
Quick Start Loading with Redpanda to StarRocks using shared-data storage

Loading with Redpanda to
StarRocks using shared-
data storage

About Routine Load
Routine load is a method using Apache Kafka, or in this lab, Redpanda, to continuously stream

data into StarRocks. The data is streamed into a Kafka topic, and a Routine Load job consumes

the data into StarRocks. More details on Routine Load are provided at the end of the lab.

About shared-data
In systems that separate storage from compute, data is stored in low-cost reliable remote storage

systems such as Amazon S3, Google Cloud Storage, Azure Blob Storage, and other S3-

compatible storage like MinIO. Hot data is cached locally and when the cache is hit, the query

performance is comparable to that of storage-compute coupled architecture. Compute nodes

(CN) can be added or removed on demand within seconds. This architecture reduces storage

costs, ensures better resource isolation, and provides elasticity and scalability.

This tutorial covers:

Running StarRocks, Redpanda, and MinIO with Docker Compose

Using MinIO as the StarRocks storage layer

Configuring StarRocks for shared-data

Adding a Routine Load job to consume data from Redpanda

The data used is synthetic.

There is a lot of information in this document, and it is presented with step-by-step content at the

beginning, and the technical details at the end. This is done to serve these purposes in this order:

http://localhost:3000/docs/quick_start/

1. Configure Routine Load.

2. Allow the reader to load data in a shared-data deployment and analyze that data.

3. Provide the configuration details for shared-data deployments.

Prerequisites

Docker

Docker

4 GB RAM assigned to Docker

10 GB free disk space assigned to Docker

SQL client

You can use the SQL client provided in the Docker environment, or use one on your system. Many

MySQL-compatible clients will work, and this guide covers the configuration of DBeaver and

MySQL WorkBench.

curl

curl is used to download the Compose file and the script to generate the data. Check to see if

you have it installed by running curl or curl.exe at your OS prompt. If curl is not installed, get

curl here.

Python

Python 3 and the Python client for Apache Kafka, kafka-python , are required.

Python

kafka-python

Terminology

https://docs.docker.com/engine/install/
https://curl.se/dlwiz/?type=bin
https://curl.se/dlwiz/?type=bin
https://www.python.org/
https://pypi.org/project/kafka-python/

FE

Frontend nodes are responsible for metadata management, client connection management, query

planning, and query scheduling. Each FE stores and maintains a complete copy of metadata in its

memory, which guarantees indiscriminate services among the FEs.

CN

Compute Nodes are responsible for executing query plans in shared-data deployments.

BE

Backend nodes are responsible for both data storage and executing query plans in shared-

nothing deployments.

NOTE

This guide does not use BEs, this information is included here so that you understand the

difference between BEs and CNs.

Launch StarRocks
To run StarRocks with shared-data using Object Storage you need:

A frontend engine (FE)

A compute node (CN)

Object Storage

This guide uses MinIO, which is S3 compatible Object Storage provider. MinIO is provided under

the GNU Affero General Public License.

Download the lab files

docker-compose.yml

gen.py

gen.py is a script that uses the Python client for Apache Kafka to publish (produce) data to a

Kafka topic. The script has been written with the address and port of the Redpanda container.

Start StarRocks, MinIO, and Redpanda

Check the progress of the services. It should take 30 seconds or more for the containers to

become healthy. The routineload-minio_mc-1 container will not show a health indicator, and it

will exit once it is done configuring MinIO with the access key that StarRocks will use. Wait for

routineload-minio_mc-1 to exit with a 0 code and the rest of the services to be Healthy .

Run docker compose ps until the services are healthy:

mkdir routineload
cd routineload
curl -O
https://raw.githubusercontent.com/StarRocks/demo/master/documentation-
samples/routine-load-shared-data/docker-compose.yml

curl -O
https://raw.githubusercontent.com/StarRocks/demo/master/documentation-
samples/routine-load-shared-data/gen.py

docker compose up --detach --wait --wait-timeout 120

docker compose ps

WARN[0000] /Users/droscign/routineload/docker-compose.yml: `version` is
obsolete
[+] Running 6/7
 ✔ Network routineload_default Crea... 0.0s
 ✔ Container minio Healthy 5.6s
 ✔ Container redpanda Healthy 3.6s
 ✔ Container redpanda-console Healt... 1.1s

Examine MinIO credentials
In order to use MinIO for Object Storage with StarRocks, StarRocks needs a MinIO access key.

The access key was generated during the startup of the Docker services. To help you better

understand the way that StarRocks connects to MinIO you should verify that the key exists.

Open the MinIO web UI

Browse to http://localhost:9001/access-keys The username and password are specified in the

Docker compose file, and are miniouser and miniopassword . You should see that there is one

access key. The Key is AAAAAAAAAAAAAAAAAAAA , you cannot see the secret in the MinIO Console,

but it is in the Docker compose file and is BB :

SQL Clients

 ⠧ Container routineload-minio_mc-1 Waiting 23.1s
 ✔ Container starrocks-fe Healthy 11.1s
 ✔ Container starrocks-cn Healthy 23.0s
container routineload-minio_mc-1 exited (0)

http://localhost:9001/access-keys

These three clients are tested with this tutorial, you only need one:

mysql CLI: You can run this from the Docker environment or your machine.

DBeaver is available as a community version and a Pro version.

MySQL Workbench

Configuring the client

mysql CLI DBeaver MySQL Workbench

The easiest way to use the mysql CLI is to run it from the StarRocks container starrocks-fe :

TIP

All docker compose commands must be run from the directory containing the docker-

compose.yml file.

If you would like to install the mysql CLI expand mysql client install below:

StarRocks configuration for shared-data
At this point you have StarRocks, Redpanda, and MinIO running. A MinIO access key is used to

connect StarRocks and Minio. When StarRocks started up, it established the connection with

MinIO and created the default storage volume in MinIO.

This is the configuration used to set the default storage volume to use MinIO (this is also in the

Docker compose file). The configuration will be described in detail at the end of this guide, for

docker compose exec starrocks-fe \
mysql -P 9030 -h 127.0.0.1 -u root --prompt="StarRocks > "

mysql client install

https://dbeaver.io/download/
https://dev.mysql.com/downloads/workbench/

now just note that the aws_s3_access_key is set to the string that you saw in the MinIO Console

and that the run_mode is set to shared_data .

TIP

To see the full configuration file you can run this command:

Run all docker compose commands from the directory containing the docker-

compose.yml file.

Connect to StarRocks with a SQL client

TIP

Run this command from the directory containing the docker-compose.yml file.

If you are using a client other than the mysql CLI, open that now.

enable shared data, set storage type, set endpoint
run_mode = shared_data
cloud_native_storage_type = S3
aws_s3_endpoint = minio:9000

set the path in MinIO
aws_s3_path = starrocks

credentials for MinIO object read/write
aws_s3_access_key = AAAAAAAAAAAAAAAAAAAA
aws_s3_secret_key = BB
aws_s3_use_instance_profile = false
aws_s3_use_aws_sdk_default_behavior = false

Set this to false if you do not want default
storage created in the object storage using
the details provided above
enable_load_volume_from_conf = true

docker compose exec starrocks-fe cat fe/conf/fe.conf

Examine the storage volume

TIP

Some of the SQL in this document, and many other documents in the StarRocks

documentation, and with \G instead of a semicolon. The \G causes the mysql CLI to render

the query results vertically.

Many SQL clients do not interpret vertical formatting output, so you should replace \G with

; .

docker compose exec starrocks-fe \
mysql -P9030 -h127.0.0.1 -uroot --prompt="StarRocks > "

SHOW STORAGE VOLUMES;

+------------------------+
| Storage Volume |
+------------------------+
| builtin_storage_volume |
+------------------------+
1 row in set (0.00 sec)

DESC STORAGE VOLUME builtin_storage_volume\G

*************************** 1. row ***************************
 Name: builtin_storage_volume
 Type: S3
IsDefault: true
 Location: s3://starrocks
 Params:
{"aws.s3.access_key":"******","aws.s3.secret_key":"******","aws.s3.endpoint"
 Enabled: true
 Comment:
1 row in set (0.03 sec)

Verify that the parameters match the configuration.

NOTE

The folder builtin_storage_volume will not be visible in the MinIO object list until data is

written to the bucket.

Create a table
These SQL commands are run in your SQL client.

Open the Redpanda Console

There will be no topics yet, a topic will be created in the next step.

http://localhost:8080/overview

Publish data to a Redpanda topic

From a command shell in the routineload/ folder run this command to generate data:

CREATE DATABASE quickstart;

USE quickstart;

CREATE TABLE site_clicks (
 `uid` bigint NOT NULL COMMENT "uid",
 `site` string NOT NULL COMMENT "site url",
 `vtime` bigint NOT NULL COMMENT "vtime"
)
DISTRIBUTED BY HASH(`uid`)
PROPERTIES("replication_num"="1");

http://localhost:8080/overview

TIP

On your system, you might need to use python3 in place of python in the command.

If you are missing kafka-python try:

or

Verify in the Redpanda Console

Navigate to http://localhost:8080/topics in the Redpanda Console, and you will see one topic

named test2 . Select that topic and then the Messages tab and you will see five messages

matching the output of gen.py .

Consume the messages
In StarRocks you will create a Routine Load job to:

python gen.py 5

pip install kafka-python

pip3 install kafka-python

b'{ "uid": 6926, "site": "https://docs.starrocks.io/", "vtime": 1718034793
} '
b'{ "uid": 3303, "site": "https://www.starrocks.io/product/community",
"vtime": 1718034793 } '
b'{ "uid": 227, "site": "https://docs.starrocks.io/", "vtime": 1718034243
} '
b'{ "uid": 7273, "site": "https://docs.starrocks.io/", "vtime": 1718034794
} '
b'{ "uid": 4666, "site": "https://www.starrocks.io/", "vtime": 1718034794
} '

http://localhost:8080/topics

1. Consume the messages from the Redpanda topic test2

2. Load those messages into the table site_clicks

StarRocks is configured to use MinIO for storage, so the data inserted into the site_clicks

table will be stored in MinIO.

Create a Routine Load job

Run this command in the SQL client to create the Routine Load job, the command will be

explained in detail at the end of the lab.

Verify the Routine Load job

Verify the three highlighted lines:

1. The state should be RUNNING

2. The topic should be test2 and the broker should be redpanda:2092

3. The statistics should show either 0 or 5 loaded rows depending on how soon you ran the

SHOW ROUTINE LOAD command. If there are 0 loaded rows run it again.

CREATE ROUTINE LOAD quickstart.clicks ON site_clicks
PROPERTIES
(
 "format" = "JSON",
 "jsonpaths" ="[\"$.uid\",\"$.site\",\"$.vtime\"]"
)
FROM KAFKA
(
 "kafka_broker_list" = "redpanda:29092",
 "kafka_topic" = "test2",
 "kafka_partitions" = "0",
 "kafka_offsets" = "OFFSET_BEGINNING"
);

SHOW ROUTINE LOAD\G

*************************** 1. row ***************************
 Id: 10078
 Name: clicks
 CreateTime: 2024-06-12 15:51:12
 PauseTime: NULL
 EndTime: NULL
 DbName: quickstart
 TableName: site_clicks
 State: RUNNING
 DataSourceType: KAFKA
 CurrentTaskNum: 1
 JobProperties:
{"partitions":"*","partial_update":"false","columnToColumnExpr":"*","maxBatc
[\"$.uid\",\"$.site\",\"$.vtime\"]","taskConsumeSecond":"15","desireTaskConc
DataSourceProperties: {"topic":"test2","currentKafkaPartitions":"0","brokerL
 CustomProperties: {"group.id":"clicks_ea38a713-5a0f-4abe-9b11-ff4a241ccb
 Statistic: {"receivedBytes":0,"errorRows":0,"committedTaskNum":0,
 Progress: {"0":"OFFSET_ZERO"}
 TimestampProgress: {}
ReasonOfStateChanged:
 ErrorLogUrls:
 TrackingSQL:
 OtherMsg:
LatestSourcePosition: {}
1 row in set (0.00 sec)

SHOW ROUTINE LOAD\G

*************************** 1. row ***************************
 Id: 10076
 Name: clicks
 CreateTime: 2024-06-12 18:40:53
 PauseTime: NULL
 EndTime: NULL
 DbName: quickstart
 TableName: site_clicks
 State: RUNNING
 DataSourceType: KAFKA
 CurrentTaskNum: 1
 JobProperties:
{"partitions":"*","partial_update":"false","columnToColumnExpr":"*","maxBatc

Verify that data is stored in MinIO
Open MinIO http://localhost:9001/browser/ and verify that there are objects stored under

starrocks .

Query the data from StarRocks

[\"$.uid\",\"$.site\",\"$.vtime\"]","taskConsumeSecond":"15","desireTaskConc
DataSourceProperties: {"topic":"test2","currentKafkaPartitions":"0","brokerL
 CustomProperties: {"group.id":"clicks_a9426fee-45bb-403a-a1a3-b3bc6c7aa6
 Statistic: {"receivedBytes":372,"errorRows":0,"committedTaskNum":
 Progress: {"0":"4"}
 TimestampProgress: {"0":"1718217035111"}
ReasonOfStateChanged:
 ErrorLogUrls:
 TrackingSQL:
 OtherMsg:
LatestSourcePosition: {"0":"5"}
1 row in set (0.00 sec)

USE quickstart;
SELECT * FROM site_clicks;

+------+--+------------+
| uid | site | vtime |
+------+--+------------+
4607	https://www.starrocks.io/blog	1718031441
1575	https://www.starrocks.io/	1718031523
2398	https://docs.starrocks.io/	1718033630
3741	https://www.starrocks.io/product/community	1718030845
4792	https://www.starrocks.io/	1718033413
+------+--+------------+
5 rows in set (0.07 sec)

http://localhost:9001/browser/

Publish additional data
Running gen.py again will publish another five records to Redpanda.

Verify that data is added

Since the Routine Load job runs on a schedule (every 10 seconds by default), the data will be

loaded within a few seconds.

Configuration details
Now that you have experienced using StarRocks with shared-data it is important to understand

the configuration.

python gen.py 5

SELECT * FROM site_clicks;

+------+--+------------+
| uid | site | vtime |
+------+--+------------+
6648	https://www.starrocks.io/blog	1718205970
7914	https://www.starrocks.io/	1718206760
9854	https://www.starrocks.io/blog	1718205676
1186	https://www.starrocks.io/	1718209083
3305	https://docs.starrocks.io/	1718209083
2288	https://www.starrocks.io/blog	1718206759
7879	https://www.starrocks.io/product/community	1718204280
2666	https://www.starrocks.io/	1718208842
5801	https://www.starrocks.io/	1718208783
8409	https://www.starrocks.io/	1718206889
+------+--+------------+
10 rows in set (0.02 sec)

CN configuration

The CN configuration used here is the default, as the CN is designed for shared-data use. The

default configuration is shown below. You do not need to make any changes.

FE configuration

The FE configuration is slightly different from the default as the FE must be configured to expect

that data is stored in Object Storage rather than on local disks on BE nodes.

The docker-compose.yml file generates the FE configuration in the command section of the

starrocks-fe service.

sys_log_level = INFO

ports for admin, web, heartbeat service
be_port = 9060
be_http_port = 8040
heartbeat_service_port = 9050
brpc_port = 8060
starlet_port = 9070

enable shared data, set storage type, set endpoint
run_mode = shared_data
cloud_native_storage_type = S3
aws_s3_endpoint = minio:9000

set the path in MinIO
aws_s3_path = starrocks

credentials for MinIO object read/write
aws_s3_access_key = AAAAAAAAAAAAAAAAAAAA
aws_s3_secret_key = BB
aws_s3_use_instance_profile = false
aws_s3_use_aws_sdk_default_behavior = false

Set this to false if you do not want default
storage created in the object storage using

NOTE

This config file does not contain the default entries for an FE, only the shared-data

configuration is shown.

The non-default FE configuration settings:

NOTE

Many configuration parameters are prefixed with s3_ . This prefix is used for all Amazon S3

compatible storage types (for example: S3, GCS, and MinIO). When using Azure Blob

Storage the prefix is azure_ .

run_mode=shared_data

This enables shared-data use.

cloud_native_storage_type=S3

This specifies whether S3 compatible storage or Azure Blob Storage is used. For MinIO this is

always S3.

aws_s3_endpoint=minio:9000

The MinIO endpoint, including port number.

aws_s3_path=starrocks

The bucket name.

aws_s3_access_key=AAAAAAAAAAAAAAAAAAAA

The MinIO access key.

aws_s3_secret_key=BB

the details provided above
enable_load_volume_from_conf = true

The MinIO access key secret.

aws_s3_use_instance_profile=false

When using MinIO an access key is used, and so instance profiles are not used with MinIO.

aws_s3_use_aws_sdk_default_behavior=false

When using MinIO this parameter is always set to false.

enable_load_volume_from_conf=true

When this is true, a StarRocks storage volume named builtin_storage_volume is created

using MinIO object storage, and it is set to be the default storage volume for the tables that you

create.

Notes on the Routine Load command
StarRocks Routine Load takes many arguments. Only the ones used in this tutorial are described

here, the rest will be linked to in the more information section.

Parameters

CREATE ROUTINE LOAD quickstart.clicks ON site_clicks
PROPERTIES
(
 "format" = "JSON",
 "jsonpaths" ="[\"$.uid\",\"$.site\",\"$.vtime\"]"
)
FROM KAFKA
(
 "kafka_broker_list" = "redpanda:29092",
 "kafka_topic" = "test2",
 "kafka_partitions" = "0",
 "kafka_offsets" = "OFFSET_BEGINNING"
);

The parameters for CREATE ROUTINE LOAD ON are:

database_name.job_name

table_name

database_name is optional. In this lab, it is quickstart and is specified.

job_name is required, and is clicks

table_name is required, and is site_clicks

Job properties

Property format

In this case, the data is in JSON format, so the property is set to JSON . The other valid formats

are: CSV , JSON , and Avro . CSV is the default.

Property jsonpaths

The names of the fields that you want to load from JSON-formatted data. The value of this

parameter is a valid JsonPath expression. More information is available at the end of this page.

Data source properties

kafka_broker_list

CREATE ROUTINE LOAD quickstart.clicks ON site_clicks

"format" = "JSON",

"jsonpaths" ="[\"$.uid\",\"$.site\",\"$.vtime\"]"

"kafka_broker_list" = "redpanda:29092",

Kafka's broker connection information. The format is <kafka_broker_name_or_ip>:<broker_

port> . Multiple brokers are separated by commas.

kafka_topic

The Kafka topic to consume from.

kafka_partitions and kafka_offsets

These properties are presented together as there is one kafka_offset required for each

kafka_partitions entry.

kafka_partitions is a list of one or more partitions to consume. If this property is not set, then

all partitions are consumed.

kafka_offsets is a list of offsets, one for each partition listed in kafka_partitions . In this

case the value is OFFSET_BEGINNING which causes all of the data to be consumed. The default is

to only consume new data.

Summary
In this tutorial you:

Deployed StarRocks, Reedpanda, and Minio in Docker

Created a Routine Load job to consume data from a Kafka topic

Learned how to configure a StarRocks Storage Volume that uses MinIO

More information

"kafka_topic" = "test2",

"kafka_partitions" = "0",
"kafka_offsets" = "OFFSET_BEGINNING"

StarRocks Architecture

The sample used for this lab is very simple. Routine Load has many more options and capabilities.

learn more.

JSONPath

Edit this page

http://localhost:3000/docs/introduction/Architecture/
http://localhost:3000/docs/loading/RoutineLoad/
https://goessner.net/articles/JsonPath/
https://github.com/StarRocks/starrocks/edit/main/docs/en/quick_start/routine-load.md
https://github.com/StarRocks/starrocks/edit/main/docs/en/quick_start/routine-load.md

