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Abstract—Vehicle-to-everything represents a major step in the
evolution of Intelligent Transportation Systems (ITS), by allowing
connected and automated vehicles, and the infrastructure, to
share information seamlessly. Vehicular use cases with reduced
latency in data processing and transmission require the utilisation
of Vehicular Edge Computing (VEC). VEC needs to integrate ITS
services comprising communication architectures and message
formats that are accessible and efficient, and ensure timing
constraints. For this purpose, this paper discusses some of
the issues present in current vehicular protocol stack, and
proposes Vanetza-NAP, a microservice architecture for ITS-G5
communications. Vanetza-NAP adds new features to Vanetza and
support for: (1) new ITS message types, (2) runtime configuration
mechanisms that facilitate orchestration, (3) parallelised design
to handle multiple messages simultaneously, and (4) integrated
messaging technologies to connect with applications (MQTT and
DDS). An evaluation is performed to the new architecture, by
measuring the delay introduced by different messaging technolo-
gies, the impact of the parallelized design, and the overhead
of the microservice-oriented approach. The results demonstrate
the benefit of the parallelized implementation and priority-based
message queuing. The enhanced interoperability and extended
capabilities introduced justifies the small overhead in delay to
support the microservice-based edge architecture.

Index Terms—ITS-G5, V2X, Vehicular Edge Computing, C-
ITS, Data Distribution Service, Multi-access Edge Computing

I. INTRODUCTION

The emergence of Smart City infrastructures and the Multi-
access Edge Computing (MEC) paradigm has enabled new
5G verticals, such as connected and automated vehicles
with Vehicle-To-Everything (V2X) communication. This has
brought Vehicular Edge Computing (VEC) to the forefront of
research, since it allows vehicular use cases to leverage prox-
imity in order to achieve reduced latency in data processing
and transmission. This is especially relevant in the case of
Intelligent Transport Systems (ITS) applications, due to their
strict timing constraints and need for consolidation of data
from multiple sensors and other sources on the VEC domain.

Historically, Smart City services were developed as closed
systems specific to each city’s verticals, wherein sensors,
networks, and processing devices remained isolated within
each service provider’s domain. However, recent trends catal-
ysed in part by the emergence of 5G private infrastructures
and vehicular networks with VEC capabilities point towards
a shift, allowing public infrastructure to be shared among
multiple providers and thereby reducing costs and increasing
the potential for cross-domain integrations. As such, the notion
that the various functions of an ITS Road-side Unit (RSU)

are necessarily deployed in bespoke, exclusive, hardware has
become antiquated, in favour of deployments at least in
part made to a shared MEC infrastructure that is centrally
managed through an orchestration system. Therefore, modern
ITS solutions should be designed with architectural principles
that leverage the distributed computing paradigm, and also
create beneficial synergies with the orchestrator itself.

At the same time, ITS use cases have been expanding in
scope in a way that broadens the amount and types of infor-
mation provided by road-side infrastructure, thus reinforcing
the collective perception world model, and enabling novel
interactions with third-party infrastructures, such as electric
vehicle recharging stations. Additionally, there is also an
increasing need for the inclusion of ITS information provided
by the vehicles into existing data collection pipelines, in order
to facilitate traffic pattern prediction, congestion analysis, and
other machine learning & data science use cases that inform
city planning and other applications. In both cases, it is clear
that there is an emerging trend for ever greater integration of
ITS services with other VEC and Smart City applications and
sensors, which informs the need for communication architec-
tures and message formats that are accessible and efficient,
while ensuring timing constraints can still be met.

This work aims to address these issues through Vanetza-
NAP, an extension to Vanetza [1] through a microservice based
approach, with new ITS message types, runtime configuration
mechanisms that facilitate orchestration, parallelised design
to handle multiple messages simultaneously, and integrated
messaging technologies to connect with applications (MQTT
and Data Distribution Service - DDS). The results show the
improvement in terms of delays of the different processes
and the communication protocol, which makes Vanetza-NAP
suitable for time-constrained services. Vanetza-NAP has been
very successfully used in both education and research in ITS
networks and services.

The remaining of this paper is organised as follows. Sec-
tion II presents the related work, and Section III explores
current monolithic architectures and some of their shortfalls.
Our proposed approach is discussed in Section IV, and its
mechanisms for a microservice based ITS protocol stack
service are presented in Section V, along with their relevant
features and design considerations. Section VI, presents and
discusses the results, and finally, Section VII presents the
conclusions and directions for future work.



II. RELATED WORK

In order to realise the goal of ITS stations running on a
shared MEC infrastructure, one of the most important com-
ponents is the ETSI ITS protocol stack. However, proprietary
implementations are generally restricted to specific hardware,
or are otherwise ill-suited for this application, as explored
in [2], thus favouring the use of Open-Source alternative
implementations. Currently there are three projects that have
seen some development and use, as identified in [3] and [4].
Namely: Alex Voronov’s GeoNetworking stack [5], developed
in Java; CCS Labs’ OpenC2X experimental and prototyping
platform [6], developed in C++; and Technische Hochschule
Ingolstadt’s Vanetza [1], developed in C++. Unfortunately,
the Java stack and OpenC2X have not seen active devel-
opment in several years, which is problematic for several
reasons, most notably in terms of C-ITS message type support,
where they are limited mostly to CAM and DENM messages.
OpenC2X includes CAN/OBD support, but lacks the Security
and GeoNetworking functionalities, as identified in [4].

From the application architecture perspective, there are
multiple examples of vehicular network performance studies
and ITS cooperative awareness & perception applications that
use the aforementioned protocol stacks in a typical monolithic
design: [4] uses Vanetza; [7] uses OpenC2X; and [8] uses
the Java GeoNetworking stack. Microservice architectures are
much less common: in [9], the GeoNetworking Java stack
is used to convert incoming CAM and DENM messages
into JavaScript Object Notation (JSON) and publish them
into Message Queuing Telemetry Transport (MQTT) topics.
However, this approach is limited to the incoming direction,
and only supports CAM and DENM messages. The work
in [10] presents an architecture where a collision avoidance
service exchanges messages in JSON format with Vanetza
through MQTT in both directions. This proposal is the most
similar to the goals of our work, but is limited in terms of
message type support (CAM and DENM messages), and in
terms of communication strategy (MQTT).

From the network performance perspective, there are several
studies that compare the performance of the ITS-G5 and C-
V2X technologies, from a theoretical perspective [11], using
simulation environments [12] or on real deployments [13]. For
instance, the work presented in [11] analyses the evolution
of the two protocol stacks on the physical and MAC layers,
including a comparison of the access layer technologies of
LTE-V2X and NR-V2X in C-V2X. However, studies that
compare the performance and architecture of each available
protocol stack are missing. Additionally, as presented in [11],
there are some studies that analyse some of the performance
characteristics and limitations of current publish/subscribe
protocols. However, current V2X studies mostly address the
time-critical requirements from the network latency and jitter
perspective. C-ITS use cases generally operate with strict
timing restrictions. One relevant example is the use case of
awareness of the presence of a Vulnerable Road User (VRU),
in which an alert to the user should be generated within
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Fig. 1: Typical Monolithic ITS Application Architectures

an upper-bound of 100ms, with a recommended commu-
nication latency of 20ms. Some real measurements of the
communication delay on IEEE 802.11p can be found in [14]
and [15], where authors show values within the range of
a few milliseconds. The work in [16] considers both the
communication delay and the processing time of the C-ITS
messages, using the aforementioned Java protocol stack. The
results present an average delay of 50ms, highlighting the
importance of considering the processing delay of such a
system.

III. VEHICULAR EDGE COMPUTING ARCHITECTURES

The most typical architecture used by ITS applications
follows a monolithic paradigm where the implementation will,
by necessity, include a third-party library or Software Devel-
opment Kit (SDK) that performs the role of the ITS Protocol
Stack. Conceptually, this approach can be accomplished with
two separate strategies, which are represented in figure 1.

The first strategy, a), is to implement each ITS application as
its own separate service with its own hooks into the protocol
stack. This method ensures separation of concerns, but also
presents notable drawbacks. Since each application is expected
to handle the actual transmission and reception of messages,
every application that manages a vehicular network use case is
restricted to deployments on worker nodes that support ITS-G5
connectivity capabilities. This limits an orchestrator’s ability
to balance the resource usage throughout the cluster’s worker
nodes, and may impose an upper bound limit on the number
of ITS applications that each infrastructure node can feasibly
support. The use of this architecture in containerised envi-
ronments raises additional issues such as weakened isolation
between running workloads, since each container requires host
mode networking capabilities in order to access the raw ITS-
G5-enabled wireless network interface. This restriction hinders
the overall security of the system by decreasing the level of
isolation between running workloads, and may also preclude
the applications from accessing advanced network features that
are available in namespaced network environments.

Finally, it is important to take into account that multiple ITS
applications may need to receive and interpret the same ITS
message types in order to perform their functions. As a result,
those incoming messages need to be processed and decoded by
the protocol stack layer of each of the interested applications.



This is also relevant for unwanted message types, since there
is no native filtering mechanism that can be applied at a lower
level of the Linux networking stack to automatically select
packets by their BTP destination port or C-ITS message type.
As such, the only means of ascertaining the message type
of an incoming transmission is to at least partially decode it
first, which, in practice, results in several redundant processing
cycles spent performing the exact same operations multiple
times, only for some of the results to be potentially discarded.
This is especially relevant in the case of resource-constrained
Single-Board Computers (SBCs). As an alternative, vehicular
network use cases can be implemented using strategy b)
identified in figure 1, which combines the logic of every ITS
application into a single codebase, thus mitigating some of the
aforementioned problems. However, this solution inevitably
brings several development and usability issues stemming
from the size of the codebase and the inherent difficulties
in maintaining it. And, crucially, the proposal still cannot
be considered an orchestration or cluster-friendly architecture,
since it severely limits the level of control that the orchestrator
can exert in order to prioritize one ITS use case over another,
and maintain cluster balance. Finally, in both alternatives, the
choice of programming language/framework when implement-
ing new ITS applications is restricted by the need to use the
protocol stack library.

IV. MICROSERVICE-BASED ARCHITECTURE

As an alternative, this work proposes a microservice-
oriented approach, Vanetza-NAP, that decouples the protocol
stack from the implementation of each vehicular use case.
Under this proposal, depicted in figure 2, the protocol stack
is deployed as its own standalone service that serves as the
system’s single point of entry/exit for C-ITS messages, and
performs all the respective encoding/decoding operations. In
turn, ITS applications are implemented as individual services
that interact with the ITS stack through Inter-Process Com-
munication (IPC) mechanisms, in order to receive incoming
messages or instruct the stack to send new outgoing ones.
This communication can be accomplished using a simpler,
universal, representation of ITS message contents (e.g., in
JSON), thus avoiding the inclusion of extensive Abstract Syn-
tax Notation One (ASN.1) encoding logic in every application.

This strategy successfully addresses the aforementioned
drawbacks of monolithic solutions in regards to their inef-
fective use of processing power, and greatly simplifies the
development of applications that implement vehicular use
cases. Furthermore, this separation of the ITS monolithic
into a set of individual microservices also presents several
advantages when considered in the context of cluster envi-
ronments. Since each ITS application is subject to a separate
worker node scheduling process, the cluster’s orchestration
system can maintain a balanced cluster state in terms of
resource utilisation more effectively. This is especially relevant
in cases where the orchestrator determines that one or more
ITS applications cannot be feasibly allocated to the same node
as the protocol stack service, and must therefore be placed
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Fig. 2: Microservice-based ITS Application Architecture

in neighbouring nodes to ensure stable performance levels,
even if the application incurs a slight latency penalty as a
result. Additionally, ITS services can frequently require mul-
tiple dependencies with varying levels of importance, which
are not necessarily present in the same worker node as the
protocol stack. In a microservice architectural paradigm, the
orchestrator can act in accordance to these types of constraints
for each specific application, without affecting the others.
Furthermore, since only the protocol stack service requires
access to raw host-level network interfaces, ITS applications
no longer require the use of host-mode networking, which
increases service isolation, and overall system security.

Under this microservice-oriented architecture, the commu-
nication between the protocol stack service and its client
ITS applications can be conducted using any available tech-
nology. Given the timing restrictions imposed on some ITS
applications, the use of direct connections (e.g., UDP/TCP
sockets) minimises the amount of traffic hops and overall
delay. However, this type of messaging solution can become
overly restrictive in this context, since the incoming C-ITS
messages are expected to be consumed by multiple different
ITS applications and other services. Moreover, the deployment
of a new consumer or producer of ITS messages should not
require any changes to the protocol stack’s implementation.

Instead, this proposal suggests the use of technologies that
implement the Publish and Subscribe (PubSub) paradigm, such
as the MQTT protocol, which allows for a virtually unlimited
number of producers and consumers that can be integrated into
the communication architecture in a plug-and-play fashion,
without requiring any modifications to the protocol stack’s
base code. Nevertheless, the centralised nature of some Pub-
Sub implementations presents a very significant drawback,
since it adds a message broker as a mandatory additional
hop, thus incurring higher latency. However, it is important
to consider that, at scale, this effect is counterbalanced to
some degree by the aforementioned efficiency gains to the
processing latency of both the applications and the protocol
stack. This issue can be further mitigated by a careful selection
of communication technologies that take into account the
nature of each application and its particular timing restrictions.

V. COMMUNICATION, ORCHESTRATION AND EMULATION

As part of this work, we developed the new type of ITS
protocol stack named Vanetza-NAP, since it was built upon
the open-source V2X Protocol Stack Vanetza [1]. This section
describes the features introduced to extend the original Vanetza
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into a standalone service that supports MEC scenarios at scale,
while still supporting time-sensitive applications (figure 3).
This library is open-source and publically accessible1.

A. Communication and encoding strategies

This approach supports an extensive set of ITS message
types, which includes the messages supported by the base
Vanetza library as well as some new additions, in Table I.

TABLE I: Supported Messages

Acronym Message Type
CAM Cooperative Awareness Message
DENM Decentralized Environmental Notification Message
CPM Collective Perception Message
VAM Vulnerable Road User Awareness Message
SPATEM Signal Phase And Timing Extended Message
MAPEM MAP (topology) Extended Message
MCM Maneuver Coordination Message (Draft Spec.)
SSEM Signal Status Extended Message
SREM Signal Request Extended Message
RTCMEM RTCM Extended Message
IVIM Infrastructure to Vehicle Information Message
EVCSN Electric Vehicle Charging Spot Notification
EVRSR Electric Vehicle Recharging Spot Reservation
IMZM Interference Management Zone Message
TISTPG Tyre Information System & Tyre Pressure Gauge

For each of these message types, Vanetza-NAP includes
bespoke service logic that, conceptually, fulfils the role of the
Application Support Domain Facility by “supporting the pro-
tocol processing” of the corresponding messages, as defined
in [17]. In a broader sense, the Vanetza-NAP service as a
whole also implements other Management, Application, and
Information Support facilities specified in the standard, such
as: ITS-S ID management, Time service, ITS-S positioning
service, Data presentation, and Congestion control, among
others. Finally, Vanetza-NAP and the underlying library also
implement parts of the Transport & Network and Access

1https://code.nap.av.it.pt/mobility-networks/vanetza

Technologies layers: ITS Transport, GeoRouting, and ITS-
G5, as well as some Security layer features like IEEE 1609.2
Signed Protocol Data Units (SPDU).

In order to exchange information with other services,
Vanetza-NAP has concurrent support for two different message
formats. The first format is the stream of Unaligned Packed
Encoding Rules (UPER) encoded bytes produced using each
message type’s ASN.1 definition. This approach minimises
both the message size, and the time spent on its transmis-
sion and marshalling/unmarshalling. However, this efficiency
comes at the cost of added complexity on the side of client
ITS applications. Alternatively, messages can be marshalled
into JSON payloads that follow the exact schema defined in
each message type’s ASN.1 specification document. Despite
incurring an efficiency cost in terms of both payload size and
processing latency, we feel that using JSON greatly simplifies
the design of client ITS applications and allows for an un-
matched level of interoperability with different languages and
frameworks, as well as different types of consumer services
such as databases and real-time dashboards.

After being prepared, these representations of ITS messages
are exchanged between the applications and the Vanetza-NAP
protocol stack using a mix of communication technologies,
which also depend on the constraints of each individual
use case. The first such technology is the MQTT protocol.
However, since the existence of a centralized message broker
incurs added latency, the protocol is mainly intended to be
used by generic, non-critical, applications and use cases.

In order to guarantee support for time-sensitive ITS ap-
plications and use cases without violating timing contraints,
Vanetza-NAP also supports the use of OMG’s Data Distri-
bution Service (DDS), concurrently with the aforementioned
MQTT strategy. Crucially, this technology still implements
a PubSub paradigm, but through the use of a decentralized,
broker-less, architecture with sophisticated peer discovery
capabilities. The ITS messages are then exchanged between
publishers and subscribers using either multicast transport,
direct UDP sockets, or shared memory mechanisms (in cases
where the peers are co-located and share an IPC namespace).
The lack of the extra network hop typically incurred by a
broker, coupled with the extensive list of Quality of Service
(QoS) configurations that can be applied, result in significant
reductions to the latency experienced by critical applications.

On balance, we feel that this mixed strategy allows Vanetza-
NAP to achieve lower latency communications when required,
while also retaining the greater interoperability of the MQTT
protocol and JSON representation for the remaining use cases.
Finally, the service also includes support for exchanging
messages using direct TCP or UDP sockets, in order to ensure
that timing constraints are still met in the exceptional cases
where DDS cannot be integrated.

In conceptual terms, these communication methodologies
implement the Facilities/Applications Service Access Point
(FA-SAP) defined in [17], which links the ITS Applications
(running separately) to the Facilities layer and beyond (imple-
mented by Vanetza-NAP).



B. Orchestration facilities and other features

Beyond the aforementioned features, this approach also in-
cludes additional considerations that help increase its synergy
with any orchestrators managing its deployment.

Firstly, the protocol stack is fully capable of being executed
in containerized environments, which is the main deployment
mechanism aimed for the service. As such, the project includes
Docker images built for both x86-64 and arm64 architectures,
which are generated from a multi-stage build process designed
to reduce the final image size as much as possible. This support
is crucial, since most orchestration solutions rely heavily on
the containerization paradigm. However, in the context of a
critical service, it is important to consider that a containerised
environment does incur a slight performance penalty that can
vary depending on the application and the characteristics of the
underlying computing node. In our testing [2] performed on
resource-constrained edge computing devices, this effect was
found to be measurable but not overly significant, especially
if successfully mitigated using process isolation mechanisms.

Secondly, Vanetza-NAP includes a robust set of runtime
configuration options and mechanisms that enable an orches-
trator to deploy multiple instances of the protocol stack based
on the same binary or container image, while still being able
to fine-tune the behaviour of each individual instance. These
configurable parameters include, among others: 1) Information
regarding the specific ITS station, such as its ID and Type;
2) Connection details for the respective MQTT Broker; 3)
PubSub topic names used for each message type and in-
bound/outbound flow; 4) Connection details for the Global
Positioning System Daemon (GPSD) that provides positioning
information; 5) Various feature flags for ease-of-use and de-
bugging functionalities. These parameters can be defined either
in Vanetza-NAP’s configuration file, which follows the INI
key-value pair schema, or as individual environment variables.

Finally, each instance of Vanetza-NAP continuously exposes
a set of metrics in the background relating to its current state
and performance level. An orchestrator can then monitor for
changes in performance and react accordingly by increasing
resource limits or evicting lower-priority deployments to main-
tain stable levels. To ensure consistency and interoperability,
Vanetza-NAP exposes metrics using the Prometheus format.
These exposed values include the number of messages that
have been transmitted and received for each of the ITS
message types, and, most importantly, the average processing
latency observed (during the decoding and JSON generation
tasks or vice-versa) for each message type and direction.

Vanetza-NAP also includes other note-worthy architectural
elements, aimed at increasing the level of determinism to the
processing time of the various message types. One such ele-
ment is the use of an Extended Berkeley Packet Filter (eBPF)
that is applied to the raw network socket to more efficiently
filter incoming packets by the GeoNetworking Ethertype, thus
avoiding extraneous CPU cycles spent on unrelated traffic.

The parallelised design of Vanetza-NAP’s message process-
ing pipeline ensures that the service is capable of handling
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multiple messages simultaneously. This is accomplished using
a system of thread pools and priority queues, where arriving
packets are sorted into a traffic class according to the criticality
of the ITS message type (following the priority mappings
set in [18]) and placed in a queue. Then, a collection of
worker threads (whose number depends on the core count of
the host CPU) continuously consume them and perform the
required processing operations. This approach greatly reduces
the risk of messages being delayed due to previous messages
that are still being processed, as would happen in a more
sequential pipeline design. Moreover, it ensures that lower-
priority, often larger, message types do not starve out the pro-
cessing bandwidth of more critical messages with restrictive
timing constraints (eg. DENM). This parallelised architecture
applies to incoming encoded ITS messages from the selected
network interface, as well as message transmission requests
sent by other microservices (also sorted by the communication
mechanism; DDS peers with more priority than MQTT traffic).

Vanetza-NAP also includes other features that aim to pro-
vide additional useful metadata to ITS applications. One such
functionality is the timestamping of key events during the
lifecycle of an ITS message, described in detail in section
VI. Using this information, both ITS applications and offline
tools that analyse persisted data can determine the total time
elapsed while performing the decoding, parsing, and JSON
generation tasks (or vice-versa), which we define as the
processing latency of the Vanetza-NAP service. Additionally,
Vanetza-NAP also continuously communicates with the Linux
kernel using a Netlink socket, to obtain the Received Signal
Strength Indicator (RSSI) value for each ITS message received
by another ITS station, as well as the current Modulation
Coding Scheme (MCS) index that the host has selected for
transmissions to that station. This information can be useful
to some ITS applications in real-time, since they can be used to
rank neighbouring stations by signal strength and throughput
instead of just by geographical distance.

C. Emulation and educational uses

Since Vanetza-NAP can be executed in containerized envi-
ronments, we can use it to very easily create an emulation
environment with two or more Vanetza-NAP instances as
ITS stations. The containers can use the underlying Docker
network, in place of the wireless medium, where they can
exchange encoded ITS messages, while simultaneously ex-



changing JSON and UPER representations of messages via
MQTT and DDS, with ITS applications running as other
Docker containers or on the host machine, as depicted in
figure 4. To simplify this specific scenario, the Vanetza-NAP
container image also includes its own built-in MQTT broker.

This ability to easily deploy different ITS scenarios with
several stations in one PC, coupled with the ease of use of the
JSON schema and MQTT protocol, enables Vanetza-NAP to
be an effective educational tool, which has been included in
the Autonomous Networks and Systems course of the Mas-
ter’s degree in Computer and Telematics Engineering at the
University of Aveiro, since the academic year of 2021/20222.

VI. PERFORMANCE EVALUATION

This section details the evaluation of Vanetza-NAP, quanti-
fying several metrics that are critical to understand its fea-
sibility, namely: 1) the performance characteristics of each
supported IPC mechanism and payload format; 2) the pro-
cessing delay incurred by different ITS message types, as
complexity and payload size are increased; 3) the impact of the
parallelised pipeline design on the determinism of the results,
when compared to a sequential approach; and 4) the overhead
incurred by our microservice-based proposal relative to a more
traditional implementation, in isolated conditions.

The experimental setup, depicted in figure 5, is composed of
an On-board Unit (OBU) and an RSU powered by a resource-
constrained PCEngines APU2 Linux SBC3, used in real MEC
deployments. The units share an IEEE 802.11p channel, and
both contain a running instance of Vanetza-NAP, as well
as an instance of the Mosquitto MQTT Broker and a C++
application responsible for performing the various tests and
collecting results, all deployed within the Docker container
runtime. For most of the test runs, the ITS producer app
generates 5000 message requests at a rate of 10 Hz, and the
results comprise the mean and 95% confidence intervals.

A. Communication protocol and data format

In the first scenario, the requests use different combina-
tions of IPC mechanisms and payload formats: 1) MQTT &
JSON; 2) DDS & JSON; 3) DDS & ASN.1 UPER. Each
of these variations is tested once for each of the following
ITS message types: CAM, DENM, CPM with 4 detected
objects (CPM SMALL), CPM with 12 detected objects (CPM
BIG), and MAPEM. Each message request is received by the
OBU’s instance of Vanetza-NAP and subsequently transmit-
ted to the RSU’s instance, where it is processed and sent
to the ITS consumer application. The DDS participants on
each ITS station are able to leverage the use of Shared
Memory as the underlying IPC mechanism. The applications
used by both the producer and the consumer record their
respective transmission and reception instances. Vanetza-NAP
also registers several relevant timestamps at different stages
of the processing pipeline, which are sent after-the-fact to
a testing-specific MQTT topic. The timestamps include: 1

2https://www.ua.pt/en/uc/15279
3https://www.pcengines.ch/apu2.htm
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transmission of IPC request; 2 reception of IPC request; 3

consumption from queue by worker thread; 4 end of encoded
message transmission; 5 reception of encoded message; 6

consumption from queue by worker thread; 7 generation of
payload; 8 end of IPC transmission. On the generation side,
the duration of the MQTT/DDS transmission can be calculated
from step 1 to step 3 , and Vanetza-NAP’s encoding time can
be determined from step 3 to step 4 . On the reception side,
Vanetza-NAP’s processing time while performing the decoding
and representation generation tasks can be calculated from
step 5 to step 7 . Finally, the duration of the MQTT/DDS
transmission can be determined from step 6 to step 7 .

The results obtained for the three different combinations
(MQTT & JSON; DDS & JSON; DDS & ASN.1 UPER) are
shown in figures 6 and 7. From this data, the analysis indicates
that DDS consistently transmits messages at a faster rate than
MQTT, with approximately half of the mean delay value. Fur-
ther analysis of the standard deviation values shows that DDS
has a more stable timing profile, while MQTT’s results show
more fluctuations. These results demonstrate the efficiency and
stability advantages of DDS over MQTT, which we attribute
to its broker-less design and use of Shared Memory, among
others. Additionally, the results also show that, increasing the
message size and complexity has an adverse effect on both the
IPC transmission time, and Vanetza-NAP processing delay of
the messages. This effect is most pronounced when using the
MQTT protocol and the JSON format, due to its inefficient
use of payload size. Conversely, the effect is least pronounced
when using the DDS protocol and the ASN.1 UPER format.
We can draw a comparison between the performance of
using JSON and ASN.1 as message formats. The analysis
indicates that using ASN.1 results in substantially lower mean
delay values for both message generation and reception when
compared to JSON, since Vanetza-NAP’s processing pipeline
is much shorter when using this format. The IPC transmission
time is slightly improved as well, due to the smaller payload.

These results confirm that the use of DDS and/or the
ASN.1 UPER message format in this context can mitigate the
overhead of a microservice-based ITS architecture and ensure
lower and more deterministic end-to-end latency values when
compared to alternative IPC solutions. If critical applications
employ these technologies, this architecture is not in danger
of becoming a bottleneck that jeopardises timing restrictions,
especially when combined with the techniques described in



Fig. 6: Communication protocol and data format for Genera-
tion

Fig. 7: Communication protocol and data format for Reception

[2]. Despite this, as mentioned in section V, general purpose
applications will still benefit from the use of the MQTT
protocol and JSON format, which are able to greatly simplify
their design, while maintaining acceptable performance levels.

B. Parallel vs Sequential processing pipeline

In the second scenario, the producer app purposefully sends
a sequence of messages, where a MAPEM is immediately
followed by a DENM. This forces the occurrence of a probable
edge case where a processing-intensive lower-priority message
may delay a more critical message that arrives shortly after.
The test is performed with both parallelised and sequential
versions of the Vanetza-NAP pipeline, with the message being
sent in a JSON format through DDS. The Vanetza-NAP
processing delay is split into two measurements: the message
queue wait time, which is calculated from step 2 to step 3 ;
and the message processing time, which is calculated from
step 3 to step 4 . The results are showcased in figure 8.

A similar test is performed for the reverse flow, where
a packet capture containing a MAPEM packet immediately
followed by a DENM packet is synthetically injected onto the
network interface at the same rate of 10 Hz. Similarly to the
previous test, two measurements are performed: the message
queue wait time, which is calculated from step 5 to step 6 ;
and the message processing time, which is calculated from
step 6 to step 7 . The results are showcased in figure 9.

In both the generation and the reception processes, there is
a significant increase in the wait time for a DENM message
when parallelism is not employed, since its processing is
delayed while the service finishes processing the MAPEM.

Fig. 8: Parallelism & Sequential results for Generation

Fig. 9: Parallelism & Sequential results for Reception

This reinforces the importance of the parallelised pipeline
architecture, so that higher priority messages can experience
greater determinism in terms of overall processing delay.

From these results, we conclude that the base wait time
is around 150µs which, after further testing, we are able to
attribute to Linux CPU scheduling overhead when waking
up suspended worker threads upon the reception of messages
(in this particular hardware configuration). Another interesting
finding is that the DENM processing delay, excluding queue
wait time, is improved when it is done sequentially, which
is counter-intuitive. However, in a scenario where the same
test is run without sending the MAPEM messages, this “se-
quential” DENM time immediately rose to the same value as
the parallelised results. The fact that the thread processed a
MAPEM immediately before the DENM, makes the latter’s
processing faster. This may happen due to the occurrence of
cache and/or branch misses after the thread has been waiting
for 95+ milliseconds, which does not happen in the sequential
test case since the processing thread does not suspend between
processing the MAPEM and DENM messages.

C. Comparison with monolithic application (Base Vanetza)

We now compare the Vanetza-NAP with the original socktap
example application included in the base Vanetza library,
which transmits CAMs at a rate of 10 Hz. This application
represents a rudimentary example of a monolithic ITS appli-
cation, which is fully self-contained. Slight modifications were
made to the application to register timestamps at the start of
message creation, and end of message transmission/reception.

Based on the results presented in figure 10, the Vanetza-
NAP implementation exhibits slightly higher mean latency
values for both message generation and reception, compared
to Vanetza’s socktap example. However, the total delay re-
ported for Vanetza-NAP also includes the communication time



Fig. 10: Comparison between base Vanetza Library and
Vanetza-NAP

required for transmitting or receiving information to interact
with external services. This additional layer, which involves
DDS coupled with the ASN.1 UPER format, contributes to the
slight increase in the total time observed in the Vanetza-NAP.
In summary, although our microservice-based proposal may
exhibit some unavoidable overhead compared to the typical
monolithic approaches, this effect is mitigated to a certain
degree through efficient architectural and design decisions,
choosing the right technologies for each use case, and other
optimizations described in this work. On balance, we feel
that the benefits of enhanced interoperability and extended
capabilities justify this slight delay increase, making Vanetza-
NAP a valuable addition for ITS scenarios and deployments.

VII. CONCLUSIONS AND FUTURE WORK

The Vanetza-NAP ITS protocol stack embraces
microservice-based architectural principles and represents a
paradigm shift in the way that certain VEC use cases can be
designed, and the efficiency with which they can be deployed
and orchestrated within MEC clusters at scale. This allows
for a much more accessible and observable ITS application
ecosystem, while still keeping within timing restrictions and
offering several mechanisms to minimise latency. Moreover,
although the proposed approach has been tested with ITS-G5,
it is available for other technologies, such as 5G and WiFi.

This service is currently in use as an effective educational
tool in an MSc course, and is also deployed in the production
environment of the Aveiro Tech City Living Lab (ATCLL)
[9], where it delivers C-ITS to the public transportation of
the city, enabling several cooperative awareness, notification,
and perception applications where the city-wide roadside in-
frastructure exchanges information from radars and cameras
with vehicles, through WiFi, ITS-G5 and 5G. The project has
also been used in other V2X research works [19], [20], [21],
including integrations with autonomous vehicles [22], [23].

As future work, we aim to: 1) expand the ITS message
support, adding new types of messages and extending the
current support to updated versions of their specifications, that
have since been released; 2) explore alternative packet queuing
& scheduling algorithms, and fine-tune different QoS policies
for DDS topics according to the message type. Linking both
of these prioritization mechanisms would enable a more con-
sistent QoS experience over the entire message lifecycle.

ACKNOWLEDGMENT

This work is supported by the European Union/Next
Generation EU, through Programa de Recuperação e
Resiliência (PRR) Project Nr. 29: Route 25 (02/C05-
i01.01/2022.PC645463824-00000063).

REFERENCES

[1] R. Riebl, C. Obermaier, S. Neumeier et al., “Vanetza: Boosting research
on inter-vehicle communication,” Proceedings of the 5th GI/ITG KuVS
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