
MPI and Modern Fortran: Better Together
Jeff Hammond
Principal Architect
HPC Software

Abstract

This talk will describe the right way to use MPI in Fortran. The MPI
Fortran 2008 bindings offer type safety and are the only
standard-compliant method for using MPI in Fortran. I will show how
and why to use MPI_F08. One challenge is imperfect implementations
of MPI Fortran support. I will show how this is solved using Vapaa, a
standalone implementation of MPI_F08. I will also show how to make
Fortran code more efficient with wrappers that eliminate the need for
redundanent arguments, i.e. count and type can be inferred from
Fortran arrays. Finally, I will talk about the current activities of the MPI
Forum as they relate to Fortran.

1. Why mpi_f08 is awesome and you should use it.
2. Vapaa: implementing mpi_f08 independent of MPI C libraries.
3. Havaita: improving usability of MPI using modern Fortran.
4. Summary of MPI-Next.

Outline

1. MPI C API - used by all languages except Fortran
2. MPI C++ API deleted in MPI 3.0 (2012)
3. MPI mpif.h (falsely known as “F77” bindings)
4. MPI mpi module (falsely known as “F90” bindings)
5. MPI mpi_f08 module (the good stuff)

MPI Language Support

1. MPI C API - used by all languages except Fortran
2. MPI C++ API deleted in MPI 3.0 (2012)
3. MPI mpif.h deprecated in MPI 4.1 (2023)
4. MPI mpi module (falsely known as “F90” bindings)
5. MPI mpi_f08 module (the good stuff)

MPI Language Support

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

 !$PRAGMA IGNORE_TKR
 <type> :: BUFFER(*)

 INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

MPI Fortran legacy API

Until Fortran 2008, there is no standard mechanism for type-agnostic buffers equivalent to C void*.
Implementations rely on compiler-specific extensions (e.g., as shown above) or lack of enforcement of
type safety to compile. There is also no way to use Fortran array properties, including subarrays.

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

 !$PRAGMA IGNORE_TKR
 <type> :: BUFFER(*)

 INTEGER :: COUNT, DATATYPE, ROOT, COMM, IERROR

MPI Fortran legacy API

Datatypes and communicators are MPI object handles, not generic integers. Without proper types,
compilers cannot identify user errors, so they manifest in unpleasant ways at runtime.

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

 TYPE(*), DIMENSION(..) :: buffer

 INTEGER, INTENT(IN) :: count, root

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI Fortran modern API

Buffers are assumed-type, assumed-rank arguments. MPI implementations can - but are not required
to - support non-contiguous subarrays.

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

 TYPE(*), DIMENSION(..) :: buffer

 INTEGER, INTENT(IN) :: count, root

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI Fortran modern API

MPI object handles are properly typed and thus compilers will not accept erroneous usage. At the
same time, MPI object handle types are interoperable with the old method, because the type contains
the integer handle as its only member.

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

 TYPE(*), DIMENSION(..) :: buffer

 INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: count

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 INTEGER, INTENT(IN) :: root

 TYPE(MPI_Comm), INTENT(IN) :: comm

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI Fortran modern API

All MPI procedures that take a count argument use polymorphic interfaces to support both INTEGER
(usually 32b) and large-count (i.e. 64b) variants. This aspect of the MPI Fortran API is superior to both
C and C++. (C11 _Generic was rejected and C++ polymorphism can’t exist without native bindings.)

MPI_Irecv(buf, count, datatype, source, tag, comm,
request, ierror)

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

 INTEGER, INTENT(IN) :: count, source, tag

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI Fortran modern API

Non-blocking procedures require ASYNCHRONOUS buffer attribute to prohibit (unlikely) compiler
optimizations and (likely) temporary copies that break correctness.

Asynchronous Procedures

integer :: buf(1000)

call MPI_Irecv(buf(1:1000:2), .., req)

! integer :: temp(500) = buf(1:1000:2)

! address of temp passed to network API

! temp is deallocated when MPI_Irecv returns

call MPI_Wait(req)

! network writes to temp, which no longer exists

! segmentation fault

MPI_SUBARRAYS_SUPPORTED = .FALSE.

MPI_ASYNC_PROTECTS_NONBLOCKING = .FALSE.

Asynchronous Procedures

void CFI_MPI_Irecv(CFI_cdesc_t * desc, int count, int datatype_f, int
source, int tag, int comm_f, int * request_f, int * ierror)

{

 ! translate datatype and communication handles from Fortran to C

 ! create MPI datatype from desc, count and datatype: temp_type

 *ierror = MPI_Irecv(desc->base_addr, 1, temp_type, source, tag,
comm, &request);

 ! translate request handle from C to Fortran

}

MPI_SUBARRAYS_SUPPORTED = .TRUE.

MPI_ASYNC_PROTECTS_NONBLOCKING = .TRUE.

https://github.com/jeffhammond/vapaa/blob/main/source/mpi_p2p.c

https://github.com/jeffhammond/vapaa/blob/main/source/mpi_p2p.c

Today:

● Fortran compiler must support Fortran 2018 CFI features, i.e. CFD_cdesc_t, or
non-contiguous subarrays not supported efficiently and correctly.

● MPI implementation must support assumed-rank, assumed-type arguments in the
interface and CFI_cdesc_t buffer arguments in the implementation.

● MPI Fortran features must be compiled along with the entire MPI implementation, once for
every Fortran compiler. MPI library build time dominated by C object files.

Tomorrow:

● Fortran compiler should support Fortran 2018 CFI features, i.e. CFD_cdesc_t, but
compiler-specific descriptions can be used instead.

● MPI Fortran features provided by third-party library that depends only on the C API or ABI.
● MPI implementation only used for Fortran handle conversion, f2c+c2f, optionally.

Implementation Status

VAPAA

Features

● Depends only on Fortran compiler and MPI C library.
○ If MPI C library is compiled without Fortran support, f2c/c2f done by Vapaa.
○ Uses CFI_cdesc_t if possible; can use other array descriptors if necessary.

● Compiles sequentially in less than 2 seconds. Trivial to include in your project.
● Implements all of the mpi_f08 features, even the ridiculous ones.
● Can use MPI C standard ABI to allow MPI Fortran applications to be MPI

implementation-agnostic.

Defects

● Implementation incomplete due to developer incompetence and lack of code generation.
● Does not take advantage of MPI implementation properties to optimize f2c/c2f.
● No formal support model. (Feature?)

VAPAA
In Finnish, Vapaa means "free", in the sense of "free-range chickens."

integer, dimension(30,20) :: A

integer, dimension(10,10) :: B

...

call MPI_Isend(A(1:30:3,1:20:2), size(A(1:30:3,1:20:2))-1, ..)

call MPI_Irecv(B, size(B), ..)

Non-cartesian subarrays

MPI implementations that support subarrays assume cartesian subarrays. The above code is not
supported by MPICH, for example.

This use case is fine with blocking communication if the compiler makes a contiguous copy of the input
array…

 More bad Ideas with MPI_F08
A foolish consistency is the hobgoblin of little minds…

Allocated Fortran array

Fortran subarray buffer passed to MPI

MPI subarray datatype passed to MPI

A(6,8)

B(4,6) = A(2:5,2:7)

C(2,4) = B(2:3,2:5)

It is unlikely that anyone wanted this use case to work, but it was not specifically excluded. It is a
natural consequence of two requirements (1) CFI_cdesc_t subarray support and (2) MPI datatypes as
they are used in legacy Fortran and C.

● Specialized support for 1D, 2D, 3D subarrays; generic support for 4D
to 15D.

● Support for non-cartesian subarrays.
● Support for subarrays with noncontiguous MPI datatypes.
● Detect inconsistencies between subarray descriptor and MPI count

argument.
● Uses MPICH extensions to optimize user-defined datatype decoding.
● Supports CFI_cdesc_t when available; can support other array

descriptors; falls back to contiguous-only support.

VAPAA

HAVAITA

MPI_Bcast(buffer, count, datatype, ..)

 TYPE(*), DIMENSION(..) :: buffer

 INTEGER, INTENT(IN) :: count

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

MPI Fortran API

Describes the base address, element type,
element count, and array layout of the
user buffer.

Describes the base address, element type,
element count, and array layout of the
user buffer.

MPI_Bcast(buffer, count, datatype, ..)

 TYPE(*), DIMENSION(..) :: buffer

 INTEGER, INTENT(IN) :: count

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

MPI Fortran API

Describes the base address, element type,
element count, and array layout of the
user buffer.

Describes the base address, element type,
element count, and array layout of the
user buffer.

Smarter MPI Fortran

! infer count and datatype from array properties
call MPIX_Bcast(buffer=a1,root=0,comm=world)

! world communicator is implicit
call MPIX_Bcast(buffer=a1,root=0)

! root=0 is implicit
call MPIX_Bcast(buffer=a1,comm=world)

! root=0 and world communicator are implicit
call MPIX_Bcast(buffer=a1)

● Breaks 1:1 correspondence between C and
Fortran API design.

● No need for redundant count and datatype
arguments when proper Fortran arrays are
used.

● Common cases become implicit.
● MPI_IN_PLACE automatic.
● All arguments are named and placement no

longer matters (no need to remember the
order, just the names).

Havaita
Havaita means “detect” or “perceive” in Finnish

https://github.com/jeffhammond/havaita

https://github.com/jeffhammond/havaita

MPI-Next

Python

PETSc, Rust

Julia

MPICH

Open MPI

wi4mpi, containers, MPC

Rust, containers

NVHPC SDK, Fortran

TAU, E4S

Julia, MPItrampoline

https://dl.acm.org/doi/10.1145/3615318.3615319

https://dl.acm.org/doi/10.1145/3615318.3615319

● Largely done with the C API ABI.
● Fighting about Fortran-related topics. Fortran does not allow for an

ABI, but there are things that make VAPAA and similar easier or
harder (f2c/c2f). VAPAA serves as an ABI abstraction layer for
mpi_f08 codes (and maybe MPI legacy Fortran APIs some day).

● CEA’s wi4mpi, MPI Trampoline (Erik Schnetter), Mukautuva are ABI
translation layers. Mukautuva is a prototype of the standard ABI.

● MPICH has a working prototype of the ABI already, which is actively
tested by mpi4py.

MPI ABI Standardization

● If you use MPI in Fortran codes, you should use mpi_f08.
● VAPAA intends to solve mpi_f08 availability and

feature-completeness issues.
● HAVAITA demonstrates ways to make MPI usage better in Fortran.
● The upcoming MPI standard ABI will make libraries like VAPAA

implementation-agnostic. No more MPICH vs Open MPI problems.

Summary

https://github.com/jeffhammond/vapaa
https://github.com/jeffhammond/havaita

https://github.com/jeffhammond/mukautuva

https://github.com/jeffhammond/vapaa
https://github.com/jeffhammond/havaita
https://github.com/jeffhammond/mukautuva

