

 Page 1 of 80

Understanding and Troubleshooting Corrupt
Solid Edge Files for Potential Repair v2

Contents
1 Introduction .. 3

1.1 Caveat ... 3

2 Background ... 4

3 Viewing the Content of COM Structured Storage Files... 5

3.1 Structured Storage Viewer .. 5

3.2 Structured Storage eXplorer ... 7

3.3 File Archiving Tools ... 10

4 Using Our Structured Storage Knowledge .. 11

5 Anatomy of the Structured Storage File ... 12

5.1 Root Storage ... 12

5.2 Property Set .. 13

5.3 Property .. 14

5.4 Storage .. 17

5.5 Stream ... 20

5.6 Class Identifier (CLSID) .. 22

5.6.1 Solid Edge File Type CLSIDs ... 25

6 Potential Causes of Solid Edge File Corruption ... 26

6.1 Network Stability... 27

6.2 Thumbnail Caching .. 29

6.3 Anti-Virus .. 30

6.4 Disk Write Caching .. 31

6.4.1 Removable Disk Drives .. 32

6.4.2 Distributed File System ... 33

6.5 Cloud File Syncing ... 34

6.6 Disk Compression .. 35

6.7 Mapped Drives .. 36

6.8 Downstream Usage of Files ... 37

6.9 Custom File Save Events.. 38

6.10 Family of Assembly Files ... 39

7 Troubleshooting Examples .. 40

7.1 Not Compatible with the Solid Edge Product ... 40

7.2 Stuck in Sketch Environment .. 41

7.3 Filename Display on Tab and Title Bar Are Incorrect .. 43

 Page 2 of 80

7.4 No Translator Is Available for This File Type ... 45

7.5 No Translator Is Available for This File Type ... 47

7.6 Error xxxxxxxx – Cannot Open File .. 48

7.7 No Error Messages .. 49

7.8 No Error Messages .. 51

7.9 File Was Created with A Pre-Release Version of Software - Draft .. 54

7.10 File Was Created with A Pre-Release Version of Software - Part ... 57

7.11 Server Busy .. 59

7.12 Make Sure the File Is the Correct Type and Version for The Application – Draft ... 64

7.13 Make Sure the File Is the Correct Type and Version for The Application – Part .. 66

7.14 Make Sure the File Is the Correct Type and Version for The Application – FOA .. 67

7.15 Model File Is Not Saved in The Current Version. Drawing Views Cannot Be Created or Updated. 70

7.16 Part with Non-Existent Link to Assembly .. 72

7.17 Ghost Link in Part to Assembly ... 76

8 Submitting Files for Potential Repair .. 77

8.1 Customer Submitting IR to GTAC For File Repair .. 77

8.2 GTAC Submitting PR to Development for File Repair ... 78

9 Summary ... 79

10 Revision History... 80

 Page 3 of 80

1 Introduction
In this article we will discuss understanding the Solid Edge file format and how to troubleshoot corrupted Solid Edge

files. This article will not attempt to determine specific root causes for file corruptions and is only intended as a

guide to help determine if corrupted files can either be independently repaired or can be forwarded to the Solid

Edge Development team for potential repair.

By having a better understanding of the Solid Edge file format and how to work with corrupted files it is hoped this

knowledge will help reduce time lost with corrupted files – either the file can be quickly identified as corrupted

beyond repair, or it can be manually repaired, or it may need forwarding to Solid Edge development for further

analysis and potential repair.

This document uses examples from previous file repair IRs and PRs to compile a working knowledge of corrupted

Solid Edge files that can either be repaired manually or forwarded to Solid Edge Development for repair. As such this

is intended to be a living document and additional examples of corrupt files will be added as such examples are

encountered.

1.1 Caveat
Although this document will show you how to manually modify the content of the Solid Edge file structure and

content, Siemens PLM will not support issues with corrupted files where it is evident that manual editing of the

content of those files has occurred. Manual editing of the Solid Edge file content through third party tools is an

unsupported process.

 Page 4 of 80

2 Background
Solid Edge files use the Microsoft COM Structured Storage technology as the basis for the Solid Edge file types.

The purpose of Structured Storage is to provide a solution for storing multiple hierarchical objects that comprise of

different data types within a single file. By combining all the related data and objects into a single hierarchical file

this then reduces the performance penalties and overhead associated with storing separate related data and objects

in multiple files.

Essentially Structured Storage allows an “internal file system” to be created within a single file, where the terms

Storage and Stream correspond to folder/directory and file respectively. Such files are often called Compound Files,

although this term is slightly more restrictive.

The following figure shows a compound file which is a single file that contains a nested hierarchy of storage and

stream objects, with storage objects analogous to directories/folders, and stream objects analogous to files:

For a brief overview on Microsoft COM Structured Storage, please visit the following Wikipedia site:

https://en.wikipedia.org/wiki/COM_Structured_Storage

For more in-depth detail on Microsoft COM Structured Storage, please see the following Microsoft resources:

https://docs.microsoft.com/en-gb/windows/desktop/Stg/structured-storage-start-page

https://en.wikipedia.org/wiki/COM_Structured_Storage
https://docs.microsoft.com/en-gb/windows/desktop/Stg/structured-storage-start-page

 Page 5 of 80

3 Viewing the Content of COM Structured Storage Files
There are many tools available for viewing the content of Microsoft COM Structured Storage files. Each tool will

have its pluses and minuses.

3.1 Structured Storage Viewer
One such freely available viewing tool is “Structured Storage Viewer”. Structured Storage Viewer can be download

from:

http://www.mitec.cz/ssv.html

With Structured Storage Viewer installed, you can then run the “SSView.exe” executable to view the content of Solid

Edge files. In the following example we have opened the “valve_house.par” file found in the Solid Edge training

folder (“C:\Program Files\Siemens\Solid Edge 2019\Training\valve_house.par”):

In the above screenshot, we have opened a valid Solid Edge into Structured Storage Viewer and you can clearly see

the various objects that comprise a Solid Edge file.

http://www.mitec.cz/ssv.html

 Page 6 of 80

Additionally, Structured Storage Viewer will provide a summation of the overall size of the Storage objects within the

file.

Although Structured Storage Viewer is a very good tool for viewing and modifying the content stored within the

physical Structured Storage files, Structured Storage Viewer is not a good tool for viewing the content stored at the

root level of the file or for viewing the CLSID values within the file

 Page 7 of 80

3.2 Structured Storage eXplorer
Another freely available viewer is "Structured Storage eXplorer". Structured Storage eXplorer can be downloaded

from:

https://sourceforge.net/projects/openmcdf/files/Sample%20Compound%20File%20Viewer/

With Structured Storage eXplorer installed, you can then run the “StucturedStorageExplorer.exe” executable to view

the content of Solid Edge files. In the following example we have opened the “valve_house.par” file found in the

Solid Edge training folder (“C:\Program Files\Siemens\Solid Edge 2019\Training\valve_house.par”):

Note that although this is the same file that we opened in the previous section using Structured Storage Viewer, the

exact same file is displayed differently between the two tools.

https://sourceforge.net/projects/openmcdf/files/Sample%20Compound%20File%20Viewer/

 Page 8 of 80

With this Structured Storage eXplorer tool we are now able to see the content stored at the Root level of the file

including the CLSID. This data was not visible in the Structured Storage Viewer tool.

 Page 9 of 80

However, Structured Storage eXplorer will not provide a summation of the overall size of the Storage objects within

the file compared to Structured Storage Viewer.

 Page 10 of 80

3.3 File Archiving Tools
Instead of using a structured storage viewer, it is also possible to use file archiving tools to view the content of the of

Microsoft COM Structured Storage files. One such freely available file archiving tool is 7-Zip. 7-Zip can be

downloaded from:

http://www.7-zip.org/

With 7-Zip installed, to open and view the content of a Solid Edge file, in Windows Explorer right-click on the .7z file

and open the file into 7-Zip:

Note: Depending on your operating system configuration, it may not be possible to open Solid Edge files directly in

to 7-Zip. In this instance, simply copy or rename the Solid Edge file to the .7z file extension.

Once opened in 7-Zip, you can see that the objects displayed in 7-Zip are very similar to the objects displayed in

Structured Storage Viewer for the Solid Edge file:

However, using a file archiving tool such as 7-Zip will only show the storage and streams. A file archiving tool will still

show the property set objects but will not display the property values under those property sets. This is the

difference between using a structured storage viewing tool and a file archiving tool. Although it appears that using a

structured storage viewer would be the better tool, there are times that using a file archiving tool can be beneficial

to help reinforce what is being observed with a structured storage viewer.

http://www.7-zip.org/

 Page 11 of 80

4 Using Our Structured Storage Knowledge
Using the above tools, we have demonstrated how to view the structured storage for Solid Edge files. We can now

use this knowledge to help investigate corrupted Solid Edge files and determine if the corrupted Solid Edge files are

suitable candidates for manually repairing ourselves or by forwarding to Solid Edge Development.

For the remainder of these instructions we will work with the tools outlined above to help investigate various file

repair examples. However, you can use other comparable tools and achieve similar results.

 Page 12 of 80

5 Anatomy of the Structured Storage File
By having a general base knowledge of the COM structured storage format that comprises a Solid Edge file this then

can be useful to help determine if corrupted Solid Edge files are potential candidates for file repair. In this section we

review a brief anatomy of the Solid Edge structured storage.

There are multiple object types that comprise the structured storage within the Solid Edge file:

• Root Storage

• Property Sets

• Properties

• Storage

• Streams

It is possible to interrogate and view these objects to have a better understanding of the Solid Edge file storage,

which in turn can then be useful in determining if corrupted Solid Edge files are potentially suitable for file repair.

5.1 Root Storage
The top level of the structured storage containing the Property Sets, Properties, Storage, and Streams is called the

Root storage.

 Page 13 of 80

5.2 Property Set
Property Sets are objects used as containers for storing Property objects under. There are several different Property

Sets that comprise a Solid Edge file and the Property Sets will differ slightly between the various Solid Edge file types.

For the valve_house.par used in the previous sections above, when opened in Structured Storage Viewer we see six

Property Set objects:

 Page 14 of 80

5.3 Property
Property objects are stored within the Property Set object and contain the various metadata or property attributes

associated with the Solid Edge file. There are many different properties that comprise a Solid Edge file and will vary

depending on the Solid Edge file type.

Continuing with our example valve_house.par, we can select the “Summary Information” Property Set and see all

the Properties stored within this Property Set:

 Page 15 of 80

Note that in the example used above, there is an Author property with a value of “jmrobins”. This matches the

property on the file in Windows Explorer when you select the file and right-click -> Properties:

 Page 16 of 80

If we interrogate the Property objects of other Property Sets we can see other useful information. In the below

example we see the Property Set “{CC024FCA-6EB5-11CE-8AA2-08003601E988}” which contains the various material

properties used within this Solid Edge file:

 Page 17 of 80

5.4 Storage
Storage is an object type used for organizing and collating related Stream object types. A Storage object for

structured storage can be thought of as being equivalent to a folder in Windows Explorer.

In our working example we can see three different Storage objects:

Note there is a “+” symbol next to each of these Storage objects.

 Page 18 of 80

The + can be selected and expanded to show us the related objects for that Storage object and just like folders in

Windows Explorer, Storage objects can be nested under other Storage objects. In our working example we have

expanded the Display Storage object which then contains another Storage object, “Styles”, which in turn then

contains various Stream objects:

Depending on the Solid Edge file type there will be many differing Storage types viewable within the structured

storage.

 Page 19 of 80

If we open the training files “strainer.asm” (“C:\Program Files\Siemens\Solid Edge 2019\Training\strainer.asm”) and

“stddb3d.dft” (“C:\Program Files\Siemens\Solid Edge 2019\Training\stddb3d.dft”) and compare them to our

valve_house.par file we have been interrogating earlier, we can see that there are similar but also different Storage

objects being used within each Solid Edge file type:

 Page 20 of 80

5.5 Stream
Streams are the object types used to contain the physical object data within that makes up a Solid Edge file. There

are many different streams that comprise a Solid Edge structured storage file.

In our working example valve_house.par we can see a Storage object called “PARASOLID”. This storage object when

expanded then contains two Parasolid object streams that contain the Parasolid data that comprises the Solid Edge

geometry:

 Page 21 of 80

Streams do not have to be stored under Storage objects. Streams can also exist under the root level of the file:

The Stream object can be interrogated in a structured storage viewing tool. However, as the Stream object data is

machine code it will typically only reveal limited information of use to the human reader:

 Page 22 of 80

5.6 Class Identifier (CLSID)
Within the Root storage there is an entry called CLSID. The CLSID key, or Class Identifier, is a string of alphanumeric

characters that is used globally throughout the Windows operating system to represent a unique value that then

identifies an object and its application use within Windows.

In other words, the Root Class Identifier (CLSID) defines what type of file the actual file is and what application it is

used with in Windows.

Just because a file has a certain file extension e.g. .asm does not necessarily mean that the file is a Solid Edge

Assembly file. The .asm file extension could also be a Pro/E file type. So, if you try to open a Pro/E file directly in

Solid Edge how does Solid Edge know that the file is actually not a Solid Edge .asm file? This is one of the functions

of the CLSID. Each structured storage file type should have a unique CLSID, and specifically each Solid Edge file type

does have its own unique CLSID.

Opening the valve_house.par file used in our previous examples in to the Structured Storage eXplorer tool we can

see the CLSID value stored at the Root level:

The above CLSID at the top level of the file indicates that this file is internally identified to the Microsoft COM

Structured Storage as a Solid Edge part file.

 Page 23 of 80

We can query the Windows registry using regedit.exe and locate references to this same CLSID value:

Similarly, as we interrogate the content of a Solid Edge file we can also see that there are CLSID values on some of

the Storage objects. In the following Solid Edge file there is a Storage object with a different CLSID:

 Page 24 of 80

If we query the Windows registry for this CLSID value we see the following:

 We can then quickly determine that the application registered to this CLSID is Microsoft Excel:

Therefore, there is an Excel file embedded in to the Solid Edge file.

 Page 25 of 80

5.6.1 Solid Edge File Type CLSIDs
Each Solid Edge file type has a unique CLSID value. Here is the list of CLSID values for each Solid Edge file type:

Type File Extension CLSID

Assembly .asm 00c6bf00-483b-11ce-951a-08003601be52

Assembly FOA .asm 04d613a0-a322-40b5-a2a4-36ca0de6f5d9

Assembly Configuration .cfg 00000000-0000-0000-0000-000000000000

Draft .dft 016b11fb-cdc0-11ce-a035-08003601e53b

Part * .par 23c52e80-4698-11ce-b307-0800363a1e02

Part FOP * .par 23c52e80-4698-11ce-b307-0800363a1e02

Sheet Metal .psm dd8522e0-2375-11d0-ac05-080036fd1802

Weldment .pwd 98ccdf9c-213b-11d4-b64c-00c04f79b2bf

Packaged Collaboration File .pcf 64e909e5-4acc-496c-8e4b-a660dc6a56ec

* Note: The Part and Part FOP files contain the same CLSID value.

 Page 26 of 80

6 Potential Causes of Solid Edge File Corruption
In the following section we will attempt to identify some potential causes for file corruption. Once a file has become

corrupted it is not possible to then identify how that file became corrupted. To avoid any future file corruptions will

require some investigative analysis on the part of the customer with some potential underlying architecture and/or

operating system and/or application changes being required.

The following list of potential causes are not listed in any order of frequency or likelihood of occurrence. Nor will

avoiding only one of these potential causes necessarily resolve any ongoing file corruptions in the customer

environment. It may take a combination of avoiding multiple potential root causes to resolve all file corruption

scenarios in the customer environment.

• Network Stability

• Thumbnail Caching

• Anti-Virus

• Disk Write Caching

o Removable Disk Drives

o Distributed File System

• Cloud File Syncing

• Disk Compression

• Mapped Drives

• Downstream Usage of Files

• Custom File Save Events

• Family of Assembly Files

 Page 27 of 80

6.1 Network Stability
If Solid Edge files are stored on a file server and are accessed by the client across a network, then network stability

can be a potential cause for file corruption, especially if the network drops during the process of saving a file.

Note: It is beyond the scope of GTAC to provide support and advice regarding network configuration and

investigation of any network related issues.

Network save issues may be captured within the Solid Edge file under a separate Stream object. For PR# 9403648,

which was submitted for a corrupt assembly file, if we open the assembly file from this PR in our Structured Storage

viewing tool we can observe the following “NetworkError” Stream object:

If we view the content of this stream object in the “As Text” tab of the viewer tool, we can clearly see the timestamp

of when a network error was recorded in the Solid Edge file. In this instance, 05/06/2018 at 13:59:13:

Although this “NetworkError” object exists and tells us when a network issue was detected and recorded, this does

not provide any indication as to a root cause for the network stability issues. This object simply indicates that there

have been some network stability issues at the customer site at the time this error was recorded. However, if the

customer is reporting many corrupted files and the majority of corrupted files have this “NetworkError” object then

this is an indicator that there has been network stability within the customer environment.

 Page 28 of 80

If network stability during file saving is suspected as a potential cause of file corruption you can enable in the registry

the following debug switch:

HKEY_CURRENT_USER\Software\Siemens\Solid Edge\Version 219\DEBUG\LOG_SAVEFAILURES_TO_FILE = 1

With this switch enabled, any save failures should be captured in the %APPDATA%\Siemens\Solid Edge\Version

xxx\SaveFailurelog.txt file and this log file can be reviewed to confirm any network disconnects that may be

occurring.

 Page 29 of 80

6.2 Thumbnail Caching
In Windows Explorer by default the caching of thumbnails of files on network shares is enabled by default. This

caching of thumbnails can cause the files to still be considered open by the underlying operating system thereby

preventing successful completion of writing of the internal storage objects to the file. This was an issue in an earlier

version of Solid Edge.

This should now be resolved in newer Solid Edge versions but should still always be considered as a potential source

for future corruption. For more on disabling thumbnail caching see the following Solution Center article:

http://solutions.industrysoftware.automation.siemens.com/view.php?si=002-7004168

For more information on Windows thumbnail caching:

https://en.wikipedia.org/wiki/Windows_thumbnail_cache

http://solutions.industrysoftware.automation.siemens.com/view.php?si=002-7004168
https://en.wikipedia.org/wiki/Windows_thumbnail_cache

 Page 30 of 80

6.3 Anti-Virus
Anti-virus scanning can lock a Solid Edge file during the save operation such that Solid Edge then cannot complete

the save of all the internal storage objects.

Therefore, the best practice is to configure anti-virus software to exclude Solid Edge file types.

Remember to configure both the server and the clients for the exclusions. It makes no sense to configure the clients

with anti-virus exclusions to then still have anti-virus scanning Solid Edge files on the server.

There are several Solution Center articles available that document best practices for configuring anti-virus for use

with Solid Edge:

http://solutions.industrysoftware.automation.siemens.com/view.php?si=002-8007557

http://solutions.industrysoftware.automation.siemens.com/view.php?si=002-8007556

http://solutions.industrysoftware.automation.siemens.com/view.php?si=002-8007557
http://solutions.industrysoftware.automation.siemens.com/view.php?si=002-8007556

 Page 31 of 80

6.4 Disk Write Caching
Disk write caching is an operating system feature that improves system performance by using fast volatile memory

(RAM) to collect write commands sent to data storage devices and cache those write commands until the slower

storage device e.g. hard disk can be written to later. This allows applications to run faster by allowing the application

to proceed without waiting for data write-requests to be written to the disk.

While disk write caching may increase both system and application performance, it can also increase the chances of

data loss in case of power or system failures before the data from the write-cache buffer is flushed by successfully

writing the data to the disk:

Disk write caching can introduce file corruption if a file is frequently saved and the data stored in RAM is being

overwritten before the data has been fully written to disk.

Disk writing caching should always be used with care. The general recommendation to ensure Solid Edge file

stability should be to avoid disk caching where appropriate.

 Page 32 of 80

6.4.1 Removable Disk Drives
Removable USB drives use disk writing caching to improve performance. However, if disk write caching is enabled

then the user must run the operating system “Eject media” command to ensure that the data in RAM is written to

the disk before the media is removed.

If a USB drive with disk write caching is removed before the data in RAM is finished writing to the disk, this then can

cause file corruption.

 Page 33 of 80

6.4.2 Distributed File System
A distributed file system (DFS) is a file system with data stored on one or more servers. The data is accessed and

processed as if it was stored on the local client machine. The DFS makes it convenient to share information and files

among users on a network in a controlled and authorized way. The server allows the client users to share files and

store data just like they are storing the information locally. However, the servers have full control over the data and

give access control to the clients.

Depending on how the DFS has been configured, it is possible to save a Solid Edge file multiple times and have the

data in server RAM changed before the initial data has been fully saved to all server locations. This can then place

the Solid Edge file into an inconsistent state resulting in Solid Edge file corruption.

The Solid Edge readme file explicitly states we have not tested Solid Edge with DFS environments and that any issues

with Solid Edge in a DFS environment will not be addressed:

For more on the Microsoft Distributed File System:

https://docs.microsoft.com/en-gb/windows/desktop/Stg/structured-storage-start-page

https://docs.microsoft.com/en-gb/windows/desktop/Stg/structured-storage-start-page

 Page 34 of 80

6.5 Cloud File Syncing
Cloud file syncing is an application that keeps files in different locations up to date through the cloud. For cloud file

syncing, a user sets up a cloud-based folder, to which the desired files are copied. This folder makes the files

accessible via an interface for multiple users, on whatever device they are using. When a user updates a file, the

changes are automatically synchronized with the corresponding folders on other user devices.

Depending on the cloud storage solution implemented, typically after a file is initially synced to the cloud, further

modifications to the file does not result in the entire file being resynced to the cloud but instead only chunks of data

based on the changes to the underlying physical file content are synced back into the cloud. This file syncing method

is used for performance with the cloud syncing, especially in a multi-user syncing environment. However, for larger

file formats, such as Solid Edge files, and with more frequent saves it is possible for these chunks of modified file

data to collide resulting in conflicts with the data ultimately resulting in a corrupted file.

Solid Edge does provide support for cloud file syncing services. However, it is important to ensure that the “Enable

distributed file access when using file replication services” within the Solid Edge Options is enabled.

 Page 35 of 80

6.6 Disk Compression
Disk compression is a type of data compression that works by storing compressed versions of files on the hard disk. A

disk compression utility sits between the operating system and the disk drive. Whenever the operating system

attempts to save a file to disk, the utility intercepts it and compresses it. Likewise, when the operating system

attempts to open a file, the disk compression utility intercepts the file, decompresses it, and then passes it to the

operating system. Because all applications access files through the operating system, disk compression utilities work

with all applications. The entire process is transparent to the user, though opening and closing files may take a little

longer. On the other hand, a disk compression utility can double the amount of disk space available.

Because disk compression requires an intermediate software layer to successfully write the file to disk, this in of

itself introduces another element of potential failure and corruption in to the system. Additionally, when working

with larger file formats and more frequent saves it is possible for the compression layer to become overwhelmed

resulting in collision and conflicts with the data, ultimately resulting in a corrupted file.

Although disk compression will increase available hard drive space it is advisable to disable any disk compression for

file stability. Disk compression can be in place on either the client or server or both:

For more information on disk compression:

https://en.wikipedia.org/wiki/Disk_compression

https://en.wikipedia.org/wiki/Disk_compression

 Page 36 of 80

6.7 Mapped Drives
Windows mapped drives represent shared drives on a file server with those resources being mapped to the client as

internal Windows drive letters such that the shared resource appears local to the client. This method offers users an

easier way to connect to shared drives because the client operating system will remember the mapping and load it

for the user.

Windows mapped drives technology dates back to Windows 3.1. There are certain known inherent issues with using

mapped drives, including mapped drive timeouts and disconnects. These automatic timeouts and disconnects then

require the underlying operating system to automatically reconnect the mapped drive. This delay in automatically

reconnecting a disconnected mapped drive can cause unreliability and stability issues. Because of these inherent

issues with mapped drives in the Windows operating system, Microsoft later introduced Universal Naming

Convention (UNC) as a replacement to mapped drives.

Under the hood, Solid Edge attempts to uses UNC conventions in place of mapped drive letters. Because of the

unreliability of mapped drives, the recommendation is that mapped drive letters should be avoided. Instead the

customer should always be accessing network data through UNC paths and using Network Folder shortcuts in place

of mapped drive letters.

 Page 37 of 80

6.8 Downstream Usage of Files
Many customers will implement their own unique and custom downstream processes on their Solid Edge files. Some

examples of downstream processes include providing file viewing capabilities to the shop floor, automatically

generating PDF and other file formats, automated release processes, et. al. These downstream processes require

accessing the Solid Edge files. Depending on how the downstream process are implemented there is potential for

these downstream processes to lock the Solid Edge files thereby preventing access and or potentially corrupting the

files.

Part of investigating possible root causes for consistent file corruptions should take in to consideration any

downstream process that are implemented. If downstream processing of the file is in place, depending on the

analysis of what this downstream processing is doing, then this downstream processing may need to be temporarily

paused if no other root cause for file corruptions can be determined.

 Page 38 of 80

6.9 Custom File Save Events
Some customers will write their own custom Save events in order to provide either pre- or post- save processing to

the file after it is saved to disk. A custom Save event will replace the out-of-the-box Save event. Depending on what

the custom Save event is attempting to accomplish, and how the custom code has been written, it is possible to that

the file could become corrupted because of this pre- and/or post- processing on the file.

Part of investigating potential root causes for consistent file corruptions should take in to consideration any custom

Save event implemented. It may be necessary to temporarily pause using a custom Save event if no other root cause

for file corruptions can be determined.

 Page 39 of 80

6.10 Family of Assembly Files
If you are experiencing frequent corruption of Family of Assembly (FOA) files, it may be necessary to implement the

earlier ST5 save method to help prevent and or reduce FOA file corruptions.

In the user’s registry enable the following debug switch:

HKEY_CURRENT_USER\Software\Siemens\Solid Edge\Version XXX\DEBUG\UseST5SaveBehaviorforFOA = 1

 Page 40 of 80

7 Troubleshooting Examples
In the following section we will review various corrupted Solid Edge files and investigate if those corrupted Solid

Edge files can potentially be repaired by development.

NOTE: The following examples are intended to be guides to help you quickly determine if a corrupted Solid Edge file

can potentially be repaired or not. If, at any time when investigating a corrupted Solid Edge file, you are unsure if

the file can be repaired or not, assume the file can be repaired and forward on to Development as a PR for file repair.

7.1 Not Compatible with the Solid Edge Product
Reference: IR# 8409865

In Solid Edge when attempting to open the file we receive the message “The file you are attempting to open is not

compatible with the Solid Edge product you are using. It was possibly saved with an Academic License or a newer

version of Solid Edge. Contact your customer support provider for additional information.”:

This error message appears to be self-evident.

Try opening the file using an educational license.

If the file will open using an educational license and/or a newer version of Solid Edge, then this is the cause of the file

not opening.

If the file does successfully open with an educational license the file should not be submitted to Development for

repair. Instead the customer should obtain a free educational license, open the file using that educational license,

and attempt to capture, export, and save whatever they can from the file for recreation into a commercially licensed

version of Solid Edge.

 Page 41 of 80

7.2 Stuck in Sketch Environment
Reference: IR# 9411071

When opening the file in Solid Edge, the file is immediately opened in to the Sketch environment and selecting

“Close Sketch” has no impact – the file is permanently “stuck” in the Sketch environment:

To resolve this issue, on the tab for the file, right-click -> New Window:

In the new window that is opened, the file is no longer opened in the Sketch environment:

 Page 42 of 80

Right-click on the original tab which is still stuck in the Sketch environment and select “Close Window”:

Save and close the file.

The file has now been successfully repaired and is no longer stuck in the Sketch environment.

 Page 43 of 80

7.3 Filename Display on Tab and Title Bar Are Incorrect
Reference: IR# 9260629

In Windows Explorer the file is named on disk as “10000645927ses000.psm”:

However, when opening the file in Solid Edge, both the file tab and the title bar display the filename as

“1000079554ses000.psm Normal Cutout”:

To resolve this issue, on the tab for the file, right-click -> New Window:

 Page 44 of 80

In the new window that is opened the file tab and title bar now display the correct filename:

Right-click on the original tab which still displays the incorrect filename and select “Close Window”:

Save and close the file.

The file has now been successfully repaired and the incorrect filename is no longer displayed on the tab and title bar.

 Page 45 of 80

7.4 No Translator Is Available for This File Type
Reference: IR# 8324598

In Solid Edge when attempting to open the file we get the following message:

If we look at the file in Windows Explorer, we can see that there is no size to the file – the file is 0 KB in size.

If the file is 0 KB, then there are no objects stored within the file thereby making the file empty of any content. If

there is no content, then there is no data that can be recovered. At this point there is no need for any further

analysis. However, for the purposes of this document we will continue with further analysis using our tools.

Opening the file in Structured Storage Viewer we see the following:

 Page 46 of 80

Open the .7z file in 7-Zip we see the following:

These messages confirm that there is no valid structured storage with the file to be opened and read.

If there is no valid structured storage that can be read by the various tools, then the file cannot be repaired.

This file does not need to be forwarded as a PR to development for further investigation.

 Page 47 of 80

7.5 No Translator Is Available for This File Type
Reference: PR# 8898643

Opening an assembly file, the error message “Cannot open xxxx.asm. No translator is available for this file type.“ is

thrown and the part will not open:

Opening the assembly file in to one of the structured storage tools we can see that the content of the file is actually

an assembly configuration .cfg file that has been incorrectly renamed to the .asm file extension:

This is not an assembly file that can be repaired per se. Simply renaming the file extension from .asm to .cfg will

allow the configuration file to be reused in Solid Edge.

 Page 48 of 80

7.6 Error xxxxxxxx – Cannot Open File
Reference: IR# 9316127

Opening the draft file in Solid Edge will throw an error message dialog with a consistently changing error code:

Opening the file into our toolset, and interrogating the various stream objects show that most of the stream objects

have size and content, but that content is all zeros:

 Page 49 of 80

Because so many streams have zeros written over their content, this file cannot be repaired.

7.7 No Error Messages
Reference: PR# 8918403

The assembly file will not open in Solid Edge and Solid Edge does not give any feedback or error message. The file

simply does not open.

If you create a copy of the file renamed to the .7z file extension and attempt to open the file in 7-Zip you will notice

that there does not appear to be any objects contained within the structured storage:

 Page 50 of 80

If you open the file in Structured Storage Viewer, you will again the notice the lack of any objects contained within

the structured storage:

Because there are absolutely no objects continued within the structured storage, this file cannot be repaired.

 Page 51 of 80

7.8 No Error Messages
Reference: PR# 7630674

The assembly file will not open in Solid Edge and Solid Edge does not give any feedback or error message. The file

simply does not open. Although this behaviour is the same as the previous example, the content of the underlying

structed storage is significantly different so warrants different analysis.

If you create a copy of the file renamed to the .7z file extension and attempt to open the file in 7-Zip you see the

following:

If you open the file in Structured Storage Viewer, unlike 7-Zip, the file will successfully open:

 Page 52 of 80

However, further interrogation of the various Storage objects shows that many of the Storage objects e.g. JSitexxx,

Dipslay, PSMspacemap, IOT, etc. have zero size:

 Page 53 of 80

These zero-size storage objects are unexpected and is preventing the file from being successfully opened in Solid

Edge.

Primarily, because so many of the streams have zero size and secondly, because the file cannot be opened in 7-Zip, it

is assured that this file will not be able to be repaired. Once submitted, Development was unable to repair this file

because of so many of the file streams having zero size.

 Page 54 of 80

7.9 File Was Created with A Pre-Release Version of Software - Draft
Reference: PR# 1929296

When opening the draft file, we get the error “This file was created with a pre-release version of software. The file is

no longer valid.” and the file is not opened:

If we attempt to open the file into 7-Zip, we can confirm that the file will successfully open:

 Page 55 of 80

The file will also successfully open into Structured Storage Viewer:

With the file open in Structured Storage Viewer we can then start investigating the various Stream objects. If we

interrogate the streams under the PSMspacemap Storage object we can clearly see that these streams have content

but that the content contains all zeros:

 Page 56 of 80

Something has written zeros of a portion of the file. This file cannot be repaired.

 Page 57 of 80

7.10 File Was Created with A Pre-Release Version of Software - Part
Reference: PR# 9045019

Attempting to open the part file provided under we receive the message “This file was created with a pre-release

version of software. The file is no longer valid.” and the file is not opened in Solid Edge:

Opening this file in one of our structured storage tools, we can then expand and view the content of the Parasolid

Storage object:

We can then view the content of the underlying Stream objects. For the STREAM0.D_B stream we can see that there

is content, but that content contains nothing but zeros:

 Page 58 of 80

We can also see that the STREAM0.P_B stream also contains nothing but zeros:

As there is no actual Parasolid content contained within this file, there is no model geometry that can be either

repaired or recovered from this file.

This file is unrecoverable and cannot be repaired.

 Page 59 of 80

7.11 Server Busy
Reference: PR# 9143188

The customer is trying to open a draft file. However, the draft file does not successfully open. Eventually Solid Edge

will throw a “Server Busy” message:

Further, in Task Manager we can see that Excel is being launched from Solid Edge when opening the file:

At this point the file never opens and Solid Edge and Excel need to terminated in Task Manager.

As this issue appears to be related to trying to open Excel linked data within the Draft file we can potentially resolve

this using our toolsets.

 Page 60 of 80

Open the draft file into one of our structured storage tools e.g. Structured Storage Viewer and expand the objects.

Note all the JSite storage objects:

 Page 61 of 80

Expand the first JSite storage object:

Under this storage we have several PropertySet and Stream objects. If we start interrogating these objects we can

see that this storage object appears to be an embedded Excel file:

 Page 62 of 80

Additionally, this appears to be an Excel 2003 file:

It appears that the user has embedded an Excel file into the draft file.

Right click over the JSIte storage object that contains our Excel file data and select Delete:

The objects containing the embedded Excel file have now been removed.

 Page 63 of 80

Continue interrogating the JSite storage objects and delete any remaining objects that containing Excel files in them:

Save the modified file.

Now the repaired file will open into Solid Edge without issue.

 Page 64 of 80

7.12 Make Sure the File Is the Correct Type and Version for The Application – Draft
Reference: IR# 9391889

Opening a draft file throws the error message “Cannot open file. Make sure the file is the correct type and version

for the application and that you have read access.” and the file is not opened:

If we open the file in to one of the structured storage tools we can see that there are several PropertySet and Stream

objects related to file properties:

 Page 65 of 80

However, we can also see that there are no Storage objects. This is unexpected, as a valid Solid Edge file should have

several Storage objects within its content as shown in the following valid draft file:

This corrupted file cannot be repaired as there is no draft related data other than property information available to

recover.

 Page 66 of 80

7.13 Make Sure the File Is the Correct Type and Version for The Application – Part
Reference: IR# 9417777

Opening a part file throws the error message “Cannot open file. Make sure the file is the correct type and version

for the application and that you have read access.” and the file is not opened:

If we open the file in to one of the structured storage tools we can see that there are two objects within the file

structure:

This is unexpected, as a valid Solid Edge file should have many different objects within its content as shown in the

following valid part file:

This corrupted file cannot be repaired as there is no part related data available to recover.

 Page 67 of 80

7.14 Make Sure the File Is the Correct Type and Version for The Application – FOA
Reference: IR# 9312193

Opening a Family of Assemblies (FOA) assembly file from Windows Explorer throws the error “Cannot open file.

Make sure the file is the correct type and version for the application and that you have read access” and the file is

not opened:

Opening the FOA from within Solid Edge will allow the file to successfully open and the “Assembly Member” dialog

will be displayed:

However, after opening, it is then not possible to select and change the FOA members:

This would appear to indicate the FOA file is not correctly identified or tagged as an FOA file.

 Page 68 of 80

Open the file in to the “Structured Storage eXplorer” tool so we can review the CLSID value for this FOA file at the

Root level:

We can see that the current CLSID value for this file is currently “00c6bf00-483b-11ce-951a-08003601be52”.

However, if we quickly review the earlier section in this document on CLSID values we know that an FOA file should

have a correct CLSID value of “04d613a0-a322-40b5-a2a4-36ca0de6f5d9”.

Double-click into the CLSID field and change its value to “04d613a0-a322-40b5-a2a4-36ca0de6f5d9”. You can copy

and paste the value:

 Page 69 of 80

Then select File -> Save to save our modifications.

The CLSID tag has now been corrected and the file repaired. The file should now open and work as expected within

Solid Edge without any further issue.

 Page 70 of 80

7.15 Model File Is Not Saved in The Current Version. Drawing Views Cannot Be Created or Updated.
Reference: IR# 9417777

Opening a draft file throws the error message ”The model file is not saved in the current version. Drawing views

cannot be created or updated. If dimensions are placed in the current state of the drawing and the model changes

before the link is resolved, these dimensions may be deleted on update.”. However, the file is successfully opened:

Select Tools -> Assistants -> Drawing View Tracker:

In the Drawing View Tracker we can see that a part within one of the sub-assemblies has changed:

 Page 71 of 80

If we attempt to open this changed part file in Solid Edge, we then receive the following error message for the child

part:

We have already addressed how to interrogate and potentially fix this type of “make sure the file is the correct type

and version” error for the part file in an earlier troubleshooting example. It is not necessary to review this corrupted

child part file to continue resolving the issue being addressed within this section for the error message when opening

the draft file.

We need to remove this corrupted child part file from the assembly structure. In this example we simply rename the

corrupted file on disk in Windows Explorer:

Then when you reopen the draft file, the draft will open without issue and without any error messages. Because we

have removed a child from the assembly structure, as expected, the Drawing Views are marked as out of date:

However, at this point the original issue with the draft file is now resolved and we can continue to work with the

draft as needed. You will still need to address the underlying root cause for the original error message which is the

now identified corrupted child part file.

 Page 72 of 80

7.16 Part with Non-Existent Link to Assembly
Reference: PR# 9271478

Note this issue is similar to the upcoming next example shown below. This example provides a more complex

solution to show how to manually locate and remove links using the structured storage toolsets. The next upcoming

example will provide a much simpler solution that will also work for this example.

The part file appears to have a reverse link to an assembly:

Opening the assembly, we see there are no links to the part:

Open the part and there are no links to the assembly:

 Page 73 of 80

Additionally, open the part file in to Design Manager and the icon appears to indicate there is a linked file:

Apparently, there is a non-existent link in the part to the assembly.

Open the part file into a Structured Storage eXplorer and begin interrogating the storage structure. Expand the

JReverseLinks storage object:

 Page 74 of 80

JReverseLinks storage is where the reverse links in Solid Edge are maintained. Under this storage object is another

storage object JReverseSiteInfoxxxx:

If we then expand this JReverseSiteInfo storage we see two streams:

If we interrogate the content of these streams we can see that there is a link defined back to the assembly file:

 Page 75 of 80

Select the higher level JReverseSiteInfo storage object containing these streams and right-click -> Remove to delete

the Solid Edge link data:

Save the modified file.

Now the part file will open in Solid Edge without prompting that there is a link to the assembly. This can also be

further confirmed in Design Manager as the icon no longer shows a link:

 Page 76 of 80

7.17 Ghost Link in Part to Assembly
Reference: PR# 9272264

Note this example is similar to the previous example shown above. This simpler solution is provided here for

reference, with the more complex solution shown above provided to show how to manually locate and remove links

with the structured storage toolsets.

Open the part file in Design Manger and right-click -> “Show Parents”. There is a link shown to a parent assembly:

Open the part file in Solid Edge and there are no links to the assembly shown:

In the Inter-Part Links dialog right-click on the part name and select “Break Links”:

Close the dialog and save the file. The link to the parent assembly is now removed and the part file has been

repaired.

 Page 77 of 80

8 Submitting Files for Potential Repair
If after following the troubleshooting examples above, you are able to successfully open and read the content of the

Solid Edge file in to the various third-party tools, the corrupted file structured storage is not similar to any the above

examples shown, and you cannot manually repair the file yourself, then it may be possible to have the Solid Edge

Development team repair the file.

8.1 Customer Submitting IR to GTAC For File Repair
For customers submitting files for repair to GTAC it would be beneficial to complete the following survey to help try

to identify a potential root cause for the file corruption. Submit the results of this survey as part of the file repair IR.

1. Do you use a data management system? If so, which one?

2. If you do not use a data management system, do you save files directly to a remote machine on the

network or to cloud storage?

3. Do you use any automation programs or add-ins that are triggered on Solid Edge save events? If so, what

are they?

4. Is Automatic Document Preservation enabled on the Solid Edge Options -> Save tab?

5. Solid Edge allows users to save files after a crash has occurred. Was the last save made after a crash?

6. Has the file been saved to a USB drive or thumb drive prior to the failure to open?

7. What anti-virus software are you running? What exclusions, if any, have you made to the anti-virus for

Solid Edge?

8. Were these files created and saved using the same version of Solid Edge that you are attempting to open

them with? If not, what version were the files created in and what version were the files last saved in?

9. Is there anything you can add that may provide clues to the cause of the corruption?

 Page 78 of 80

8.2 GTAC Submitting PR to Development for File Repair
For GTAC engineers when submitting a PR to Development for potential repair, please follow the process as

documented in the following internal Solution Center article:

http://gtac.industrysoftware.automation.siemens.com/view.php?si=002-8008358

After submitting a PR to Development, it may also be beneficial to review with the customer the list of Potential

Causes of Solid Edge File Corruption section presented earlier in this document. To briefly reiterate those potential

causes:

• Network Stability

• Thumbnail Caching

• Anti-Virus

• Disk Write Caching

o Removable Disk Drives

o Distributed File System

• Cloud File Syncing

• Disk Compression

• Mapped Drives

• Downstream Usage of Files

• Custom File Save Events

• Family of Assembly Files

http://gtac.industrysoftware.automation.siemens.com/view.php?si=002-8008358

 Page 79 of 80

9 Summary
By developing an understanding of how Solid Edge files are constructed and how to read the content of the Solid

Edge files, we are now able to better determine the suitability of a corrupted file and the likelihood of success for a

repair, including manual repairing for ourselves or by submitting to Solid Edge Development as a PR for file repair.

David C. Merritt

 Page 80 of 80

10 Revision History
Version Date Change

1.0 14-Mar-2019 Initial release

2.0 02-Apr-2019 Added “Revision History” section

 Added “NetworkError” stream to “Network Stability” section

 Added “Stuck in Sketch Environment” example to “Troubleshooting Examples” section

 Added “Filename Display on Tab and Title Bar Are Incorrect” example to
“Troubleshooting Examples” section

 Added “Make Sure the File Is the Correct Type and Version for The Application - Part”
example to “Troubleshooting Examples” section

 Added “Model File Is Not Saved in The Current Version. Drawing Views Cannot Be
Created or Updated” example to “Troubleshooting Examples” section

