEE 14th Annual Ubiquitous Computing, Electronics & 1275Mobile Communication Conference (UEMCON) IEEE; 2023. p. 12760097–0100. 1277132. CMIP 6 Dataset;. Accessed: 2024-04-30. https: 1278

//console.cloud.google.com/marketplace/details/noaa- 1279

public/cmip6. 1280133. Abernathey R, Neteler M, Amici A, Jacob A, Cherletand M, 1281Strobl P. Opening new horizons: How to migrate the Coperni- 1282cus Global Land Service to a Cloud environment. Publications 1283Office of the European Union 2021;. 1284134. Zarr Storage Specification 2.0 Community Standard. Open 1285

https://cubed-dev.github.io/cubed
https://cubed-dev.github.io/cubed
https://cubed-dev.github.io/cubed
https://sgkit-dev.github.io/sgkit/
https://sgkit-dev.github.io/sgkit/
https://sgkit-dev.github.io/sgkit/
https://www.malariagen.net/malaria-vector-genome-observatory/
https://www.malariagen.net/malaria-vector-genome-observatory/
https://www.malariagen.net/malaria-vector-genome-observatory/
https://zarr.readthedocs.io/en/stable/
https://zarr.readthedocs.io/en/stable/
https://zarr.readthedocs.io/en/stable/
https://google.github.io/tensorstore/index.html
https://google.github.io/tensorstore/index.html
https://google.github.io/tensorstore/index.html
https://gdal.org/drivers/raster/zarr.html
https://gdal.org/drivers/raster/zarr.html
https://gdal.org/drivers/raster/zarr.html
https://github.com/Unidata/netcdf-c
https://github.com/Unidata/netcdf-c
https://github.com/Unidata/netcdf-c
https://github.com/saalfeldlab/n5-zarr
https://github.com/saalfeldlab/n5-zarr
https://github.com/saalfeldlab/n5-zarr
https://xtensor-zarr.readthedocs.io/en/latest/
https://xtensor-zarr.readthedocs.io/en/latest/
https://xtensor-zarr.readthedocs.io/en/latest/
https://guido.io/zarr.js/#/
https://guido.io/zarr.js/#/
https://guido.io/zarr.js/#/
https://github.com/JuliaIO/Zarr.jl
https://github.com/JuliaIO/Zarr.jl
https://github.com/JuliaIO/Zarr.jl
https://github.com/LDeakin/zarrs
https://github.com/LDeakin/zarrs
https://github.com/LDeakin/zarrs
https://keller-mark.github.io/pizzarr/
https://keller-mark.github.io/pizzarr/
https://keller-mark.github.io/pizzarr/
https://console.cloud.google.com/marketplace/details/noaa-public/cmip6
https://console.cloud.google.com/marketplace/details/noaa-public/cmip6
https://console.cloud.google.com/marketplace/details/noaa-public/cmip6
https://console.cloud.google.com/marketplace/details/noaa-public/cmip6
https://console.cloud.google.com/marketplace/details/noaa-public/cmip6

Czech et al. | 13

Geospatial Consortium; 2022. http://www.opengis.net/doc/1286

CS/zarr/2.0.1287 135. OGC forms new GeoZarr Standards Working Group to1288 establish a Zarr encoding for geospatial data;. Accessed: 2024-1289 04-30. https://www.ogc.org/press-release/ogc-forms-new-1290

geozarr-standards-working-group-to-establish-a-zarr-1291

encoding-for-geospatial-data/.1292 136. Moore J, Basurto-Lozada D, Besson S, Bogovic J, Bragantini J,1293 Brown EM, et al. OME-Zarr: a cloud-optimized bioimaging1294 file format with international community support. Histochem-1295 istry and Cell Biology 2023;160(3):223–251.1296 137. Rzepka N, Bogovic JA, Moore JA. Toward scalable reuse of vEM1297 data: OME-Zarr to the rescue. In: Methods in cell biology, vol.1298 177 Elsevier; 2023.p. 359–387.1299 138. Dhapola P, Rodhe J, Olofzon R, Bonald T, Erlandsson E, Soneji1300 S, et al. Scarf enables a highly memory-efficient analysis of1301 large-scale single-cell genomics data. Nature communica-1302 tions 2022;13(1):4616.1303 139. Virshup I, Bredikhin D, Heumos L, Palla G, Sturm G, Gayoso1304 A, et al. The scverse project provides a computational ecosys-1305 tem for single-cell omics data analysis. Nature biotechnology1306 2023;41(5):604–606.1307 140. Marconato L, Palla G, Yamauchi KA, Virshup I, Heidari E, Treis1308 T, et al. SpatialData: an open and universal data framework1309 for spatial omics. Nature Methods 2024;p. 1–5.1310 141. Baker EA, Huang MY, Lam A, Rahim MK, Bieniosek MF, Wang1311 B, et al. emObject: domain specific data abstraction for spatial1312 omics. bioRxiv 2023;p. 2023–06.1313 142. Klie A, Laub D, Talwar JV, Stites H, Jores T, Solvason JJ, et al.1314 Predictive analyses of regulatory sequences with EUGENe. Na-1315 ture Computational Science 2023;3(11):946–956.1316 143. Zabad S, Gravel S, Li Y. Fast and accurate Bayesian poly-1317 genic risk modeling with variational inference. The1318 American Journal of Human Genetics 2023;110(5):741–761.1319

https://www.sciencedirect.com/science/article/pii/1320

S0002929723000939.1321 144. König P, Beier S, Mascher M, Stein N, Lange M, Scholz U.1322 DivBrowse–interactive visualization and exploratory data1323 analysis of variant call matrices. GigaScience 2023;12:giad025.1324 145. Miles A, Rodrigues MF, Ralph P, Kelleher J, Pisupati R, Rae1325 S, et al., cggh/scikit-allel: v1.3.6. Zenodo; 2023. https://doi.1326

org/10.5281/zenodo.7946569.1327 146. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard1328 MO, et al. Twelve years of SAMtools and BCFtools. Gigascience1329 2021;10(2):giab008.1330 147. Pedersen BS, Quinlan AR. cyvcf2: fast, flexible variant analysis1331 with Python. Bioinformatics 2017;33(12):1867–1869.1332 148. Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier1333 AA, et al. High-coverage whole-genome sequencing of the1334 expanded 1000 Genomes Project cohort including 602 trios.1335 Cell 2022;185(18):3426–3440.1336 149. Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP,1337 Tsambos G, et al. Efficient ancestry and mutation simulation1338 with msprime 1.0. Genetics 2022;220(3). Iyab229.1339 150. Brandt DY, Huber CD, Chiang CW, Ortega-Del Vecchyo1340 D. The Promise of Inferring the Past Using the Ances-1341 tral Recombination Graph. Genome Biology and Evolution1342 2024;16(2):evae005.1343 151. Lewanski AL, Grundler MC, Bradburd GS. The era of the ARG:1344 An introduction to ancestral recombination graphs and their1345 significance in empirical evolutionary genomics. Plos Genetics1346 2024;20(1):e1011110.1347 152. Wong Y, Ignatieva A, Koskela J, Gorjanc G, Wohns AW, Kelleher1348 J. A general and efficient representation of ancestral recombi-1349 nation graphs. bioRxiv 2023;.1350 153. Anderson-Trocmé L, Simulated genomes from manuscript1351 "On the Genes, Genealogies and Geographies of Quebec". Zen-1352 odo; 2023. https://doi.org/10.5281/zenodo.7702392.1353

154. Kelleher J, Thornton KR, Ashander J, Ralph PL. Efficient pedi- 1354gree recording for fast population genetics simulation. PLoS 1355Computational Biology 2018 11;14(11):1–21. 1356155. tskit;. Accessed: 2024-05-10. https://tskit.dev/tskit. 1357

Supplementary Material 1358

101 102 103 104 105 106

Number of samples

10 1

100

101

102

103

104

Ti
m

e
(s

ec
on

ds
)

189m
60m
34m

Zarr (Zstd + BitShuffle)
Zarr (Zstd)
Savvy

116 k 205 k 404 k 864 k 2.37 M 7.25 M
Number of variants

Figure S1. Genotype decoding performance. Total CPU time required to decode
genotypes into memory using the Zarr-Python and Savvy C++ APIs for the data in
Figure 2. Elapsed time is also reported (dotted line). This corresponds to a maximum
rate of 1.2GiB/s for Zarr (Zstd + BitShuffle), 3.9 GiB/s Zarr (Zstd), and 6.6 GiB/s for
Savvy.

101 102 103 104 105 106

Number of samples

10 1

100

101

102

103

104

Ti
m

e
(s

ec
on

ds
) 555s

34s28s

5610s*
genozip + bcftools pipeline
bcftools pipeline
savvy C++ API
zarr-python API

116 k 205 k 404 k 864 k 2.37 M 7.25 M
Number of variants

Figure S2. Compute performance on a large subset of the genotype matrix. Total
CPU time required to run the af-dist calculation for a subset of half of the samples
and 10000 variants from the middle of the matrix for the data in Figure 2. Elapsed
time is also reported (dotted line). Genozip did not run for n > 104 samples because
it does not support a file to specify sample IDs, and the command line was therefore
too long for the shell to execute.

http://www.opengis.net/doc/CS/zarr/2.0
http://www.opengis.net/doc/CS/zarr/2.0
http://www.opengis.net/doc/CS/zarr/2.0
https://www.ogc.org/press-release/ogc-forms-new-geozarr-standards-working-group-to-establish-a-zarr-encoding-for-geospatial-data/
https://www.ogc.org/press-release/ogc-forms-new-geozarr-standards-working-group-to-establish-a-zarr-encoding-for-geospatial-data/
https://www.ogc.org/press-release/ogc-forms-new-geozarr-standards-working-group-to-establish-a-zarr-encoding-for-geospatial-data/
https://www.ogc.org/press-release/ogc-forms-new-geozarr-standards-working-group-to-establish-a-zarr-encoding-for-geospatial-data/
https://www.ogc.org/press-release/ogc-forms-new-geozarr-standards-working-group-to-establish-a-zarr-encoding-for-geospatial-data/
https://www.sciencedirect.com/science/article/pii/S0002929723000939
https://www.sciencedirect.com/science/article/pii/S0002929723000939
https://www.sciencedirect.com/science/article/pii/S0002929723000939
https://doi.org/10.5281/zenodo.7946569
https://doi.org/10.5281/zenodo.7946569
https://doi.org/10.5281/zenodo.7946569
https://doi.org/10.5281/zenodo.7702392
https://tskit.dev/tskit

14 | Preprint, 2024, Vol. 00, No. 0

0 10 20 30 40 50 60
CompressionRatio

call_GQ

call_DP

call_AD

call_AB

call_genotype

zstd
zlib
lz4hc
lz4
blosclz

Figure S3. Effects of Blosc compression codec on compression ratio on call-level
fields in 1000 Genomes data. In all cases compression level=7 was used, with a
variant chunk size of 10,000 and sample chunk size of 1,000. Bit shuffle was used
for call_genotype, and no shuffle used for the other fields.

0 10 20 30 40 50 60
CompressionRatio

call_GQ

call_DP

call_AD

call_AB

call_genotype

No Shuffle
Byte Shuffle
Bit Shuffle

Figure S4. Effects of Blosc shuffle settings on compression ratio on call-level fields
in 1000 Genomes data. In all cases the zstd compressor with compression level=7
was used, with a variant chunk size of 10,000 and sample chunk size of 1,000.

0 1000 2000
Sample chunk size

10

20

30

40

50

60

Co
m

pr
es

sio
n

ra
tio

(A)

102 103 104 105

Variant chunk size

10

20

30

40

50

60
(B)

call_GQ
call_DP
call_AD
call_AB
call_genotype

Figure S5. Effects of chunk sizes on compression ratio on call-level fields in 1000
Genomes data. (A) Varying sample chunk size, holding variant chunk size fixed at
10,000. (B) Varying variant chunk size, holding sample chunk size fixed at 1,000. In
all cases the zstd compressor with compression level=7 was used. Bit shuffle was
used for call_genotype, and no shuffle used for the other fields. Values are chosen to
be evenly spaced on a linear scale between 100 and 2504 (the number of samples) in
(A) and evenly spaced between 100 and 96514 on a log scale in (B).

100 125 150 175 200 225 250
Sample Chunksize

44

46

48

50

52

54

56

58
Co

m
pr

es
sio

n
Ra

tio

Multiple of 4
Even
Odd

50

100

150

200

Size of last chunk

Figure S6. Effects of sample chunk size on compression ratio on the call_genotype
field in 1000 Genomes data. The same analysis as in Fig S5, except we only consider
call_genotype and we examine all sample chunk sizes from 100 to 256. Distinct trend-
lines emerge for odd, even and multiple-of-four chunk sizes (shown by markers).
The size of the final chunk also has a minor effect (shown by colour).

	Background
	Results
	Storing genetic variation data
	Calculating with the genotype matrix
	Subsetting the genotype matrix
	Extracting, inserting and updating fields
	Case study: Genomics England 100,000 genomes

	Discussion
	Methods
	Zarr and block-based compression
	The VCF Zarr specification
	vcf2zarr
	Choosing default compressor settings
	Benchmarks

	Availability of source code and requirements
	List of abbreviations
	Funding

	Acknowledgements

