<A NVIDIA.

MPI and Modern Fortran: Better Together —

Jeff Hammond
Principal Architect
HPC Software

Abstract

This talk will describe the right way to use MPI in Fortran. The MPI
Fortran 2008 bindings offer type safety and are the only
standard-compliant method for using MPI in Fortran. | will show how
and why to use MPI_F08. One challenge is imperfect implementations
of MPI Fortran support. | will show how this is solved using Vapaa, a
standalone implementation of MPI_FO08. | will also show how to make
Fortran code more efficient with wrappers that eliminate the need for
redundanent arguments, i.e. count and type can be inferred from
Fortran arrays. Finally, | will talk about the current activities of the MPI
Forum as they relate to Fortran.

Outline

Why mpi_f08 is awesome and you should use it.

Vapaa: implementing mpi_f08 independent of MPI C libraries.
Havaita: improving usability of MPI using modern Fortran.
Summary of MPI-Next.

MPI Language Support

MPI C API - used by all languages except Fortran
MPHEe++—APR} deleted in MPI1 3.0 (2012)

MPI mpif.h (falsely known as “F77” bindings)

MPI mpi module (falsely known as “F90” bindings)
MPI mpi_f08 module (the good stuff)

MPI Language Support

MPI C API - used by all languages except Fortran
MPHC+—AR deleted in MP1 3.0 (2012)

MPHmpith deprecated in MPI 4.1 (2023)

MPI mpi module (falsely known as “FO0” bindings)
MPI mpi_fO8 module (the good stuff)

MPI Fortran legacy API

MPI BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

| SPRAGMA IGNORE TKR
<type> :: BUFFER (%*)

INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

Until Fortran 2008, there is no standard mechanism for type-agnostic buffers equivalent to C void*.
Implementations rely on compiler-specific extensions (e.g., as shown above) or lack of enforcement of
type safety to compile. There is also no way to use Fortran array properties, including subarrays.

NVIDIA.

MPI Fortran legacy API

MPI BCAST (BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

! SPRAGMA IGNORE TKR
<type> :: BUFFER(*)

INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

Datatypes and communicators are MPI object handles, not generic integers. Without proper types,
compilers cannot identify user errors, so they manifest in unpleasant ways at runtime.

ANVIDIA. I

MPI Fortran modern API

MPI Bcast (buffer, count, datatype, root, comm, lerror)
TYPE (*), DIMENSION(..) :: buffer
INTEGER, INTENT (IN) :: count, root
TYPE (MPI Datatype), INTENT (IN) :: datatype
TYPE (MPI Comm), INTENT (IN) :: comm
INTEGER, OPTIONAL, INTENT (OUT) :: ilerror

Buffers are assumed-type, assumed-rank arguments. MPI implementations can - but are not required
to - support non-contiguous subarrays.

<ANVIDIA. I

MPI Fortran modern API

MPI Bcast (buffer, count, datatype, root, comm, 1lerror)
TYPE (*), DIMENSION(..) :: buffer
INTEGER, INTENT (IN) :: count, root
TYPE (MPI Datatype), INTENT (IN) :: datatype
TYPE (MPI Comm), INTENT (IN) :: comm
INTEGER, OPTIONAL, INTENT (OUT) :: ierror

MPI object handles are properly typed and thus compilers will not accept erroneous usage. At the
same time, MPI object handle types are interoperable with the old method, because the type contains
the integer handle as its only member.

<ANVIDIA. I

MPI Fortran modern API

MPI Bcast (buffer, count, datatype, root, comm, lerror)

TYPE (*), DIMENSION(..) :: buffer

INTEGER (KIND=MPI COUNT KIND), INTENT (IN) :: count
TYPE (MPI Datatype), INTENT (IN) :: datatype
INTEGER, INTENT (IN) :: root

TYPE (MPI Comm), INTENT (IN) :: comm

INTEGER, OPTIONAL, INTENT (OUT) :: 1lerror

All MPI procedures that take a count argument use polymorphic interfaces to support both INTEGER
(usually 32b) and large-count (i.e. 64b) variants. This aspect of the MPI Fortran API is superior to both
C and C++. (C11 _Generic was rejected and C++ polymorphism can’t exist without native bindings.)

<ANVIDIA, I

MPI Fortran modern API

MPI Irecv(buf, count, datatype, source, tag, comm,
request, 1lerror)

TYPE (*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT (IN) :: count, source, tag
TYPE (MPI Datatype), INTENT (IN) :: datatype
TYPE (MPI Comm), INTENT (IN) :: comm

TYPE (MPI Request), INTENT (OUT) :: request
INTEGER, OPTIONAL, INTENT((OUT) :: ilerror

Non-blocking procedures require ASYNCHRONOUS buffer attribute to prohibit (unlikely) compiler
optimizations and (likely) temporary copies that break correctness.

<ANVIDIA. I

Asynchronous Procedures
MPI_SUBARRAYS_SUPPORTED = .FALSE.

MPI_ASYNC_PROTECTS_NONBLOCKING = .FALSE.

integer :: buf(1000)
call MPI Irecv(buf(1:1000:2), ., req)
! integer :: temp(500) = buf(1:1000:2)

! address of temp passed to network API

! temp is deallocated when MPI Irecv returns
call MPI Wait (req)

! network writes to temp, which no longer exists

! segmentation fault

<ANVIDIA I

Asynchronous Procedures
MPI_SUBARRAYS_SUPPORTED = .TRUE.

MPI_ASYNC_PROTECTS_NONBLOCKING = .TRUE.

void CFI MPI TIrecv(CFI cdesc t * desc, int count, int datatype f, int
source, 1nt tag, int comm f, int * request f, int * ilerror)

{
! translate datatype and communication handles from Fortran to C
! create MPI datatype from desc, count and datatype: temp type

*ierror = MPI Irecv(desc->base addr, 1, temp type, source, tag,
comm, &request);

! translate request handle from C to Fortran

https://github.com/jeffhammond/vapaa/blob/main/source/mpi p2p.c Snvioia |

https://github.com/jeffhammond/vapaa/blob/main/source/mpi_p2p.c

Implementation Status

Today:

Fortran compiler must support Fortran 2018 CFI features, i.e. CFD_cdesc_t, or
non-contiguous subarrays not supported efficiently and correctly.

MPI implementation must support assumed-rank, assumed-type arguments in the
interface and CFl_cdesc_t buffer arguments in the implementation.

MPI Fortran features must be compiled along with the entire MPI implementation, once for
every Fortran compiler. MPI library build time dominated by C object files.

Tomorrow:

Fortran compiler should support Fortran 2018 CFl features, i.e. CFD_cdesc_t, but
compiler-specific descriptions can be used instead.

MPI Fortran features provided by third-party library that depends only on the C API or ABI.
MPI implementation only used for Fortran handle conversion, f2c+c2f, optionally.

<ANVIDIA I

<A NVIDIA.

VAPAA

VAPAA

In Finnish, Vapaa means “free”, in the sense of "free-range chickens."”

Features

Depends only on Fortran compiler and MPI C library.
If MPI C library is compiled without Fortran support, f2c/c2f done by Vapaa.
Uses CFl_cdesc_t if possible; can use other array descriptors if necessary.
Compiles sequentially in less than 2 seconds. Trivial to include in your project.
Implements all of the mpi_f08 features, even the ridiculous ones.
Can use MPI C standard ABI to allow MPI Fortran applications to be MPI
implementation-agnostic.

Defects

Implementation incomplete due to developer incompetence and lack of code generation.
Does not take advantage of MPIl implementation properties to optimize f2c/c2f.
No formal support model. (Feature?)

<ANVIDIA I

Non-cartesian subarrays

integer, dimension(30,20) :: A

integer, dimension(10,10) :: B

call MPI TIsend(A(1:30:3,1:20:2), size(A(1:30:3,1:20:2))-1, ..)
call MPI Irecv (B, size(B), ..)

MPI implementations that support subarrays assume cartesian subarrays. The above code is not
supported by MPICH, for example.

This use case is fine with blocking communication if the compiler makes a contiguous copy of the input
array...

ANVIDIA. I

More bad Ideas with MPI_FO8

A foolish consistency is the hobgoblin of little minds...

Allocated Fortran array

A(6,8)

It is unlikely that anyone wanted this use case to work, but it was not specifically excluded. Itis a
natural consequence of two requirements (1) CFl_cdesc_t subarray support and (2) MPI datatypes as
they are used in legacy Fortran and C.

<ANVIDIA I

VAPAA

Specialized support for 1D, 2D, 3D subarrays; generic support for 4D
to 15D.

Support for non-cartesian subarrays.

Support for subarrays with noncontiguous MPI datatypes.

Detect inconsistencies between subarray descriptor and MPI count
argument.

Uses MPICH extensions to optimize user-defined datatype decoding.
Supports CFl_cdesc_t when available; can support other array
descriptors; falls back to contiguous-only support.

<A NVIDIA.

HAVAITA

MPI Fortran API

MPI Bcast (buffer, count, datatype, ..)
TYPE (*), DIMENSION(..) :: buffer
INTEGER, INTENT (IN) =7 count

TYPE (MPI Datatype), INTENT?TN{\iiVEEFatype

Describes the base address, element type,

element count, and array layout of the
user buffer.

element count, and array layout of the
user buffer.

Describes the base-addressr-element type,

<ANVIDIA, I

MPI Fortran API

MPI Bcast (buffer, count, datatype, ..)
TYPE (*), DIMENSION(..) :: buffer

count

INTENTWtatype

Describes the base-addressr-element type,
element count, and array layout of the
user buffer.

<ANVIDIA I

Smarter MPI Fortran

! infer count and datatype from array properties
call MPIX Bcast (buffer=al, root=0, comm=world)

' world communicator 1s i1mplicit
call MPIX Bcast (buffer=al, root=0)

' root=0 1s 1mplicit

call MPIX Bcast (buffer=al, comm=world)

' root=0 and world communicator are implicit
call MPIX Bcast (buffer=al)

<ANVIDIA I

Havaita

Havaita means “detect” or “perceive” in Finnish

Breaks 1:1 correspondence between C and
Fortran API design.

No need for redundant count and datatype
arguments when proper Fortran arrays are
used.

Common cases become implicit.
MPI_IN_PLACE automatic.

All arguments are named and placement no
longer matters (no need to remember the
order, just the names).

https://github.com/jeffhammond/havaita

<ANVIDIA. I

https://github.com/jeffhammond/havaita

<A NVIDIA.

MPI-Next

MPI Application Binary Interface Standardization

Jeff R. Hammond Lisandro Dalcin
NVIDIA Helsinki Oy
Helsinki, Finland

NVHPC SDK, Fortran

KAUST
Thuwal, Saudi Arabia

dalc Python |-com

Marc Pérache
CEA, DAM, DIF
Arpajon, France
| wi4mpi, containers, MPC |

Gonzalo Brito Gadeschi
NVIDIA GmbH
Munich, Germany
| Rust, containers |

Jean-Baptiste Besnard
ParaTools
Bruyeéres-le-Chatel, France

jbbes TAU, E4S |sfr

Joseph Schuchart
University of Tennessee, Knoxville
Knoxville, Tennessee, USA
scd Open MPI fu

Hui Zhou
Argonne National Laboratory

Lemont, Illinois, USA
https://dl.acm.org/doi/10.1145/3615318.3615319 zh¢ MPICH v

Extreme Computing Research Center

Erik Schnetter
Perimeter Institute for Theoretical
Physics
Waterloo, Ontario, Canada
escl Julia, MPIltrampoline (e.ca

Jed Brown
University of Colorado Boulder
Boulder, Colorado, USA
j¢ PETSc, Rust §

-

Simon Byrne

California Institute of Technology
Pasadena, California, USA
simonby1 Julia tech.edu

https://dl.acm.org/doi/10.1145/3615318.3615319

MPI ABI Standardization

Largely done with the C API ABI.

Fighting about Fortran-related topics. Fortran does not allow for an
ABI, but there are things that make VAPAA and similar easier or
harder (f2c/c2f). VAPAA serves as an ABIl abstraction layer for
mpi_f08 codes (and maybe MPI legacy Fortran APls some day).
CEA’s widmpi, MPI Trampoline (Erik Schnetter), Mukautuva are ABI
translation layers. Mukautuva is a prototype of the standard ABI.
MPICH has a working prototype of the ABI already, which is actively

tested by mpidpy.

<AnvIDl A I

Summary

If you use MPI in Fortran codes, you should use mpi_f08.

VAPAA intends to solve mpi_f08 availability and
feature-completeness issues.

HAVAITA demonstrates ways to make MPI usage better in Fortran.
The upcoming MPI standard ABI will make libraries like VAPAA
implementation-agnostic. No more MPICH vs Open MPI problems.

https://github.com/jeffhammond/vapaa
https://github.com/jeffhammond/havaita
https://github.com/jeffhammond/mukautuva

<ANVIDIA I

https://github.com/jeffhammond/vapaa
https://github.com/jeffhammond/havaita
https://github.com/jeffhammond/mukautuva

<A NVIDIA.

