
MOR20 Audit Report
Version 2.0

Audited by:

HollaDieWaldfee

alexxander

June 13, 2024

Contents

1 Introduction 2

1.1 About Renascence . 2

1.2 Disclaimer . 2

1.3 Risk Classification . 2

2 Executive Summary 3

2.1 About MOR20 . 3

2.2 Overview . 3

2.3 Issues Found . 3

3 Findings Summary 4

4 Findings 5

4.1 Centralization Risks . 17

4.2 Systemic Risks . 18

1

1 Introduction

1.1 About Renascence

Renascence Labs was established by a team of experts including HollaDieWaldfee, MiloTruck,
alexxander and bytes032.

Our founders have a distinguished history of achieving top honors in competitive audit contests,
enhancing the security of leading protocols such as Reserve Protocol, Arbitrum, MaiaDAO, Chainlink,
Dodo, Lens Protocol, Wenwin, PartyDAO, Lukso, Perennial Finance, Mute and Taurus.

We strive to deliver tailored solutions by thoroughly understanding each client's unique challenges
and requirements. Our approach goes beyond addressing immediate security concerns; we are ded-
icated to fostering the enduring success and growth of our partners.

More of our work can be found here.

1.2 Disclaimer

This report reflects an analysis conductedwithin a defined scope and time frame, based on provided
materials and documentation. It does not encompass all possible vulnerabilities and should not be
considered exhaustive.

The review and accompanying report are presented on an 'as-is' and 'as-available' basis, without
any express or implied warranties.

Furthermore, this report neither endorses any specific project or team nor assures the complete
security of the project.

1.3 Risk Classification

Impact: High Impact: Medium Impact: Low

Likelihood: High High High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

1.3.1 Impact

• High - Funds are directly at risk, or a severe disruption of the protocol’s core functionality

• Medium - Funds are indirectly at risk, or some disruption of the protocol’s functionality

• Low - Funds are not at risk

1.3.2 Likelihood

• High - almost certain to happen, easy to perform, or not easy but highly incentivized

• Medium - only conditionally possible or incentivized, but still relatively likely

• Low - requires stars to align, or little-to-no incentive

2

https://twitter.com/HollaWaldfee100
https://twitter.com/MiloTruck
https://twitter.com/__alexxander_
https://twitter.com/bytes032
https://code4rena.com/reports/2023-01-reserve/
https://code4rena.com/audits/2023-08-arbitrum-security-council-election-system
https://code4rena.com/audits/2023-09-maia-dao-ulysses#top
https://code4rena.com/audits/2023-08-chainlink-staking-v02
https://github.com/sherlock-protocol/sherlock-reports/blob/main/audits/2023.0512%20-%20Final%20-%20DODO%20Margin%20Trading%20Audit%20Report.pdf
https://code4rena.com/audits/2023-07-lens-protocol-v2#top
https://wenwin.com/
https://code4rena.com/reports/2023-04-party
https://code4rena.com/audits/2023-06-lukso#top
https://audits.sherlock.xyz/contests/79/report
https://code4rena.com/reports/2023-03-mute
https://github.com/sherlock-protocol/sherlock-reports/blob/main/audits/2023.19.04%20-%20Final%20-%20Taurus%20Audit%20Report.pdf
https://renascence-labs.xyz/audits

2 Executive Summary

2.1 About MOR20

MOR20 is the generalized version of the Morpheus Capital Smart Contracts available for commu-
nity use. A project deployer re-creates the Morpheus Fair Launch and Distribution project through
the MOR20 Factory contracts, configures the project's distribution settings, and appoints a project
owner who can make further adjustments. On deployment, the project deployer can also decide
to trust the Morpheus team with upgrades of the smart contracts or freeze the smart contracts at
a given implementation. Trusting the Morpheus team with upgrades can also be managed by the
project owner after the deployment of the project contracts.

2.2 Overview

Project MOR20

Repository MOR20

Commit Hash 64643c146854…

Mitigation Hash ded6fe395764…

Date 30 May 2024 - 4 June 2024

2.3 Issues Found

Severity Count

High Risk 0

Medium Risk 3

Low Risk 2

Informational 5

Total Issues 10

3

https://github.com/MorpheusAIs/SmartContracts
https://github.com/MorpheusAIs/MOR20
https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a
https://github.com/MorpheusAIs/MOR20/blob/ded6fe39576480388f7f7e83dca4324fe37e5c80

3 Findings Summary

ID Description Status

M-1 Parent contract Factory.sol is missing storage gap which could lead to
storage collisions if it’s upgraded

Resolved

M-2 Incorrect check in Distribution.editPool() allowsmodifying pool con-
figurations and reward parameter changes can lock stakes

Resolved

M-3 The Factory administrator can upgrade frozen Proxies through upgrad-
ing the Factory implementation

Resolved

L-1 FeeConfig.__FeeConfig_init() is missing a baseFee constraint check Resolved

L-2 Public functions in FreezableBeaconProxy can lead to function selector
collision with implementation

Resolved

I-1 Ambiguity in the fee constraint in FeeConfig.sol Resolved

I-2 abi.encode() should be used in Factory._calculatePoolSalt() to avoid
hash collisions.

Acknowledged

I-3 FeeConfig.sol is missing a call to _disableInitializers() in the con-
structor

Resolved

I-4 Code Improvements Resolved

I-5 FeeConfig is deployed behind a ERC1967 proxy but can’t be upgraded Resolved

4

4 Findings

Medium Risk

[M-1] Parent contract Factory.sol is missing storage gap which could lead to storage colli-
sions if its upgraded

Context:

• Factory.sol#L16

Description: Upgradeable parent contracts must implement a storage gap to allow the addition of
new state variables in the future without compromising the storage compatibility with existing de-
ployments. Without a storage gap, if there are any new variables in the Factory.sol contract, they
will override variables in child contracts such as L1Factory.sol and L2Factory.sol. Recommen-
dation:

@@ -26,6 +26,7 @@ abstract contract Factory is IFactory, OwnableUpgradeable,

PausableUpgradeable,

mapping(address deployer => mapping(string protocol => mapping(string poolType =>

address))) private _proxyPools;

mapping(address deployer => DynamicSet.StringSet) private _protocols;

+ uint256[46] __gap;

function __Factory_init() internal onlyInitializing {}

Morpheus: Fixed.

Renascence: The recommendation has been implemented.

[M-2] Incorrect check in Distribution.editPool() allows modifying pool configurations and
reward parameter changes can lock stakes

Context:

• Distribution.sol#L87

Description: The Distribution.editPool() function both incorrectly considers the new pool con-
fig, i.e., pool_, and performs an incorrect check > block.timestamp to determine if the Pool pay-
out has started. This allows the modification of pool.payoutStart, pool.withdrawLockPeriod, and
pool.withdrawLockPeriodAfterStake while the payout period has already started.

if (pool_.payoutStart > block.timestamp) {

require(pool.payoutStart == pool_.payoutStart, ”DS: invalid payout start value”);

require(pool.withdrawLockPeriod == pool_.withdrawLockPeriod, ”DS: invalid WLP

value”);

require(pool.withdrawLockPeriodAfterStake == pool_.withdrawLockPeriodAfterStake,

”DS: invalid WLPAS value”);

}

Another problem is that the remaining pool parameters, like initialReward, are not checked at all. It
has been described in the centralization risks section of the previous Morpheus audit how this can
also lead to stakes being locked.

5

https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/factories/Factory.sol#L16
https://github.com/MorpheusAIs/MOR20/pull/11
https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/L1/Distribution.sol#L87

The pool.initialReward variable for a given pool can be set by an admin through
Distribution.editPool() to a large number such that a call to Distribution._-
getCurrentPoolRate() will revert because of an overflow in functions such as
LinearDistributionIntervalDecrease.calculateMaxEndTime() and LinearDistributionInter-
valDecrease.- calculateFullPeriodReward(). Since Distribution._getCurrentPoolRate()
is invoked during Distribution.claim(), Distribution.stake(), Distribution.withdraw(), and
Distribution.editPool() the user's funds can remain locked in the contract without the
possibility for the pool to be edited back in a state that can recover the funds

Recommendation: The Distribution.editPool() function should check against the current pool
configuration to determine if the payout period has started.

@@ -84,7 +84,7 @@ contract Distribution is IDistribution, OwnableUpgradeable {

Pool storage pool = pools[poolId_];

require(pool.isPublic == pool_.isPublic, ”DS: invalid pool type”);

- if (pool_.payoutStart > block.timestamp) {

+ if (pool.payoutStart <= block.timestamp) {

It must also be determined which permissions exactly the Distribution owner should have. Provid-
ing sanity checks is a much weaker requirement than ensuring no stakes can be locked. If no stakes
should be locked, then all pool parameters must be checked and by testing it must be ensured that
changing the parameters to their limits cannot break calculations.

Morpheus: Fixed by removing the Distribution.editPool() function.

Renascence: By removing the editPool() function, users can rely on the parameters that a pool
is created with. After the pool creation, the protocol owner cannot edit the pool and prevent users
from withdrawing their stETH.

[M-3] The Factory administrator can upgrade frozen Proxies through upgrading the Factory
implementation

Context:

• Factory.sol

Description: Currently, in a project created throughMorpheus Factory contracts, the Distribution,
L1Sender, L2MessageReceiver, and L2TokenReceiver contracts are deployed behind a FreezableBea-
conProxy. The FreezableBeaconProxy allows the Factory to access the functions FreezableBeacon-
Proxy.freeze() and FreezableBeaconProxy.unfreeze(), which are intended to allow the project
deployer to opt in or out of Beacon upgrades. The current implementation of Factory allows only
the project deployer of a project to call Factory.freezePool() and Factory.unfreezePool().

However, the Factory administrator can upgrade Factory to an implementation that allows arbi-
trary access to Factory.freezePool() and Factory.unfreezePool(), thereby gaining access to any
project's FreezableBeaconProxy.freeze() and FreezableBeaconProxy.unfreeze() functions. This
means that any project deployer, regardless of whether they have their FreezableBeaconProxy
frozen or not, can have their Distribution, L1Sender, L2MessageReceiver, and L2TokenReceiver con-
tracts forced to undergo a Beacon upgrade to an arbitrary implementation set by the Factory ad-
ministrator. Recommendation: A potential remedy would be to remove the upgradeability of the
Factory contract. Another option to consider would be to allow the deployment owner to grant and

6

https://github.com/MorpheusAIs/MOR20/pull/11
https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/factories/Factory.sol#L16

revoke privileges from the factory, however, this alters the balance of privilege between the project
deployer and project owner.

Here are the changes to remove upgradeability.

Changes to Factory.sol.

@@ -2,9 +2,9 @@

pragma solidity ^0.8.20;

import {Create2} from ”@openzeppelin/contracts/utils/Create2.sol”;

-import {UUPSUpgradeable} from

”@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol”;

-import {OwnableUpgradeable} from

”@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol”;

-import {PausableUpgradeable} from

”@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol”;

+import {Ownable} from ”@openzeppelin/contracts/access/Ownable.sol”;

+import {Pausable} from ”@openzeppelin/contracts/security/Pausable.sol”;

+

import {UpgradeableBeacon} from

”@openzeppelin/contracts/proxy/beacon/UpgradeableBeacon.sol”;

import {DynamicSet} from

”@solarity/solidity-lib/libs/data-structures/DynamicSet.sol”;

@@ -13,7 +13,7 @@ import {Paginator} from

”@solarity/solidity-lib/libs/arrays/Paginator.sol”;

import {IFactory} from ”../interfaces/factories/IFactory.sol”;

import {IFreezableBeaconProxy, FreezableBeaconProxy} from

”../proxy/FreezableBeaconProxy.sol”;

-abstract contract Factory is IFactory, OwnableUpgradeable, PausableUpgradeable,

UUPSUpgradeable {

+abstract contract Factory is IFactory, Ownable, Pausable {

using DynamicSet for DynamicSet.StringSet;

using Paginator for DynamicSet.StringSet;

@@ -26,8 +26,6 @@ abstract contract Factory is IFactory, OwnableUpgradeable,

PausableUpgradeable,

mapping(address deployer => mapping(string protocol => mapping(string poolType =>

address))) private _proxyPools;

mapping(address deployer => DynamicSet.StringSet) private _protocols;

- function __Factory_init() internal onlyInitializing {}

-

/**

* @notice Returns contract to normal state.

*/

- function _authorizeUpgrade(address) internal view override onlyOwner {}

}

Changes to L1Factory.sol.

@@ -19,16 +19,7 @@ contract L1Factory is IL1Factory, Factory {

ArbExternalDeps public arbExternalDeps;

7

LzExternalDeps public lzExternalDeps;

- constructor() {

- _disableInitializers();

- }

-

- function L1Factory_init() external initializer {

- __Pausable_init();

- __Ownable_init();

- __UUPSUpgradeable_init();

- __Factory_init();

- }

+ constructor() {}

function setDepositTokenExternalDeps(

DepositTokenExternalDeps calldata depositTokenExternalDeps_

@@ -38,20 +29,17 @@ contract L1Factory is IL1Factory, Factory {

depositTokenExternalDeps = depositTokenExternalDeps_;

}

-

function setLzExternalDeps(LzExternalDeps calldata lzExternalDeps_) external

onlyOwner {

require(lzExternalDeps_.endpoint != address(0), ”L1F: invalid LZ endpoint”);

require(lzExternalDeps_.destinationChainId != 0, ”L1F: invalid chain ID”);

lzExternalDeps = lzExternalDeps_;

}

-

function setArbExternalDeps(ArbExternalDeps calldata arbExternalDeps_) external

onlyOwner {

require(arbExternalDeps_.endpoint != address(0), ”L1F: invalid ARB

endpoint”);

arbExternalDeps = arbExternalDeps_;

}

-

function setFeeConfig(address feeConfig_) external onlyOwner {

require(feeConfig_ != address(0), ”L1F: invalid fee config”);

Changes to L2Factory.sol.

8

@@ -19,16 +19,7 @@ contract L2Factory is IL2Factory, Factory {

mapping(address deployer => mapping(string protocol => address)) private _mor20;

- constructor() {

- _disableInitializers();

- }

-

- function L2Factory_init() external initializer {

- __Pausable_init();

- __Ownable_init();

- __UUPSUpgradeable_init();

- __Factory_init();

- }

+ constructor() {}

function setLzExternalDeps(LzExternalDeps calldata lzExternalDeps_) external

onlyOwner {

require(lzExternalDeps_.endpoint != address(0), ”L2F: invalid LZ endpoint”);

@@ -37,7 +28,6 @@ contract L2Factory is IL2Factory, Factory {

lzExternalDeps = lzExternalDeps_;

}

-

function setUniswapExternalDeps(UniswapExternalDeps calldata

uniswapExternalDeps_) external onlyOwner {

require(uniswapExternalDeps_.router != address(0), ”L2F: invalid UNI

router”);

require(uniswapExternalDeps_.nonfungiblePositionManager != address(0), ”L2F:

invalid NPM”);

Changes to IL1Factory.sol.

@@ -73,7 +73,6 @@ interface IL1Factory {

/**

* The function that initializes the contract.

*/

- function L1Factory_init() external;

/**

* The function to get fee config address.

Changes to IL2Factory.sol.

@@ -66,7 +66,6 @@ interface IL2Factory {

/**

* The function that initializes the contract.

*/

- function L2Factory_init() external;

/**

* The function that sets the LZ external dependencies.

9

Morpheus: We agree with this problem. We decided to change the permissions check for calling
freeze/unfreeze functions to solve it. Now FreezableBeaconProxy is fully responsible for this. It dy-
namically checks the current owner of the contract when calling functions. We realize the possible
problems if the owner() function is not present and we take this under our control. Because of this,
the Factory will remain a proxy and the corresponding functions will be removed.

Renascence: The factory can no longer bypass freezing of implementations. And the Freezable-
BeaconProxy correctly checks that the protocol owner has not frozen the implementation.

It is noteworthy that this change removes the ability to freeze the protocol deployment from the
protocol deployer. Protocol deployers do no longer hold any privileges. Instead, protocol owners do.

10

https://github.com/MorpheusAIs/MOR20/pull/11

Low Risk

[L-1] FeeConfig.__FeeConfig_init() is missing a baseFee constraint check

Context:

• FeeConfig.sol

Description: The functions FeeConfig.setFee() and FeeConfig.setBaseFee() enforce that the fee
is less than PRECISION. However, the initializer function FeeConfig.__FeeConfig_init() does not. A
check should also be performed during initialization to prevent a misconfiguration of the baseFee.
Recommendation:

@@ -16,6 +16,8 @@ contract FeeConfig is IFeeConfig, OwnableUpgradeable {

function __FeeConfig_init(address treasury_, uint256 baseFee_) external

initializer {

__Ownable_init();

+ require(baseFee_ <= PRECISION, ”FC: invalid base fee”);

treasury = treasury_;

baseFee = baseFee_;

Morpheus: Fixed.

Renascence: The initializer function now performs the recommended check by calling setBase-
Fee() instead of setting the baseFee storage variable directly.

[L-2] Public functions in FreezableBeaconProxy can lead to function selector collisionwith im-
plementation

Context:

• FreezableBeaconProxy.sol#L31-L60

Description: FreezableBeaconProxy extends OZ's BeaconProxy and adds functionality for the _FAC-
TORY to freeze and unfreeze the implementation. The problem is that the new public functions can
collide with functions in the implementation, such that users that want to interact with the imple-
mentation logic, instead execute the logic in the proxy.

The _FACTORY owner is trusted to not set an implementation that causes a collision, that's why the
issue is ”Low” severity. Still, it is highly encouraged to keep the FreezableBeaconProxy fully trans-
parent.

Recommendation: It is recommended to adopt a pattern like in OZ's TransparentUpgradeableProxy,
that allows the _FACTORY to call privileged functions, while preserving transparency for other users.

diff --git a/contracts/proxy/FreezableBeaconProxy.sol

b/contracts/proxy/FreezableBeaconProxy.sol

index aee4a70..f50dd96 100644

--- a/contracts/proxy/FreezableBeaconProxy.sol

+++ b/contracts/proxy/FreezableBeaconProxy.sol

@@ -11,11 +11,7 @@ import {IFreezableBeaconProxy} from

”../interfaces/proxy/IFreezableBeaconProxy.s

* The FreezableBeaconProxy is a beacon proxy contract with freeze/unfreeze features.

11

https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/L1/FeeConfig.sol
https://github.com/MorpheusAIs/MOR20/pull/11
https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/proxy/FreezableBeaconProxy.sol#L31-L60
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/dbb6104ce834628e473d2173bbc9d47f81a9eec3/contracts/proxy/transparent/TransparentUpgradeableProxy.sol#L93-L103

* When the FreezableBeaconProxy is being frozen, the actual implementation is stored

in the storage slot.

*/

-contract FreezableBeaconProxy is IFreezableBeaconProxy, BeaconProxy, Context {

- modifier onlyFactory() {

- _onlyFactory();

- _;

- }

+contract FreezableBeaconProxy is BeaconProxy, Context {

bytes32 private constant _FREEZABLE_BEACON_PROXY_SLOT =

keccak256(”freezable.beacon.proxy.slot”);

@@ -25,11 +21,23 @@ contract FreezableBeaconProxy is IFreezableBeaconProxy,

BeaconProxy, Context {

_FACTORY = _msgSender();

}

+ function _fallback() internal virtual override {

+ if (msg.sender == _FACTORY) {

+ if (msg.sig == IFreezableBeaconProxy.freeze.selector) {

+ freeze();

+ } else if (msg.sig == IFreezableBeaconProxy.unfreeze.selector) {

+ unfreeze();

+ }

+ } else {

+ super._fallback();

+ }

+ }

+

/**

* The function to freeze the implementation.

*/

- function freeze() external onlyFactory {

- require(!isFrozen(), ”FBP: already frozen”);

+ function freeze() internal {

+ require(StorageSlot.getAddressSlot(_FREEZABLE_BEACON_PROXY_SLOT).value ==

address(0), ”FBP: already frozen”);

StorageSlot.getAddressSlot(_FREEZABLE_BEACON_PROXY_SLOT).value =

_implementation();

}

@@ -37,37 +45,17 @@ contract FreezableBeaconProxy is IFreezableBeaconProxy,

BeaconProxy, Context {

/**

* The function to unfreeze the implementation.

*/

- function unfreeze() external onlyFactory {

- require(isFrozen(), ”FBP: not frozen”);

+ function unfreeze() internal {

+ require(StorageSlot.getAddressSlot(_FREEZABLE_BEACON_PROXY_SLOT).value !=

address(0), ”FBP: not frozen”);

delete StorageSlot.getAddressSlot(_FREEZABLE_BEACON_PROXY_SLOT).value;

}

- /**

- * The function to check if the implementation is frozen.

- * @return The boolean value to indicating if the implementation is frozen.

12

- */

- function isFrozen() public view returns (bool) {

- return StorageSlot.getAddressSlot(_FREEZABLE_BEACON_PROXY_SLOT).value !=

address(0);

- }

-

- /**

- * The function to get the implementation.

- * @return The implementation address.

- */

- function implementation() external view returns (address) {

- return _implementation();

- }

-

function _implementation() internal view override returns (address) {

- if (isFrozen()) {

+ if (StorageSlot.getAddressSlot(_FREEZABLE_BEACON_PROXY_SLOT).value !=

address(0)) {

return StorageSlot.getAddressSlot(_FREEZABLE_BEACON_PROXY_SLOT).value;

}

return IBeacon(_getBeacon()).implementation();

}

-

- function _onlyFactory() internal view {

- require(_msgSender() == _FACTORY, ”FBP: not factory”);

- }

}

If the isFrozen() and implementation() functions should be publicly available, they can be imple-
mented in the _FACTORY either by retrieving the values from FreezableBeaconProxy by adding new
internal functions and extending _fallback() or by storing the necessary information in Factory.

Morpheus: We decided to change this point partially, so as not to degrade the readability of the
code. We have changed the function names to more specific names to decrease collision chances.
Also, developers will check selectors for collision in the future.

Renascence: There are no function selector clashes currently. Therefore it is sufficient to check
whether upgrades introduce such clashes, even though having public functions in the proxy is not
best practice.

13

https://github.com/MorpheusAIs/MOR20/pull/11

Informational

[I-1] Ambiguity in the fee constraint in FeeConfig.sol

Context:

• FeeConfig.sol#L24

• FeeConfig.sol#L36

Description: FeeConfig.setFee() enforces that the fee is less than or equal to PRECISION, while
FeeConfig.setBaseFee() enforces that the fee is strictly less than PRECISION. For consistency, it is
best practice to have both functions restrict the fee using the same boundary condition - either less
than or equal to PRECISION or strictly less than PRECISION. Recommendation:

@@ -33,7 +35,7 @@ contract FeeConfig is IFeeConfig, OwnableUpgradeable {

}

function setBaseFee(uint256 baseFee_) external onlyOwner {

- require(baseFee_ < PRECISION, ”FC: invalid base fee”);

+ require(baseFee_ <= PRECISION, ”FC: invalid base fee”);

baseFee = baseFee_;

Morpheus: Fixed.

Renascence: The setBaseFee() function now checks for <= PRECISION. In addition, the same check
is now applied in the initializer function by calling setBaseFee() instead of setting the baseFee stor-
age variable directly.

[I-2] abi.encode() should be used in Factory._calculatePoolSalt() to avoid hash collisions.

Context:

• Factory.sol#L209

Description: Factory._calculatePoolSalt() uses the strings protocol_ and poolType_ to com-
pute the salt for deployment. However, using abi.encodePacked() can lead to hash collisions de-
pending on what strings are added as valid poolType_. Currently, there are no immediate security
concerns, but preventing such hash collisions is preferable since the Factory contracts are upgrade-
able and could have extended logic in the future. Recommendation:

@@ -206,7 +206,7 @@ abstract contract Factory is IFactory, OwnableUpgradeable,

PausableUpgradeable,

string memory protocol_,

string memory poolType_

) internal pure returns (bytes32) {

- return keccak256(abi.encodePacked(sender_, protocol_, poolType_));

+ return keccak256(abi.encode(sender_, protocol_, poolType_));

}

Morpheus: Acknowledged. We decided not to change this point because the current implementa-
tion is protected against collision.

14

https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/L1/FeeConfig.sol#L24
https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/L1/FeeConfig.sol#L36
https://github.com/MorpheusAIs/MOR20/pull/11
https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/factories/Factory.sol#L209

[I-3] FeeConfig.sol is missing a call to _disableInitializers() in the constructor

Context:

• FeeConfig.sol#L16

Description: The best practice in contracts that inherit from Initializable is to disable the ini-
tializers since if left uninitialized they can be invoked in the implementation contract by an attacker.
For example, there is a past vulnerability disclosure that demonstrates how initializers getting called
in the implementation can lead to contract takeover where the attacker can appoint an owner and
would self-destruct the implementation, therefore, bricking the Proxy: OZ post-mortem. Although
this issue has been fixed from OZ version 4.3.2 it's still best practice to call Initializable._dis-
ableInitializers() in a constructor in the implementation.

Initializable.sol

* [CAUTION]

* ====

* Avoid leaving a contract uninitialized.

*

* An uninitialized contract can be taken over by an attacker. This applies to both a

proxy and its implementation

* contract, which may impact the proxy. To prevent the implementation contract from

being used, you should invoke

* the {_disableInitializers} function in the constructor to automatically lock it

when it is deployed:

*

Recommendation:

@@ -12,9 +12,13 @@ contract FeeConfig is IFeeConfig, OwnableUpgradeable {

uint256 public baseFee;

mapping(address => uint256) public fees;

+ constructor() {

+ _disableInitializers();

+ }

Morpheus: Fixed.

Renascence: The recommendation has been implemented.

15

https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/L1/FeeConfig.sol#L16
https://forum.openzeppelin.com/t/uupsupgradeable-vulnerability-post-mortem/15680
https://github.com/MorpheusAIs/MOR20/pull/11

[I-4] Code Improvements

Context:

• FeeConfig.sol#L16

Description: The name of FeeConfig.__FeeConfig_init() can be changed to FeeConfig_init() to
maintain code consistency with the rest of the contracts.

Recommendation:

@@ -12,9 +12,11 @@ contract FeeConfig is IFeeConfig, OwnableUpgradeable {

uint256 public baseFee;

mapping(address => uint256) public fees;

-

- function __FeeConfig_init(address treasury_, uint256 baseFee_) external

initializer {

+

+ function FeeConfig_init(address treasury_, uint256 baseFee_) external initializer

{

Morpheus: Fixed.

Renascence: The recommendation has been implemented.

[I-5] FeeConfig is deployed behind a ERC1967 proxy but cant be upgraded

Context:

• FeeConfig.sol#L10

• FeeConfig.test.ts#L27-L29

Description: In the test files, FeeConfig is deployed behind a ERC1967 proxy which needs to have
its upgrade logic implemented in the implementation. However, FeeConfig does not inherit from
UUPSUpgradeable, so it can't be upgraded.

Recommendation: It is possible to not deploy FeeConfig behind a proxy. Another option is to inherit
from UUPSUpgradeable andmake it upgradeable. Note that making FeeConfig upgradeable does not
impact centralization concerns. Yes, it is possible that FeeConfig is made to revert but the outcome
is equivalent to setting the fee percentage to 100% - in both cases no rewards are bridged to L2. It
is important that Distribution compiles the call into FeeConfig as a staticcall, such that FeeConfig
cannot reenter even when upgraded. Currently the call is compiled into staticcall because getFee-
AndTreasury() is declared as view.

Morpheus: Fixed by using UUPSUpgradeable.

Renascence: FeeConfig now inherits from UUPSUpgradeablewhich fixes the issue as recommended.

16

https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/L1/FeeConfig.sol#L16
https://github.com/MorpheusAIs/MOR20/pull/11
https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/contracts/L1/FeeConfig.sol#L10
https://github.com/MorpheusAIs/MOR20/blob/64643c14685484713ba2b0852e45d687f2cd064a/test/L1/FeeConfig.test.ts#L27-L29
https://github.com/MorpheusAIs/MOR20/pull/11

4.1 Centralization Risks

4.1.1 Factory Administrator Must Be Trusted

The Factory administrator can change the implementation of any FreezableBeaconProxy to an arbi-
trary implementation if the project owner of the FreezableBeaconProxy hasn't opted out from Bea-
con upgrades through FreezableBeaconProxy.freezeProxy_(). The contracts deployed behind a
FreezableBeaconProxy are Distribution, L1Sender, L2MessageReceiver, and L2TokenReceiver.

4.1.2 Fee Administrator Must Be Trusted

The fee administrator is the owner of FeeConfig. They have full control over the stETH earned from
rebasings of any MOR20project deployed through the Factory contracts. However, the fee administra-
tor cannot cause an impact on the staked stETH. Even by upgrading the FeeConfig implementation,
the worst impact possible is that unclaimed yield gets lost which is the same as setting the fee
percentage to 100%.

4.1.3 Project Owner Must Be Trusted

The owner of a MOR20 project can use FreezableBeaconProxy.freezeProxy_() and FreezableBea-
conProxy.unfreezeProxy_() during deployment or after deployment to opt in or out of a Freez-
ableBeaconProxy for Beacon implementation upgrades managed by the Factory administrator. The
contracts that the project owner can freeze or unfreeze are Distribution, L1Sender, L2MessageRe-
ceiver, and L2TokenReceiver. The project ownermust be trusted to exercise due diligence, ensuring
that any upgrades of the Beacon-provided implementation by the Factory are compatible with the
rest of the contracts in a MOR20 project.

Once set, the project owner is not able to change pool parameters in Distribution. This means
that the project owner cannot interfere with users withdrawing their staked stETH. Unclaimed yield
on the other hand can be affected by the project owner, who can prevent users from claiming their
yield in various ways.

The project owner is in control of the generated staking yield in Distribution.sol. The project
owner must be trusted to utilize the yield by initiating a cross-chain transfer through calling Dis-
tribution.bridgeOverplus() andmanaging the funds through the L2TokenReceiver contract on the
destination chain.

The project owner can modify the L1Sender LayerZero config with arbitrary zroPaymentAddress and
adapterParams. Configuring with invalid values can lead to L1Sender.sendMintMessage() reverting,
causing users to be unable to claim their earned reward tokens.

The project owner canmodify config.sender in L2MessageReceiver, potentially appointing a custom
contract that can mint an arbitrary amount of the reward token.

The project owner can call MOR20.updateMinter() and enable an arbitrary contract to access the
MOR.mint() function.

The project owner can withdraw all of the yield that is transferred to L2TokenReceiver
by calling L2TokenReceiver.withdrawToken(). The project owner can also transfer any
Uniswap Non-Fungible Position from L2TokenReceiver to an arbitrary address through
L2TokenReceiver.withdrawTokenId().

17

4.2 Systemic Risks

MOR20deployments integratewith LayerZero, the Arbitrumbridge to bridgewstETH fromEthereum
to Arbitrum and Uniswap V3. None of these integrations can prevent users from withdrawing their
staked tokens according to the pool's parameters. The integrations can only interfere with reward
payments.

On the other hand, Lidomust be fully trusted as stETH is the token that is staked. If there is an issue
in Lido, the staked funds are directly affected.

18

	Introduction
	About Renascence
	Disclaimer
	Risk Classification

	Executive Summary
	About MOR20
	Overview
	Issues Found

	Findings Summary
	Findings
	Centralization Risks
	Systemic Risks

