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Abstract

The probe-particle model is an open-source package designed for simulation of scanning probe microscopy experiments, employ-
ing non-reactive, flexible tip apices (e.g., carbon monoxide, xenon, or hydrogen molecules) to achieve sub-molecular resolution.
This abstract introduces the latest version of the probe-particle model, highlighting substantial advancements in accuracy, com-
putational performance, and user-friendliness over previous versions. To demonstrate this we provide a comprehensive review of
theories for simulating non-contact Atomic Force Microscopy (nc-AFM), spanning from the simple Lennard-Jones potential to the
latest full density-based model. Implementation of these theories are systematically compared against ab initio calculated reference,
showcasing their respective merits. All parts of the probe-particle model have undergone acceleration by 1-2 orders of magnitude
through parallelization by OpenMP on CPU and OpenCL on GPU. The updated package includes an interactive graphical user in-
terface (GUI) and seamless integration into the Python ecosystem via pip, facilitating advanced scripting and interoperability with
other software. This adaptability positions the probe-particle model as an ideal tool for high-throughput applications, including the
training of machine learning models for the automatic recovery of atomic structures from nc-AFM measurements. We envision sig-
nificant potential for this application in future single-molecule analysis, synthesis, and advancements of surface science in general.
Additionally, we discuss simulations of other sub-molecular scanning-probe imaging techniques, such as bond-resolved scanning
tunneling microscopy and kelvin probe force microscopy, all built on the robust foundation of the probe-particle model. Altogether
this demonstrates the broad impact of the model across diverse domains of surface science and molecular chemistry.

Keywords: Scanning Probe Microscopy, Atomic Force Microscopy Simulations, Bond-Resolved Atomic Force Microscopy

1. Introduction

The first Scanning Tunneling Microscopy (STM) and Atomic
Force Microscopy (AFM) instruments, developed in 1981 [1]
and 1986 [2], respectively, showcased the ability to visual-
ize individual atoms of inorganic substrates. It took, how-
ever, another two decades of scanning probe microscopy (SPM)
development to distinguish individual atoms inside organic
molecules separated by a distance less than 1.5 Å, achieving
sub-molecular resolution. This was accomplished by passivat-
ing the apex of the metallic tip with an inert molecule (carbon
monoxide, hydrogen) or atom (Xe) [3, 4]. Due to their low re-
activity, these tip apices reduce the possibility of damaging or
manipulating the sample. Furthermore, the molecules are rather
loosely attached to metallic tips, which makes them flexible. As
a result, high-resolution scanning probe microscopy (HR-SPM)
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techniques need to function at low temperatures (≤ 10 K) to
minimize thermal motion and prevent the passivating molecule
or atom from desorbing from the tip.

The flexibility of the molecule attached to the tip allows it to
deflect during the interaction with the sample. The tip apex de-
flection produces image distortions, which manifest themselves
as either sharp lines at the ridges of the potential energy surface
resembling bonds in HR-AFM [5] or a discontinuous contrast in
the HR-STM images [5, 6]. A similar effect can be also found
in Inelastic Electron Tunnelling Spectroscopy (IETS) [7].

The SPM has become a powerful tool for the chemical anal-
ysis and synthesis of individual organic molecules due to its
ability to distinguish atoms at close distances, manipulate them,
as well as to differentiate bond types. For instance, the HR-
AFM with CO-decorated tip is sensitive to a bond order in
aromatic systems [8], free electron pairs in highly electronega-
tive atoms [9], the orbital configuration of transition metals in
organometallic compounds [10].

The capabilities of SPM techniques made them invaluable
tools not only in fundamental research (e.g. for the develop-
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ment of futuristic molecular nanotechnology [11] and new ma-
terials) but also in practical industrial applications. Currently,
SPM helps in deciphering the chemical structures of individ-
ual molecules within complex mixtures, such as crude oil or
decomposing and carbonized organic materials in the depth of
oceans [12–14]. HR-SPM has been also extremely useful for
the recognition of complex materials and their surfaces such as
calcium carbonate and fluoride [15, 16], showing the HR-SPM
general applicability over several scientific disciplines.

Due to single molecule resolution, HR-SPM techniques al-
lows avoiding preparation of pure substances in macroscopic
quantities which is required by other techniques for structural
analysis such as X-ray or neutron diffraction. For example, the
modern AFM machines, which can employ an automatic tip
preparation [17], are restricted mainly by the sample prepa-
ration and are physically capable of scanning thousands of
molecules per day. However, the data interpretation, typically
done by teams of human experts with the aid of atomistic sim-
ulations, proves to be a tedious and challenging process. This
bottleneck hampers the broader adoption of SPM-based analyt-
ical methods beyond basic research.

The probe-particle model, first introduced nearly a decade
ago [5], has become a widely used tool for simulating high-
resolution AFM and STM images. Unlike other AFM simu-
lation software used in the fields of contact-AFM, soft-matter
and biology [18–20] which focuses typically on mesoscopic as-
pects and AFM operation in the ambient condition, the probe-
particle model has been developed to explain atom-resolving
non-contact AFM and STM experiments carried out in ultra-
high vacuum at cryogenic temperatures with decorated tips.
The model enables the rationalization of experimentally ob-
served SPM contrast and its attribution to chemical structure.
The AFM part of the model, compiled to the PPAFM computa-
tion package, is the main focus of this work.

In this specific domain PPAFM provides a good accuracy
of simulated images at low computational cost. This enables
rapid exploration of candidate molecular or surface structures
and the exploration of suitable imaging parameters to match
experimentally observed contrast to an a priori unknown ge-
ometry. Moreover, in recent years, PPAFM has emerged as a
key driver of progress in the field of automatic interpretation of
AFM data using machine-learned models [21–23], as well as
for the construction of large datasets [24] of simulated AFM
data. To the best of our knowledge, PPAFM has served as
the primary tool for generating training data for all machine-
learned high-resolution AFM interpretation models published
to date.

However, despite nearly a decade of development, the docu-
mentation surrounding PPAFM has been relatively scarce, leav-
ing (potential) users largely unaware of all its features and its
recent development. Therefore, in this article, we aim to present
the full spectrum of capabilities offered by the latest release of
PPAFM and present it as a comprehensive toolbox for high-
throughput simulations, encompassing not only high-resolution
microscopy AFM but also STM, KPFM, IETS, and other re-
lated SPM techniques: Section 2 describes the theoretical back-
ground of the Probe Particle Model [5] including systematic

comparison of all implemented levels of theory for tip-sample
interaction in order of increasing accuracy, which is missing
in previous publications. There we also describe newly imple-
mented full-density density model (FDBM) [25] providing sub-
stantially increased accuracy. Section 3 discusses models for
the simulation of other SPM techniques such as STM, IETS and
recently added KPFM, which builds on top of the AFM model.
Section 4 describes the code from the user’s perspective, with
the emphasis on recently simplified installation through Python
Package Index (PyPI) and real-time Graphical User Interface
(GUI), allowing for a user-friendly introduction of new users
into PPAFM usage. The technical details concerning the imple-
mentation of the method are provided in section 5, showing the
acceleration gained by smart numerical implementation, and re-
cent parallelization on both CPU and GPU allowing for speed-
up by several orders of magnitude. Last but not least, PPAFM
is now accompanied by enhanced documentation. We believe
that these enhancements will open the field of AFM simulation
towards new users and new applications in molecular design,
materials science, and surface science.

2. AFM simulation models

2.1. Tip description

The original probe-particle model was based on a simple
idea: simulating a non-reactive, flexible tip apex such as an at-
tached CO molecule (or tip decoration like H2, Xe [4], NTCDA
[26] etc.) by modelling it as a single spherical particle attached
to the end of an AFM tip by a lever with a bending spring. This
spherical particle, which we call the probe particle (PP), rep-
resents the very last atom of the flexible tip apex (e.g. O atom
in the CO-decorated tip). This simplistic approach is motivated
by the fact that the short-range forces, that determine the mea-
sured sub-molecular contrast rapidly decay with distance and
thus can be neglected for the other atoms of the tip-apex. This
allows us to separate the forces from the tip (indexed with T )
and forces from a sample (indexed with S ) so that the overall
force acting on the PP (FPP) during its relaxation is evaluated
as follows:

FPP (⃗rPP) = FT (⃗rPP) + FS (⃗rPP), (1)

The forces from the sample are discussed in greater detail in
section 2.2.

The model for the forces from the tip is as follows:

FT (⃗rPP) = −kR(|d⃗| − R0)(d⃗/|d⃗|) − k⃗x,y ⊙ (d⃗ − d⃗0) (2)

Here, d⃗ = r⃗PP − r⃗T IP is the displacement of the PP position
r⃗PP with respect to the anchor point r⃗T IP to which the PP is
attached (e.g. metallic tip apex to which the CO molecule it at-
tached). R0 = |d⃗0| stands for the equilibrium distance from the
anchor point and d⃗0 = r⃗0

PP − r⃗T IP is the equilibrium displace-
ment of PP from the anchor point (which is typically (0, 0,R0)
for a symmetric tip but may be deflected in x,y to simulate an
asymmetric CO tip). Finally, kR is the radial stiffness constant
and k⃗x,y = (kx, ky, 0) sets the bending stiffness and ⊙ denotes
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Figure 1: Schematics of forces acting on the flexible probe particle (PP) in
PPAFM: The PP represents the very last atom of the non-reactive, flexible tip-
apex (e.g. O atom of attached CO molecule), its position is denoted r⃗PP. It
is anchored to a rigid AFM tip by radial spring with high stiffness kR which
keeps it in a certain distance R0 from the anchor point RT IP, and a lateral spring
kx,y which tries to return to equilibrium position R0

PP under the tip. Besides
the forces from the tip, also forces of the sample act on PP. These forces are
calculated by interpolation of grid projected forcefield (GridFF). GridFF can be
calculated by projection of atomic potentials (see Eq. 5, Eq. 6) or by convolu-
tion of grid projected densities (see Eq. 7, Eq. 8).

the component-wise product of vectors. This differs from the
original model [5], which used the Lennard-Jones potential for
the radial force, keeping the PP under the tip, while here we
are using the strong spring force kR, as this is a computationally
faster and more stable solution. The lateral movement of the PP
is still controlled by the lateral springs kx and ky as it is shown
in Fig. 1(a). From our experience, CO tips are best reproduced
using a lateral stiffness of 0.24-0.25 N/m [27].

The z-component of the short-range forces acting on the tip
(F tip

z ) can then be calculated as the z-component of the radial
spring force acting on the PP, F tip

z (r⃗tip) = −FT
R,z at the fully

relaxed position of the PP, as these forces balance each other
out. F tip

z is then used for calculating the actually measured fre-
quency shift ∆ f using the formula derived by Giessibl [28]:

∆ f tip(r⃗tip) = −
f0
2k

8
πA2

∫ A/2

−A/2

zF tip
z (r⃗tip + Âz)√
A2/4 − z2

dz, (3)

where k is the stiffness and f0 is the base oscillation frequency
of the cantilever, A is the peak-to-peak amplitude of the oscil-
lation of the AFM tip and Â is the normalized direction vector
of the oscillation (typically in the z-direction).

2.2. Sample-tip interaction

The sample-tip interaction comprise of Pauli repulsion FPauli,
van der Waals attraction (or London dispersion force) FvdW , and
electrostatic interaction Fel between the PP and the sample:

FS (⃗rPP) = FPauli (⃗rPP) + FvdW (⃗rPP) + Fel (⃗rPP). (4)

The precision of the PPAFM simulation can be tuned by the
level of theory describing these interactions.

In the following section, we cover the historical development
of the different approximate models and their applicability. De-
spite the actual implementation relying on forces, for simplicity,
we only discuss formulas to compute energy components. The
respective formula for the force can be obtained as a derivative
of the energy F⃗ (⃗rPP) = −∇E(⃗rPP).

2.2.1. Lennard-Jones
In the original (and the simplest) PPAFM model [5] the mo-

tion of the PP, r⃗PP, is governed by a potential obtained as a sum
of pair-wise Lennard-Jones (LJ) potentials between the PP and
all the atoms of the sample. The attractive and repulsive parts of
LJ potential simulate the attractive London dispersion and the
Pauli repulsion respectively. The total potential is evaluated as
follows:

ELJ (⃗rPP) = ePP

∑
i

ei

( Ri,PP

|⃗ri − r⃗PP|

)12

−

(
Ri,PP

|⃗ri − r⃗PP|

)6 (5)

Here the position of the sample atoms r⃗i are considered rigid
(i.e. not movable), and traditional mixing rules such as Ri,PP =

Ri+RPP and ei,PP =
√

eiePP are used to evaluate the equilibrium
distance Ri,PP and binding energy ei,PP of the i-th atom of the
sample and the PP. The default parameters ei,Ri are taken from
the OPLS force field [29], but PPAFM also allows for a change
of the element-based parameters in a user-provided parameter
file.

2.2.2. Lennard-Jones with point charge electrostatics
Already in the same year, the model was modified to include

the electrostatic interactions between the tip and the sample [7].
Initially, the electrostatics was implemented as a sum of

Coulomb potentials between classical point charges positioned
at the centre of the PP (qPP) and the sample atoms (qi):

Eel (⃗rPP) = keqPP

∑
i

qi

|⃗ri − r⃗PP|
, (6)

where ke is the Coulomb constant. Simultaneously with im-
provements of the physics captured by the PPAFM model, the
assumption of a rigid sample allowed significant optimizations
and acceleration of the simulations. Both the electrostatic and
the LJ force field are pre-calculated and stored on a real space
grid, from which they are interpolated during the simulations,
as illustrated in Fig. 1 and explained in sec. 5.1.
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2.2.3. Lennard-Jones with density functional theory based
electrostatics

A more accurate model of the electrostatics was developed
in the same year using a grid-based real-space representation of
electrostatic potential of the sample (VS ). VS is obtained as the
Hartree potential from sample electronic structure calculation
from density functional theory (DFT). The electrostatic poten-
tial acting on the PP with its charge density (ρPP) is obtained
through a cross-correlation integral:

Eel (⃗rPP) =
∫

r⃗
ρPP (⃗r + r⃗PP)VS (⃗r)dr⃗. (7)

We found that the distortions in AFM images by electrostatic
field to a large extent explain for example the over-enhanced
bond-length contrast in fullerenes or other Kekule structures
[8, 30] but also the repulsive contrast over triple bonds and free
electron pairs [9]. Nevertheless, the charge required to repro-
duce experimental contrast with monopole charge distribution
was unrealistically high (0.2-0.4e).

In further applications [31–33] we concluded that the
quadrupolar charge distribution better reproduces contrast ob-
served with CO-tip. The quadrupolar charge distribution is bet-
ter fitting the CO molecule and CO-tip charge density as con-
cluded by DFT calculations [25, 32].

While point-charge electrostatics proved useful for quick and
easy model calculations independent of ab initio inputs, which
were often conducted by external experimental groups through
a web interface [34], DFT-based electrostatics of the sample
was, nevertheless, found necessary to properly simulate intri-
cate image effects, such as those arising from free electron pairs
and triple bonds. For the CO tip the quadrupole moment can
vary in between -0.025 to -0.15 e×Å2, depending on the exper-
iment [21, 31, 35].

A minor disadvantage of the cross-correlation-based ap-
proach (see sec. 5.1) is the assumption that the PP moves with-
out rotation However, according to our experience with the
complex-tip model [36] and comparison of our PPAFM model
against the direct integration model by Ellner at al. [25] the dif-
ferences caused by the multipole rotation are minor. This can
be understood from the fact that bending angles are rather small
at tip-sample distance relevant for high-resolution imaging ex-
periments, and the bending is most significant at the close range
where the interaction is dominated by the Pauli rather than elec-
trostatic interaction.

2.2.4. Full density-based model
Pauli repulsion modeled by the repulsive part (1/r12) of the

spherically symmetric LJ potential cannot reproduce delicate
effects emerging from rearrangements of the electron density in
the sample which are often visible using HR-AFM techniques
[8–10]. Some of these limitations can be mitigated by modifi-
cation of the LJ parameters of individual atoms (especially van
der Waals radius) to match the iso-surface of electron density
obtained from a DFT calculation [10]. This approach allows to
distinguish between different occupations of the atomic orbitals
for atoms of the same element and it was also successfully used
for calculations of ionic materials, such as calcite or calcium

fluoride [15, 16]. Nevertheless, such approach is still limited by
the spherical symmetry of the LJ potential, therefore it cannot
fully recover non-spherical effects such as free-electron pairs
and variation of density in covalent bonds.

In order to addresses these limitations, Ellner et al. [37] in-
troduced an improved model called the full density-based model
(FDBM), where both the Pauli repulsion and electrostatics are
calculated directly from electron density obtained from DFT.
While electrostatics is still calculated using Eq. 7, the Pauli re-
pulsion is newly calculated by the integral of the product of the
tip and the sample charge densities scaled by a fitting constant
A. Eventually the product is raised to exponent β (although β is
typically close to one):

EPauli (⃗rPP) = A
∫

r⃗

[
ρPP (⃗r + r⃗PP)ρS (⃗r))

]β dr⃗ (8)

The magnitude of the repulsion is significantly more sensitive to
the exponent β than the multiplicative factor A. Even a change
of only 0.1 in β results in a significant change in the observed
contrast, higher values typically resulting in reduced sharpness.
However, if the scanning distance and A are adjusted along with
β, similar-looking contrast can be observed with multiple dis-
tinct combinations of the parameters.

The resulting model, combined with an appropriate disper-
sion interaction model (previously modeled by the attractive
part of the LJ potential), and properly fitted, could remarkably
reproduce experimentally measured images of rigid molecules.
Particularly, it better captures the free electron pairs (e.g., oxy-
gen and nitrogen heteroatoms) and Kekule structures (e.g.,
triple bonds), which were previously only emulated through
the repulsive electrostatic field in the original LJ -based model
sometimes using unrealistically high tip charge [30]. Now
FDBM also accounts for Pauli repulsion, capturing the electron
hardness of free electron pairs on oxygen and nitrogen atoms.

The dispersion interaction model typically used with the
FDBM is the Grimme DFT-D3 [38] dispersion correction,
which we have also recently implemented in PPAFM, in par-
ticular in the Becke-Johnson damping form [39]. One notable
aspect of the DFT-D3 correction is that the interaction coef-
ficients for each atom depend on their chemical environment,
based on proximity, in order to account for the changing polar-
izability due to bonding. In principle the distance calculations
to determine the bonding configuration would also include the
PP. However, since the PP is supposed to be chemically inert,
we choose to exclude the PP from this calculation, which al-
lows the interaction coefficients in the sample to be calculated
independent of the PP position, significantly speeding up the
calculation.

The DFT-D3 energy also has parameters that are adjusted for
particular DFT functionals - namely s6, s8, a1, and a2 [38]. So
far there has not been any extensive study on the effect of these
parameters on PPAFM simulations and thus we recommend to
stick to the parameters connect with the DFT functional used
for calculation of the FDBM models input. PPAFM provides
here predefined parameter values for many of commonly used
DFT functionals.
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2.2.5. Comparison of AFM simulation models

In order to illustrate strengths and weaknesses of each tip-
sample interaction model we plot in Fig. 2 results calculated
for a representative selection of molecules. We compare our
PPAFM simulations against a DFT reference calculations per-
formed via CP2K [41] with PBE exchange-correlation func-
tional and Grimme DFT-D3 [38] used for the van der Waals cor-
rection. Each of the selected molecules represent some charac-
teristic chemical moieties manifested as characteristic features
in AFM and was previously discussed in HR-AFM related liter-
ature. To make the comparison consistent we choose same sim-
ulation parameters for each molecule, even though this choice
may not be optimal to represent the DFT reference or experi-
mentally observed contrast. This means that for FDBM model
we set the multiplicative factor A = 12 and exponent β = 1.2
(see Eq. 8), which provided best overall match to DFT for all the
molecules. We found that the best match is visible if we offset
z-distance by −0.2 Å between the DFT and the PPAFM simu-
lations in order to get a roughly matching level of sharpness in
the observed contrast. In the FDBM simulation the electrostat-
ics used a DFT-calculated charge density on the CO-tip. For the
Lennard-Jones based simulation model (both with point-charge
and Hartree potential) the we used quadrupole charge distribu-
tions on the tip with quadrupole moment −0.05 e × Å2. For
point charges simulations we used Mulliken charges reported
by FHI-aims [40].

C60 Fullerene was studied as an example of bond order dis-
crimination [8]. Difference in the apparent bond length, as well
as the ovaloid shape of electron cloud is very well reproduced
by the FDBM model. To some degree the difference in apparent
bond length can be reproduced also with the LJ+Hartree model,
nevertheless unrealistically high charge of the tip is needed to
reproduce experimental (or DFT calculated) contrast [30].

FAD (Formic acid dimer)) represents carboxylic groups
which often dimerize in self-assembled structures studied by
AFM [9, 42]. The FDBM again provides contrast most similar
to DFT data, including bright spots above oxygen atoms. This
is due to ability of FDBM to reflect localized electron pairs in
Pauli repulsion. Nevertheless these bright spots are visible also
in LJ+PC and LJ+Hartree simulations at higher tip-sample sep-
aration where electrostatic forces dominate [9].

FFPB molecule (4-(4-(2,3,4,5,6- pentafluorophenylethynyl)-
2,3,5,6- tetrafluorophenylethynyl) phenylethynylbenzene) was
studied to see the effect of electron depletion on the AFM con-
trast in a benzene ring (π-hole), caused by the electron with-
drawing substituents (fluorines) [43, 44]. In DFT simulations
this is visible as darker contrast over fluorinated rings, which
can be attributed to a faster decay of the electron density [45]
(due to deeper electrostatic potential and lower work function)
and by electrostatic attraction between the (π-hole) and free
electron pair of CO tip. Surprisingly, this effect is best repro-
duced by LJ+PC model, which used Mulliken charges obtained
from DFT calculation. Another characteristic feature is the
triple bond rendered as bright line perpendicular to the bond.
This effect is caused by the toroidal shape of the π-electron
cloud around the triple bond [9, 46], which produce a quadrupo-

lar field both in electrostatics and Pauli repulsion. FDBM again
reproduce this feature best thanks to incorporation of proper as-
pherical Pauli repulsion, while the Lennard-Jones potential is
composed of spherical potentials around each atom and there-
fore cannot reproduce this feature. Nevertheless both LJ+PC
and LJ+Hartree can reproduce the electrostatic contribution of
this repulsive feature.

Pentacene molecule was one of the first molecules for which
bond-resolved AFM images were measured [3]. Beside the five
hexagonal rings the experiment and DFT simulations shows
clearly increased repulsion over the ends of the aromatic sys-
tem. This effect is to a large degree caused by higher attractive
van der Waals background in the center as was explained in
original paper [3]. Nevertheless our simulation done at closer
tip-sample separation shows, that the effect is pronounced even
at distance where van der Waals contribution is negligible. This
is reproduced by FDBM but not with LJ-based models. Without
detailed analysis we can only speculate that this is because tails
of occupied frontier molecular orbitals (HOMO, HOMO-1 etc.)
which contribute most to Pauli repulsion are more supressed
in the center due to presence of nodes. All models including
FDBM and LJ-based models reproduce very well the distortion
(elongation) of the rings perpendicular to the molecule axis,
which is caused by deflection of the probe mostly due to lateral
gradient of van der Waals potential (with a slight contribution
from electrostatics), as was discussed previously [31, 47].

Phtalocyanine molecule was widely studied in the SPM
community [10, 48–50] due its great potential for molecular
electronics and catalysis, and for biological importance of por-
phirine derivatives. The main features which can be seen in
HR-AFM experiments and which are perfectly reproduced by
DFT simulations are: (i) The bright peripheral benzene rings
contrasting against the darker porphirine center, and (ii) sharp
pointy corners of imine nitrogens. Both of these features are
nicely reproduced by FDBM, which properly accounts for the
Pauli repulsion affected by slower decay of electron clouds in
benzene rings (with respect to the porphirine center), as well
as Pauli repulsion of the free electron pairs of these nitrogens.
The LJ-based model incorrectly renders the pentagonal rings
brighter. This is a simple effect of higher concentration of re-
pulsive atoms in the pentagon ring in contrast to the hexagon
, as the LJ model cannot account for rate of decay of tails of
electron density. Nevertheless, the pointyness of the nitrogen
groups is rather well reproduced mostly due to the significant
role of the electrostatic forces which cause apparent shrinking
of these areas as previously discussed [7].

PTCDA (Perylenetetracarboxylic anhydride) is perhaps the
most studied molecule in the SPM community [4, 5, 31, 45,
51], mostly due to experimental convenience and formation of
well ordered self-assembled monolayers. The experiments as
well as DFT simulations show the central perylene system con-
siderably brighter than the peripheral anhydride groups. This is
more-or-less reproduced by all models, although FDBM model
excels in this aspect, as it reflects higher Pauli repulsion due to
the longer extent of the electron cloud over the perylene sys-
tem [45]. All models properly describe apparent enlargement
of the anhydride groups and shrinking of the perylene group
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Figure 2: Comparison of PPAFM simulations with different models of tip-sample interaction. The columns depict different models. Starting from the left, they
are Lennard-Jones + point charges (LJ+PC), Lennard-Jones + Hartree (LJ+Hartree), Full density based model (FDBM), and a DFT simulation used as a reference,
where tip-sample interaction at each pixel was calculated as an independent relaxation of the tip using the CP2K program. For the Lennard-Jones based simulation
model (both with point-charge and Hartree potential) we used a quadrupole charge distributions on the tip with the quadrupole moment −0.05 e × Å2. For the
point-charge simulations we used Mulliken charges reported by FHI-aims [40]. For FDBM model we set the multiplicative factor A = 12 and exponent β = 1.2 (see
Eq. 8) which provided best overall match to DFT for all the molecules.

caused by electrostatic forces [31]. In addition, the DFT sim-
ulation shows bright repulsive features over the carbonyl oxy-
gens, which are again best reproduced by FDBM model.

Despite generally superior accuracy of the FDBM approach,
the PPAFM code allow users to choose from various simulation
models (Lennard-Jones, Morse, point charges, model charge
density integration, FDBM) the one which offers an optimal
compromise between accuracy and simplicity for their particu-
lar application. Such a choice should not be motivated by com-
putational cost of AFM simulations, as our efficient GPU im-
plementation allows interactive simulations even on the FDBM
level.

Nevertheless, the simpler models (e.g., LJ + point charges)
limit reliance on DFT data (i.e. charge density and Hartree
potential are not required). This makes those simple models

very convenient for fast screening over various modeled sam-
ple geometries or creation of databases for machine learning
approaches. The dependence of the DFT electrostatics and
FDBM method on DFT calculations (at least thousand times
slower) and large amount of volumetric data are making this
method less attractive for fast high-throughput simulation sce-
narios. For rapid training of AFM recognition models, we rec-
ommend pre-training the model on the data obtained from sim-
ple LJ and point-charge-based simulations, with the refinement
step performed on fewer examples generated by the FDBM
(similar approach was used in [23]).

Notice that LJ simulations presented in 2 were done using de-
fault LJ parameters which depend only on chemical elements,
not on more detailed atomic types (i.e. we do not distinguish
different sub-types of carbon like sp1, sp2, aromatic, carboxylic
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etc.). With more careful selection of atomic types and of LJ
parameters (particularly the atomic radius) even the simple LJ
model can simulate the different extent of electron clouds and
bring LJ-PC model closer to AFM experiments without the
need of DFT inputs [10, 16]. Although FDBM model does not
depend on such detailed choice of atomic types (assuming van
der Waals D3 parameters are given, and has minor effect on re-
sulting contrast), it still depends on the choice of the two global
parameters (scaling factors A and exponent β in Eq. 8). Optimal
choice of these two parameters is still under debate, and may be
system dependent.

3. Other PP-SPM simulation modes

AFM simulation models discussed in previous section are
the central part of probe-particle simulations as they determine
forces acting on the PP and therefore also its relaxation (deflec-
tion). This deflection then modifies the measured contrast of
other signals (such as STM [5, 6] and IETS [7]), typically by
sharpening or introducing discontinuities to the contrast. In ad-
dition, other forces can emerge in the junction between tip and
sample e.g. due to polarization of the PP or the molecule under
study by external electric field. These microscopic contribu-
tions of the polarization force which is responsible for the sub-
molecular contrast in Kelvin probe force microscopy (KPFM)
can be also simulated within the PPAFM framework. The fol-
lowing section discusses simulation techniques of all these dif-
ferent techniques which are built on top of the PPAFM core.

3.1. Kelvin probe force microscopy

Traditionally, KPFM experiments measured the electrostatic
forces between tip and sample due to external electric potentials
and differences between the work functions of the two materi-
als. In this process the tip and the sample can be seen as the
plates of a capacitor. The force between such plates depends
quadratically on the potential difference between the tip and the
sample V and linearly on the gradient of the effective capaci-
tance C(⃗rtip) with respect to the position of the tip.

F⃗ (⃗rtip) =
V2

2
∇C(⃗rtip). (9)

Although KPFM experiments were originally intended to
measure mesoscopic features such as the work function of the
studied materials and long-range charge domains, the devel-
opment of atomically precise SPM techniques had allowed to
achieve sub-molecular KPFM contrast, corresponding to vari-
ations of the charge distribution and polarizability within indi-
vidual organic molecules [43, 49, 52, 53]. Nevertheless, the
quantitative relation between the measured quantities and the
electronic structure of the molecules was under debate. We de-
veloped a Kelvin Probe Force Microscopy modality into the
PPAFM code in order to put these relations on quantitative
ground and provide a straightforward tool for the simulation
of these phenomena.

In this implementation, the bias dependence of both the
charge density of the probe and the electrostatic potential of

Figure 3: (a) LCPD map taken over the FFPB molecule, simulated using the
KPFM functionality of PPAFM. (b) AFM image for the same tip distance as in
the LCPD map. Images in both panels are overlaid with atomic structure of the
FFPB molecule. The Tip z = 8.05 Å distance quoted as the height of the scan-
ning plane position was measured between the molecular plane and the anchor
pivot (metallic apex) of the tip. The tip distance ztip = 4.05 Å used to scale
the electric field induced by the voltage between the tip and the molecule was
smaller by R0 = 4.00 Å. A CO-tip model with the static quadrupole moment
of −0.05 e × Å2 and default electric polarizability was used. The capacitance
of the metallic part of the tip was modeled with a sphere of the Rtip = 40 nm
radius.

the sample is introduced in Eq. 7, to study its effect on the
force F⃗PP (⃗rtip) and the corresponding frequency shift ∆ f . As
has been shown in our previous publications [44, 54], the sub-
molecular variation of ∆ f (V) originates mostly from the intrin-
sic charges within the tip or the sample that interact with bias-
induced electric polarization of the opposite electrode. The out-
put of the KPFM mode can be represented as a map of (appar-
ent) local contact potential difference (LCPD or VLCPD), which
corresponds to the bias voltage at which the maximum of the
(approximately) parabolic ∆ f (V) dependence lies.

Currently, the KPFM functionality is implemented in the
PPAFM package in two variants. In the first version, the
changes in the charge densities of the tip and sample due to
the application of an external field in the z-direction must be
provided as inputs from external DFT calculations. In the sec-
ond version, analytically generated tip polarizations, fitted to
the DFT calculated ones, are provided for user convenience.
For a more detailed description of the usage of the KPFM mod-
ule and the theoretical basis of the model, please refer to the
code manual and the supplementary information of [54].

As an example of a KPFM simulation, Fig. 3a shows the
LCPD map over the FFPB molecule. The LCPD is affected by
the local electric charges on the molecule: positive charge under
the tip tends to shift the LCPD towards more negative values,
negative charge towards more positive values. The resulting
figure clearly shows the polarization within the molecule. The
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two positive-charged (electron-depleted) benzene rings in the
right-hand-side half of the molecule are surrounded by nega-
tive charge of the fluorine atoms, while the two electron-rich
benzene rings in the left-hand-side half are surrounded by more
positive hydrogen atoms. Notice that the simulated contrast is
consistend with experimentally measured KPFM pictures from
literature [43]. KPFM experiments usually need to be per-
formed with larger tip–sample distance as compared to HR-
AFM , resulting in much blurred AFM image (Fig. 3b) in com-
parison with the HR-AFM of FFPB in Fig. 2.

3.2. Bond-resolved STM

Despite the fact that the bond-resolved STM technique pre-
ceded sub-molecular resolution in the AFM [4], this technique
received less attention in scientific community because the in-
terpretation of the measured signal was unclear. In order to
put the interpretation of these techniques on more quantitative
grounds, and provide a straightforward simulation tool, we de-
veloped PPSTM [6, 55] which builds on top of PPAFM. The
PPSTM code can be used as a standalone STM simulation pack-
age (independent of PPAFM) to simulate normal STM with
rigid (e.g. metallic) tip. It is based on Chen’s rules [56] ap-
proximation of Bardeen tunneling theory to evaluate tunneling
current between the tip and sample.

Nevertheless, the real strength of the PPSTM code is in its ca-
pability to calculate high-resolution (i.e. bond-resolved) STM
images obtained with flexible tip-apices (e.g. CO, Xe, H2) on
organic molecules. In this application PPSTM is combined with
the PPAFM code for pre-calculating the PP positions r⃗PP for
each position of the tip r⃗tip during the scanning. This essentially
just shifts the position of the orbitals located on the PP involved
in the Chen’s tunneling formulas, as is illustrated in Fig. 4(a),
which distorts the resulting image and gives rise to the char-
acteristic sharp contrast in the high-resolution STM images as
was described in [5, 6]. Bond-resolved imaging and STM simu-
lations can be especially beneficial for STM machines without
AFM possibilities, since STM measurements are tipically ex-
perimentally simpler than AFM. This was used for example for
study of carbon nanoribbons and other graphitic structures [57,
58].

The main drawback of this approach is the added complexity
of the interpretation and theoretical rationalization of the mea-
sured STM signal, which depends both on geometrical relax-
ation of the PP as well as on precise estimation of elusive elec-
tronic structure of the sample, and the tip [6], as is illustrated
in Fig. 4(b) and (c). Precise hybrid functional DFT calculations
of the whole sample (i.e. including both molecule and sub-
strate) are often necessary in order to achieve agreement with
experiment [35].

3.3. Inelastic scanning tunneling microscopy

Another method to achieve sub-molecular resolution, very
close to the HR-AFM contrast, was demonstrated by the Ho
group with inelastic STM [59]; however, without explanation
of its mechanism. Already in the same year we were able to
explain and simulate the observed contrast with the new IETS
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Figure 4: Schematics of PPSTM with example of PTCDA. (a) PPSTM cal-
culates the electron tunneling rate TTS between the molecular orbitals of the
sample and the tip using Chen’s rules [56]. The orbitals of the tip are modeled
by atomic orbitals, like s, pz, px (on the image) and py, positioned at the probe
particle. This is done for the PP positions previously relaxed by PPAFM in
order to account for the displacement of e.g. a CO molecule caused by the in-
teraction with the sample. (b,c) Examples of a simulated PPSTM of the PTCDA
molecule image using the dIdV mode. The model electronic structure of the tip
was chosen to be 13% of s PP orbital and 87% of px and py orbitals. This
configuration best reproduced experimentally observed contrast measured with
CO-tip in the previous publications (e.g. [35]). (b) at the sample bias corre-
sponding to the HOMO orbital energy. (c) at the sample bias corresponding to
the LUMO orbital energy. Please note that in the experiment the STM contrast
can be affected by interaction of molecular orbitals with the interface states the
substrate, forming a delicate electronic structure.

a

VSURF

k0

k<k0 k>k0
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Figure 5: PP-IETS with example of Iron Phtalocyanine (FePc). (a)
Schematic illustration of the PP-IETS imaging mechanism. The stiffness of the
lateral CO vibration (k0) is modified by curvature of the tip-sample interaction
potential Vsur f . The stiffness as well as the associated vibration frequency is in-
creased at the position of a convex Vsur f and decreased at position of a concave
potential (e.g. above atoms and bonds). Due to broadening of peaks measured
in IETS spectroscopy, this softening of the modes above atoms and bonds al-
lows detecting higher amplitude of inelastic tunneling signal originating from
lateral CO vibration below the base energy ϵ0 associated with the base stiffness
k0, as was done by the Ho group [59]. For a more detailed explanation please
see [7, 35]. (b) Example of an IETS map calculated by PPAFM on the iron ph-
talocyanine (FePc) molecule using just a Lennard-Jones force-field. Notice that
in this particular simulation neither the distortions caused by electrostatics as
discussed in [7] nor the modulation of the tunneling signal by orbital symmetry
discussed in [35] are present.

module added to our PPAFM package [7]. This module cal-
culates the change of the stiffness (resp. vibration frequency) of
lateral vibration modes of the CO molecule attached to AFM tip
due to its interaction with the sample (see Fig. 5a). In repulsive
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regime the ridge-lines in tip-sample interaction potential (e.g.
over the bonds between atoms in the sample) introduce nega-
tive curvature to the total potential in which the CO molecule
vibrates. This effectively decreases the stiffness and vibration
frequency of the relevant vibration mode, therefore shifting the
inelastic tunneling peaks to lower energy. This effect is visi-
ble in simulated map shown in Fig. 5b, where bright contrast
above the atoms and bonds correspond to increased inelastic
tunnelling signal at energy (i.e. bias voltage set-point) below
the base energy of lateral CO vibration mode. The amplitude of
the peak is related to shift of the peak energy when considering
e.g. Gaussian broadening as explained in [7].

Later we were able to improve this technique through con-
sidering the variation of the tunneling current, which depends
on the orbital symmetry [35]. The inelastic signal modulation
via the electron-phonon coupling between the tunneling (calcu-
lated by Chen’s rules as in section 3.2) and the lateral vibration
mode, are described in detail in [35].

4. PPAFM from the user perspective

4.1. Installation

The default way to install the PPAFM code is through the pip
installer for Python packages. This can be achieved by running

p i p i n s t a l l ppafm

on the command line. This installs the package from the Python
Package Index (PyPI), which contains pre-compiled distribu-
tions of the PPAFM code for several operating systems. If the
binary files for your environment do not exist, the ”pip” tool
will attempt to compile them upon download. Additionally,
pip installs all the necessary Python dependencies. Some non-
Python GPU dependencies, however, might be installed sepa-
rately from appropriate OpenCL-capable GPU drivers and re-
lated libraries. For more experienced users and developers we
provide alternative ways of installing and running the code. The
most up-to-date installation instructions can always be found
in the repository [60]. They include installation in a dedicated
Conda environment, Docker container, building from the source
code, and others.

4.2. Command-line user interface

The command-line interface (CLI) of the PPAFM code pro-
vides users with access to the full capabilities of the package.
This is an alternative to the graphical user interface discussed
in the following section. The CLI interface allows to run simu-
lations on supercomputers, cloud computers, and other compu-
tational resources without a graphical interface. Also, the CLI
interface is used for high-throughput simulations when run by
a workflow manager.

Once the PPAFM package is installed user gets access to a
variety of tools to compute force fields, relax the probe particle,
and plot the results. Below is an example of launching PPAFM
to compute the Lennard-Jones force field:

ppafm−g e n e r a t e − l j f f − i s t r u c t u r e . xyz

Figure 6: Interactive GUI for GPU-accelerated PPAFM simulations. The user
can interactively modify imaging parameters by using input boxes or a mouse-
wheel, and image contrast is updated automatically.

In the example above we specify an XYZ file with an input
structure. Additionally, the user can create a ”params.ini” file
containing more fine-tuning settings of the simulation. If the
file is present in the folder, the code will pick it up automati-
cally. The PPAFM repository [60] contains detailed instructions
on how to use PPAFM throught the CLI.

4.3. Graphical user interface

The latest GPU-accelerated version of the PPAFM code is so
fast that interacting with the user solely through scripts or a bash
terminal becomes a significant bottleneck. Simulations of a full
stack of AFM images with typical resolutions of 200x200x20
pixels take ∼0.1 s on a typical desktop computer equipped with
a dedicated GPU. For this reason, we have developed a simple
graphical user interface (GUI) (see Fig. 6) that enables users
to quickly explore simulation results obtained with different in-
puts. Users can vary parameters such as the bending stiffness of
the CO tip, oscillation amplitude of the AFM cantilever, effec-
tive charge of the tip, or parameters of the FDBM model, and
immediately visualize the results for comparison with experi-
mental references. This approach is particularly useful for new
users who are trying to familiarize themselves with the code and
gain intuition about how various imaging parameters can affect
measured AFM contrast. This exploration can be also useful to
the experimentalist who wishes to gain an idea of what to ex-
pect from the images from a real HR-AFM machine. Another
application is manually finding the set of parameters that most
closely resembles a specific set of reference AFM images ob-
tained with a particular setup. This can be used, for example, in
the refinement of training data for machine-learned models of
automatic image interpretation.

4.4. Integration with other software

In order to fully exploit the computational efficiency of
the PPAFM code (especially in GPU-accelerated version) for
machine-learning and other high-throughput applications, we
provide a Python application programming interface (API)
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which allows for seamless integration with other Python-based
software. In particular, this API was used to rapidly generate
training data for a machine-learning application for automated
AFM image interpretation [21].

The Python API is structured in multiple levels that reflect the
different computational steps in the PPAFM simulation. On the
high level, the user can simply provide a molecular geometry or
Hartree potential from a DFT calculation, construct a simulator
with given physical parameters, and run the whole simulation in
one step. On the lower level, the user could choose to manually
construct the PP-sample force field with the different chosen
force field models (sec. 2.2) or run the PP relaxation for a given
force field.

The API also provides tools for easily creating large datasets
of AFM simulations for machine learning applications. In par-
ticular, this was used in a previous study by Alldritt et al. [21],
who used so-called image descriptors for identifying the atomic
structures of molecules. PPAFM provides implementations for
several different image descriptors that the user can compute
for a given molecular geometry. In order to create datasets of
both AFM simulations and any desired image descriptors, we
provide a high-level generator API that takes a list of samples
(geometry, Hartree potential) as an input and generates batches
of samples containing the AFM images, the descriptors, and the
molecule structures, ready for use in machine-learning training
as is or for storing on the disk for later use. Additionally, it is
possible to introduce randomizations to the simulation param-
eters during the generation process to account for parameters
varying during the experiment, either from a predefined list of
randomization operations or custom user-defined operations.

5. Implementation Details

5.1. Numerical methods

5.1.1. Grid force-field
In order to accelerate the relaxation the PP interacting with

the sample we split the simulation into two steps:

1. Force field generation: The first step involves projection
of all components of the sample potential and force-field
(i.e. electrostatic, Pauli, van der Waals, see Eq. 4) onto
a uniform rectangular real-space grid covering the whole
simulation supercell. This means, that for each such grid
point we sum atomic contribution in Eqs. 5 and 6 from all
atoms of the sample, or evaluate the integrals in Eqs. 7 and
8.

A typical spacing of the grid points is 0.1-0.2 Å
which produces 1-10 million sampling points for typ-
ical simulation supercell of size 20x20x20 Å. In the
CPU implementation the components of these grid force-
fields are typically saved into files (e.g. FFLJ [x|y|z].xsf,
FFel [x|y|z].xsf). In the GPU implementation this is typi-
cally not done, since saving and loading of these data files
from disk is often slower than the evaluation on GPU.

2. Relaxation: In the second step, the PP position is op-
timized by the FIRE relaxation algorithm [61] using the

forces interpolated from previously constructed grid force
field. Currently we used tri-linear interpolation of the
forces (which corresponds to quadratic interpolation of
the potential). But we are experimenting with tri-cubic
interpolation of the potential which may allow us to use
larger grid spacing and avoid storage of forces (i.e. im-
prove memory efficiency).

In practice, the two-step simulation procedure was found to
be approximately 10-100 times faster than implementation not
using an intermediate grid-based force field for typical samples
comprising of tens to hundreds of atoms. The simulation speed
of the two-step procedure is typically limited by the first step
(force field generation), which takes roughly 1 minute on a sin-
gle CPU for typical grid size comprising of a million points
(100x100x100). In the case of Lennard-Jones and point-charge
electrostatics the algorithm is perfectly parallelizable and it
scales proportionally to number of CPUs when OpenMP ac-
celeration is used (which is on by default in the CPU version)
and it takes just ∼0.1 s when using OpenCL accelerated code on
contemporary GPU equipped desktops with thousands of cores.

5.1.2. Convolution theorem
The evaluation of the electrostatic force-field from the elec-

trostatic potential of the sample and the tip charged density dis-
tribution Eq. 7 and the evaluation of the Pauli repulsion from the
overlap of the sample and tip charged densities Eq. 8 have the
form of a cross-correlation. Therefore they can be expressed us-
ing the convolution theorem simply as a product in the Fourier
space (with an additional complex conjugation in the cross-
correlation case). For a typical grid size (e.g. 100x100x100 =
1 million points) such transformation using Fast Fourier trans-
form is orders magnitude faster than direct integration of the
formulas Eq. 7, Eq. 8 point-by-point in real space (the scaling
is O((n log(n))3) for FFT vs O(n6) for direct integration, where
n = 100 is the grid dimension in one direction). The calcu-
lation of Eq. 7 and Eq. 8 using FFT was implemented on both
CPU and GPU and the computational cost is similar to Lennard-
Jones and point-charge electrostatics. In the current implemen-
tation the CPU version computes the FFT using NumPy [62]
(not parallized) and the GPU version uses Reikna [63].

5.2. Code structure

5.2.1. Python package with a C++/OpenCL backend
PPAFM code is designed to behave as standard Python pack-

age and exposes a Python front-end to the user, allowing so-
phisticated scripting. Python (with NumPy) is used to imple-
ment of the high-level logic, and most of utility functions for
saving and loading simulation parameters, molecular geometry
and some operations on 3D datagrids. Matplotlib library is used
for plotting of final results. The computational core of the pack-
age is implemented in C++ (for CPU version) and OpenCL (for
GPU version). The C++ code is interfaced with Python using
the ctypes-library in Python.
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5.2.2. GPU implementation
Modern graphics processing units (GPUs) possess thousands

of independent computing cores, offering orders of magnitude
higher raw computing power than traditional CPUs. However,
efficient utilization of this computing power is limited to tasks
that are naturally parallel (i.e., independent) and not memory-
bound (either by main memory bandwidth or cache size). AFM
simulations are ideal for GPU acceleration since the simulations
of individual pixels (i.e., positions of the AFM tip) are virtually
independent. Furthermore, the simulation scheme that evalu-
ates the sample potential through interpolation of the real-space
grid can be accelerated using texture interpolation hardware.
Therefore we ported all performance intensive tasks on GPU
using pyOpenCL. This includes the FFT convolution, projec-
tion of atom-wise Lennard-Jones, electrostatic, and D3 van der
Waals force fields to the grid, and relaxation of the probe par-
ticle position). Generally speaking, the GPU accelerated simu-
lations are so fast that the timing is relevant only for interactive
work (GUI) or high-throughput tasks such as machine learning.

5.3. Performance
We conducted thorough performance tests (see Fig. 7) on pe-

riodic (infinite) graphene sheet using different levels of theory
(see section 2.2) and hardware (both CPU and GPU). The sim-
plicity of this test system allows us to systematically scale the
simulation size in broad range by varying the size of the simu-
lation box, when both the number of atoms n and grid points m
scales proportionally at the same time. Therefore we can plot
both on the same x-axis. Figure 7a shows the comparison of to-
tal simulation time of different methods (Lennard-Jones + point
charges (LJ+PC), Lennard-Jones + Hartree (LJ+Hartree), and
full-density-based model (FDBM)) on a desktop GPU. Notice
the comparable performance cost and rather ideal scaling for all
methods over the whole range of system sizes. The exceptions
are the smallest systems (<10 atoms), where initialization and
other overheads become the bottleneck. For small systems the
LJ+PC method is ∼2x faster than FDBM, while for system with
>200 atoms FDBM actually becomes cheaper.

This can be rationalized by different asymptotic scaling of the
algorithms. While the projection of the atomic force field on the
grid used for calculating the Lennard-Jones and point-charge
electrostatics scales as O(nm), the FFT-based cross-correlation
used to compute the Hartree and Pauli potentials in FDBM
scales as O(mlog(m)) with the grid size m and is notably in-
dependent of the number of atoms n. The LJ+Hartree method
using combination of both algorithms is in between LJ+PC and
FDBM method. It should be noted that execution time rela-
tionship could vary for different types of systems, e.g. a non-
periodic system with empty space on the sides of the simula-
tion box. Such systems can have a significantly smaller number
of atoms, while having a similar grid size. This would lead to
the LJ+PC method being significantly faster than the other two.
The relaxation of the PP, which scales as O(m), typically takes
a negligible share (<5%) of the total simulation time, which is
dominated by the force-field generation.

To clearly demonstrate the speedup achieved with GPU
(OpenCL) and CPU (OpenMP) parallelization, we also com-

Figure 7: Examples of performance scaling of the PPAFM code on various
hardware. Results shown in both plots (a, b) were measured for simulation of
box containing periodic graphene sheet of different sizes and thus number of
atoms. Notice that the number of computational grid points is proportional to
the number of atoms, which allows us to plot the results with common x-axis,
in this example. (a) Total the execution time (i.e. both force-field generation
and relaxation) of GPU accelerated simulation, for three different levels of the-
ory depending on the size of the system: Lennard-Jones potential with point-
charges electrostatics (LJ + PC), Lennard-Jones potential + electrostatics from
the Hartree potential (LJ+Hartree) and the full density based method (FDBM).
These calculations were proceeded on AMD RX 6700 XT GPU. (b) Compari-
son of the force-field generation step for FDBM method using OpenMP accel-
eration with multi-core CPU and various GPUs with OpenCL. The used CPU is
Intel i9-13900K, and the GPUs are: laptop Nvidia GTX 1650Ti Mobile, desk-
top AMD RX 6700 XT and server Nvidia A100. The last two points for the
laptop GPU are missing because the memory requirement exceeds the capabil-
ity of the GPU.

pare the time required to build the FDBM force field on dif-
ferent platforms (see Fig. 7b): a CPU (Intel i9-13900K) us-
ing a varying number of threads, a laptop GPU (Nvidia GTX
1650Ti Mobile), a desktop GPU (AMD RX 6700 XT), and a
server GPU (Nvidia A100). The measured performance profiles
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demonstrate that the OpenCL implementation even on the lap-
top GPU outperforms a single-core CPU by roughly two orders
of magnitude over the whole range of sizes. The exceptions
are the largest systems which do not fit into the laptop GPU
memory. The server GPU is by yet another order of magnitude
faster, except smallest sizes where the performance is limited
by initialization overheads in the server environment. Notice
that the CPU performance for 32 threads is not proportionally
improved in comparison to 8 threads. This is because the CPU
code uses NumPy’s implementation of FFT, which is not af-
fected by OpenMP settings. Replacing the NumPy FFT by a
different better-parallelized FFT library is a simple way how to
further improve performance on CPU in the future.

These measurements exclude additional time taken by load-
ing the input files from disk and preparing arrays in the GPU
memory, which actually become the bottleneck for single small
simulations. However, these operations are amortized if a batch
of simulations is run using the same grid, as is the case for ex-
ample in the GUI when changing simulation parameters not re-
lated to the grid size.

6. Summary and conclusions

In this paper, we summarize the significant development
that probe-particle model has gone through during its roughly
decade-long history since its inception [5], and illustrate its
computational efficiency together with its versatility through
wide variety of applications in the field of high-resolution scan-
ning probe microscopy. The sub-molecular AFM simulations
model, compiled into the PPAFM package, integrates different
levels of theory, described in section 2.2, allowing to balance
speed and accuracy and analyze the effect of different physi-
cal interactions on resulting AFM image. Even the most ac-
curate method implemented (FDBM) cannot exactly reproduce
all physical interactions between the tip and the sample (such
as deformation of electron clouds and displacement of sam-
ple atoms), which can be captured by expensive quantum me-
chanics calculations like DFT. Nevertheless, as demonstrated
by Fig. 2 it can typically match all relevant features extremely
well at a tiny fraction of the computational cost. This efficiency
and the user-friendly interface, through the command-line or
the GUI, makes PPAFM an ideal tool for quickly searching
over different sample structures often used for sample structure
recovery. The unparalleled numerical performance of PPAFM
(especially in its GPU-accelerated version) has been recently
exploited for the production of large databases of simulated
AFM data for training machine-learned models for the recon-
struction of molecular geometries from AFM images. In this
area we expect great application potential, as it opens door to
widespread use of high-resolution SPM methods as tool for rou-
tine single-molecule analysis.
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