

INTERNATIONAL STANDARD ISO 2859-1:1999 TECHNICAL CORRIGENDUM 1

Published 2001-03-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • MEXCHAPOCHAR OPFAHUSALURI FIO CTAHCAPTUSALURI • ORGANISATION INTERNATIONALE DE NORMALISATION

Sampling procedures for inspection by attributes —

Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection

TECHNICAL CORRIGENDUM 1

Règles d'échantillonnage pour les contrôles par attributs — Partie 1: Procédures d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)

RECTIFICATIF TECHNIQUE 1

Technical Corrigendum 1 to International Standard ISO 2859-1:1999 was prepared by Technical Committee ISO/TC 69, *Applications of statistical methods*, Subcommittee SC 5, *Acceptance sampling*.

Page 83, Table 11-C

In the column "Sample size" corresponding to the row for sample size code letter H, replace the value "50" with the value "20".

ICS 03.120.30

Ref. No. ISO 2859-1:1999/Cor.1:2001(E)

© ISO 2001 – All rights reserved

Printed in Switzerland

INTERNATIONAL STANDARD

ISO 2859-1

Second edition 1999-11-15

Sampling procedures for inspection by attributes —

Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection

Règles d'échantillonnage pour les contrôles par attributs —

Partie 1: Procédures d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)

This material is reproduced from ISO documents under International Organization for Standardization (ISO) Copyright License Number HIS/CC/1996. Not for resale. No part of these ISO documents may be reproduced in any form, electronic retrieval system or otherwise, except as allowed in the copyright law of the country of use, or with the prior written consent of ISO (Case postale 56,1211 Geneva 20, Switzerland Fax +41 22 734 10 79), IHS or the ISO Licensor's members.

Reference number ISO 2859-1:1999(E)

STD.IS0 2859-1-ENGL 1999 🗰 4851903 0803850 100 🖿

ISO 2859-1:1999(E)

Contents

1 Scope	1
2 Normative references	2
3 Terms, definitions and symbols	2
4 Expression of nonconformity	7
5 Acceptance quality limit (AQL)	8
6 Submission of product for sampling	8
7 Acceptance and non-acceptance	9
8 Drawing of samples	9
9 Normal, tightened and reduced inspection	. 10
10 Sampling plans	.13
11 Determination of acceptability	.14
12 Further information	.14
13 Fractional acceptance number plans for single sampling (optional)	16
Tables	
1 Sample size code letters	

13	ample size code letters	. 19
2-A	Single sampling plans for normal inspection (Master table)	.20
2-B	Single sampling plans for tightened inspection (Master table)	.21
2-C	Single sampling plans for reduced inspection (Master table)	.22
3-A	Double sampling plans for normal inspection (Master table)	.23
3-B	Double sampling plans for tightened inspection (Master table)	.24
3-C	Double sampling plans for reduced inspection (Master table)	25
4-A	Multiple sampling plans for normal inspection (Master table)	26
4-B	Multiple sampling plans for tightened inspection (Master table)	29

© ISO 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet iso@iso.ch

Printed in Switzerland

4-C Multiple sampling plans for reduced inspection (Master table)	
5-A Producer's risk for normal inspection	
5-B Producer's risk for tightened inspection	
5-C Producer's risk for reduced inspection	
6-A Consumer's risk quality for normal inspection	
6-B Consumer's risk quality for tightened inspection	
6-C Consumer's risk quality for reduced inspection	
7-A Consumer's risk quality for normal inspection	
7-B Consumer's risk quality for tightened inspection	
7-C Consumer's risk quality for reduced inspection	
8-A Average outgoing quality limits for normal inspection (Single sampling pla	ıns) 44
8-B Average outgoing quality limits for tightened inspection (Single sampling	plans)45
9 Average sample size curves for single, double and multiple sampling (norma inspection)	ıl, tightened and reduced 46
10-A Tables for sample size code letter A (Individual plans)	
10-B Tables for sample size code letter B (Individual plans)	
10-C Tables for sample size code letter C (Individual plans)	
10-D Tables for sample size code letter D (Individual plans)	54
10-E Tables for sample size code letter E (Individual plans)	
10-F Tables for sample size code letter F (Individual plans)	
10-G Tables for sample size code letter G (Individual plans)	
10-H Tables for sample size code letter H (Individual plans)	
10-J Tables for sample size code letter J (Individual plans)	64
10-K Tables for sample size code letter K (Individual plans)	
10-L Tables for sample size code letter L (Individual plans)	
10-M Tables for sample size code letter M (Individual plans)	70
10-N Tables for sample size code letter N (Individual plans)	
10-P Tables for sample size code letter P (Individual plans)	
10-Q Tables for sample size code letter Q (Individual plans)	
10-R Tables for sample size code letter R (Individual plans)	
10-S Tables for sample size code letter S (Individual plans)	

11-A Single sampling plans for normal inspection (Auxiliary master table)	81
11-B Single sampling plans for tightened inspection (Auxiliary master table)	82
11-C Single sampling plans for reduced inspection (Auxiliary master table)	83
12 Scheme OC curves (Normalized)	84
Annex A (informative) Example for non-constant sampling plan	85
Bibliography	87

1

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 2859-1 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods, Subcommittee SC 5, Acceptance sampling.

This second edition of ISO 2859-1 cancels and replaces the first edition (ISO 2859-1:1989) of which it constitutes a technical revision.

Significant changes in this edition include:

- a new procedure for switching from normal to reduced inspection;
- a reference to skip-lot sampling as an alternative to reduced inspection;
- ---- the term "limiting quality" has been changed to "consumer's risk quality" in the heading of Tables 6-A, 6-B, 6-C, 7-A, 7-B and 7-C;
- a new table has been added giving producer's risk as the probability of rejection of lots with percent nonconforming equal to the AQL;
- optional fractional acceptance number plans have been added; the purpose of these plans is to provide a consistent progression from the plans for acceptance number zero to the acceptance number 1 plans. The fractional acceptance number plans are found in Tables 11-A, 11-B and 11-C, where they take the place of the arrows in the corresponding positions in tables 2-A, 2-B and 2-C;
- reduced plans have been changed to eliminate the gap between the acceptance and rejection numbers;
- some changes have been made to the double sampling plans to provide a smaller average sample size;
- multiple sampling plans have been changed to five stages rather than seven. The change has not increased the average sample size. Some of the new plans have a smaller average sample size than their counterparts in the previous edition;
- --- scheme operating characteristic curves have been added as Table 12.

ISO 2859 consists of the following parts, under the general title Sampling procedures for inspection by attributes:

- --- Part 0: Introduction to the ISO 2859 attribute sampling system
- Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection
- Part 2: Sampling plans indexed by limiting quality (LQ) for isolated lot inspection

--- Part 3: Skip-lot sampling procedures

It is highly recommended that this part of ISO 2859 be used together with ISO 2859-0, which contains illustrative examples.

Annex A of this part of ISO 2859 is for information only.

INTERNATIONAL STANDARD © ISO

ISO 2859-1:1999(E)

Sampling procedures for inspection by attributes —

Part 1:

Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection

1 Scope

1.1 This part of ISO 2859 specifies an acceptance sampling system for inspection by attributes. It is indexed in terms of the acceptance quality limit (AQL).

Its purpose is to induce a supplier through the economic and psychological pressure of lot non-acceptance to maintain a process average at least as good as the specified acceptance quality limit, while at the same time providing an upper limit for the risk to the consumer of accepting the occasional poor lot.

Sampling schemes designated in this part of ISO 2859 are applicable, but not limited, to inspection of

- end items,
- components and raw materials,
- operations,
- materials in process,
- supplies in storage,
- maintenance operations,
- data or records, and
- administrative procedures.

1.2 These schemes are intended primarily to be used for a continuing series of lots, that is, a series long enough to allow the switching rules (9.3) to be applied. These rules provide:

- a) a protection to the consumer (by means of a switch to tightened inspection or discontinuation of sampling inspection) should a deterioration in quality be detected;
- b) an incentive (at the discretion of the responsible authority) to reduce inspection costs (by means of a switch to reduced inspection) should consistently good quality be achieved.

Sampling plans in this part of ISO 2859 may also be used for the inspection of lots in isolation but, in this case the user is strongly advised to consult the operating characteristic curves to find a plan that will yield the desired protection (see 12.6). In that case, the user is also referred to the sampling plans indexed by limiting quality (LQ) given in ISO 2859-2.

© ISO

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 2859. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 2859 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 2859-3:1991, Sampling procedures for inspection by attributes --- Part 3: Skip-lot sampling procedures.

ISO 3534-1:1993, Statistics — Vocabulary and symbols — Part 1: Probability and general statistical terms.

ISO 3534-2:1993, Statistics — Vocabulary and symbols — Part 2: Statistical quality control.

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this part of ISO 2859, the terms and definitions given in ISO 3534-1 and ISO 3534-2 and the following apply.

NOTE For ease of reference, the definitions of some of these terms are quoted from ISO 3534-1 and ISO 3534-2, while others are redefined or newly defined.

3.1.1

inspection

activity such as measuring, examining, testing or gauging one or more characteristics of a product or service, and comparing the results with specified requirements in order to establish whether conformity is achieved for each characteristic

3.1.2

original inspection

first inspection of a lot according to the provisions of this part of ISO 2859

NOTE This is to be distinguished from the inspection of a lot which has been resubmitted after previous non-acceptance.

3.1.3

inspection by attributes

inspection whereby either the item is classified simply as conforming or nonconforming with respect to a specified requirement or set of specified requirements, or the number of nonconformities in the item is counted

NOTE Inspection by attributes includes inspection for conformity of items as well as inspection for number of nonconformities per hundred items.

3.1.4

item

that which can be individually described and considered

EXAMPLES

- a physical item;
- a defined quantity of material;
- a service, an activity or a process;
- an organization or a person; or
- ---- some combination thereof.

© ISO

ISO 2859-1:1999(E)

3.1.5 nonconformity

non-fulfilment of a specified requirement

In some situations specified requirements coincide with customer usage requirements (see defect, 3.1.6). In other situations they may not coincide, being either more or less stringent, or the exact relationship between the two is not fully NOTE 1 known or understood.

NOTE 2 Nonconformity will generally be classified according to its degree of seriousness such as:

Class A: those nonconformities of a type considered to be of the highest concern; in acceptance sampling such types of nonconformities will be assigned a very small acceptance quality limit value;

Class B: those nonconformities of a type considered to have the next lower degree of concern; therefore, these can be assigned a larger acceptance quality limit value than those in class A and smaller than in class C, if a third class exists, etc.

NOTE 3 Adding characteristics and classes of nonconformities will generally affect the overall probability of acceptance of the product.

The number of classes, the assignment into a class, and the choice of acceptance quality limit for each class, NOTE 4 should be appropriate to the quality requirements of the specific situation.

3.1.6

defect

non-fulfilment of an intended usage requirement

NOTE 1 The term "defect" is appropriate for use when a quality characteristic of a product or service is evaluated in terms of usage (as contrasted to conformance to specifications).

Since the term "defect" now has definite meaning within the law, it should not be used as a general term. NOTE 2

3.1.7

nonconforming item

item with one or more nonconformities

Nonconforming items will generally be classified by their degree of seriousness such as: NOTE

Class A: an item which contains one or more nonconformities of class A and may also contain nonconformities of class B and/or class C, etc.;

Class B: an item which contains one or more nonconformities of class B and may also contain nonconformities of class C, etc. but contains no nonconformity of class A.

3.1.8

percent nonconforming

(in a sample) one hundred times the number of nonconforming items in the sample divided by the sample size, viz:

$$\frac{d}{n} \times 100$$

where

is the number of nonconforming items in the sample; d

is the sample size п

3.1.9

percent nonconforming

(in a population or lot) one hundred times the number of nonconforming items in the population or lot divided by the population or lot size, viz:

$$100p = 100\frac{D}{N}$$

where

p is the proportion of nonconforming items;

D is the number of nonconforming items in the population or lot;

N is the population or lot size

NOTE 1 In this part of ISO 2859 the terms **percent nonconforming** (3.1.8 and 3.1.9) or **nonconformities per 100 items** (3.1.10 and 3.1.11) are mainly used in place of the theoretical terms "proportion of nonconforming items" and "nonconformities per item" because the former terms are the most widely used.

NOTE 2 This definition differs from that found in ISO 3534-2.

3.1.10

nonconformities per 100 items

(in a sample) one hundred times the number of nonconformities in the sample divided by the sample size, viz:

$$100\frac{d}{n}$$

where

d is the number of nonconformities in the sample;

n is the sample size

3.1.11

nonconformities per 100 items

(in a population or lot) one hundred times the number of nonconformities in the population or lot divided by the population or lot size, viz:

$$100p = 100\frac{D}{N}$$

where

- *p* is the number of nonconformities per item;
- D is the number of nonconformities in the population or lot;
- N is the population or lot size

NOTE An item may contain one or more nonconformities.

3.1.12

responsible authority

concept used to maintain the neutrality of this part of ISO 2859 (primarily for specification purposes), irrespective of whether it is being invoked or applied by the first, second or third party

NOTE 1 The responsible authority may be:

- a) the quality department within a supplier's organization (first party);
- b) the purchaser or procurement organization (second party);
- c) an independent verification or certification authority (third party);

any of a), b) or c), differing according to function (see Note 2) as described in a written agreement between two of the d) parties, for example a document between supplier and purchaser.

NOTE 2 The duties and functions of a responsible authority are outlined in this part of ISO 2859 (see 5.2, 6.2, 7.2, 7.3, 7.5, 7.6, 9.1, 9.3.3, 9.4, 10.1, 10.3, 13.1).

3.1.13

lot

definite amount of some product, material or service, collected together

An inspection lot may consist of several batches or parts of batches. NOTE

3.1.14

lot size

number of items in a lot

3.1.15

sample

set of one or more items taken from a lot and intended to provide information on the lot

3.1.16

sample size

number of items in the sample

3.1.17

sampling plan

combination of sample size(s) to be used and associated lot acceptability criteria

A single sampling plan is a combination of sample size and acceptance and rejection numbers. A double sampling NOTE 1 plan is a combination of two sample sizes and acceptance and rejection numbers for the first sample and for the combined sample.

A sampling plan does not contain the rules on how to draw the sample. NOTE 2

For the purposes of this part of ISO 2859, a distinction should be made between the terms sampling plan (3.1.17), NOTE 3 sampling scheme (3.1.18) and sampling system (3.1.19).

3.1.18

sampling scheme

combination of sampling plans with rules for changing from one plan to another

NOTE See 9.3.

3.1.19

sampling system

collection of sampling plans, or of sampling schemes, each with its own rules for changing plans, together with sampling procedures including criteria by which appropriate plans or schemes may be chosen

This part of ISO 2859 is a sampling system indexed by lot-size ranges, inspection levels and AQLs. A sampling NOTE system for LQ plans is given in ISO 2859-2.

3.1.20

normal inspection

use of a sampling plan (3.1.17) with an acceptance criterion that has been devised to secure the producer a high probability of acceptance when the process average (3.1.25) of the lot is better than the acceptance quality limit (3.1.26)

Normal inspection is used when there is no reason to suspect that the process average (3.1.25) differs from an NOTE acceptable level.

3.1.21

tightened inspection

use of a **sampling plan** (3.1.17) with an acceptance criterion that is tighter than that for the corresponding plan for **normal inspection** (3.1.20)

NOTE Tightened inspection is invoked when the inspection results of a predetermined number of consecutive lots indicate that the process average (3.1.25) might be poorer than the AQL (3.1.26).

3.1.22

reduced inspection

use of a **sampling plan** (3.1.17) with a **sample size** (3.1.16) that is smaller than that for the corresponding plan for **normal inspection** (3.1.20) and with an acceptance criterion that is comparable to that for the corresponding plan for normal inspection

NOTE 1 The discriminatory ability under reduced inspection is less than under normal inspection.

NOTE 2 Reduced inspection may be invoked when the inspection results of a predetermined number of consecutive lots indicate that the **process average** (3.1.25) is better than the **AQL** (3.1.26).

3.1.23

switching score

indicator that is used under normal inspection to determine whether the current inspection results are sufficient to allow for a switch to reduced inspection

NOTE See 9.3.3.

3.1.24

acceptance score

indicator that is used for fractional acceptance number plans to determine lot acceptability

NOTE See 13.2.1.2.

3.1.25

process average

process level averaged over a defined time period or quantity of production

[ISO 3534-2:1993, 3.1.2]

NOTE In this part of ISO 2859 the process average is the quality level (percent nonconforming or number of nonconformities per hundred items) during a period when the process is in a state of statistical control.

3.1.26 acceptance quality limit AQL

quality level that is the worst tolerable process average when a continuing series of lots is submitted for acceptance sampling

NOTE 1 This concept only applies when a sampling scheme with rules for switching and for discontinuation, such as in ISO 2859-1 or ISO 3951, is used.

NOTE 2 Although individual lots with quality as bad as the acceptance quality limit may be accepted with fairly high probability, the designation of an acceptance quality limit does not suggest that this is a desirable quality level. Sampling schemes found in International Standards such as this part of ISO 2859, with their rules for switching and for discontinuation of sampling inspection, are designed to encourage suppliers to have process averages consistently better than the AQL. Otherwise, there is a high risk that the inspection severity will be switched to tightened inspection under which the criteria for lot acceptance become more demanding. Once on tightened inspection, unless action is taken to improve the process, it is very likely that the rule requiring discontinuation of sampling inspection pending such improvement will be invoked.

3.1.27 consumer's risk quality CRQ

lot or process quality level that in the sampling plan corresponds to a specified consumer's risk

6

NOTE Consumer's risk is usually 10 %.

3.1.28 limiting quality

LQ

when a lot is considered in isolation, a quality level which for the purposes of sampling inspection is limited to a low probability of acceptance

3.2 Symbols and abbreviations

The symbols and abbreviations used in this part of ISO 2859-1 are as follows:

Ac	acceptance number
AQL	acceptance quality limit (in percent nonconforming items or in nonconformities per hundred items)
AOQ	average outgoing quality (in percent nonconforming items or in nonconformities per hundred items)
AOQL	average outgoing quality limit (in percent nonconforming items or in nonconformities per hundred items)
CRQ	consumer's risk quality (in percent nonconforming items or in nonconformities per hundred items)
d	number of nonconforming items (or nonconformities) found in a sample from a lot
D	number of nonconforming items in a lot
LQ	limiting quality (in percent nonconforming items or in nonconformities per hundred items)
Ν	lot size
n	sample size
р	process average
p _x	quality level for which the probability of acceptance is x , where x is a fraction
P _a	probability of acceptance (in percent)
Re	rejection number
	the sample.

NOTE The symbol *n* may be accompanied by a subscript. Numerical subscripts 1 to 5 denote the first to the fifth sample, respectively. In general, n_j is the size of the i^{th} sample in double or multiple sampling.

4 Expression of nonconformity

4.1 General

The extent of nonconformity shall be expressed either in terms of percent nonconforming (see 3.1.8 and 3.1.9) or in terms of nonconformities per 100 items (see 3.1.10 and 3.1.11). Tables 7, 8 and 10 are based on the assumption that nonconformities occur randomly and with statistical independence. If it is known that one nonconformity in an item could be caused by a condition also likely to cause others, the items shall be considered just as conforming or not and multiple nonconformities ignored.

4.2 Classification of nonconformities

Since most acceptance sampling involves evaluation of more than one quality characteristic, and since they may differ in importance in terms of quality and/or economic effects, it is often desirable to classify the types of nonconformities according to agreed classes as defined in 3.1.5. The number of classes, the assignment of nonconformities into classes, and the choice of AQL for each class should be appropriate to the quality requirements of the specific situation.

5 Acceptance quality limit (AQL)

5.1 Use and application

The AQL, together with the sample size code letter (see 10.2), is used for indexing the sampling plans and schemes provided in this part of ISO 2859.

When a specific value of the AQL is designated for a certain nonconformity or group of nonconformities, it indicates that the sampling scheme will accept the great majority of the lots submitted, provided the quality level (percent nonconforming or nonconformities per 100 items) in these lots is no greater than the designated value of AQL. The sampling plans provided are so arranged that the probability of acceptance at the designated AQL value depends upon the sample size for a given AQL, being generally higher for large samples than for small ones.

The AQL is a parameter of the sampling scheme and should not be confused with the process average that describes the operating level of the manufacturing process. It is expected that the process average will be better than the AQL to avoid excessive rejections under this system.

CAUTION: The designation of an AQL shall not imply that the supplier has the right knowingly to supply any nonconforming item.

5.2 Specifying AQLs

The AQL to be used shall be designated in the contract or by (or in accordance with the prescription laid down by) the responsible authority. Different AQLs may be designated for groups of nonconformities considered collectively or for individual nonconformities as defined in 3.1.5. The classification into groups should be appropriate to the quality requirements of the specific situation. An AQL for a group of nonconformities may be designated in addition to AQLs for individual nonconformities, or subgroups, within that group. When the quality level is expressed as percent of nonconforming items (3.1.8 and 3.1.9), AQL values shall not exceed 10 % nonconforming. When the quality level is expressed as number of nonconformities per 100 items (3.1.10 and 3.1.11), AQL values up to 1 000 nonconformities per 100 items may be used.

5.3 Preferred AQLs

The series of values of AQLs given in the tables are known as the preferred series of AQLs. If, for any product, an AQL is designated other than one of these values, these tables are not applicable.

6 Submission of product for sampling

6.1 Formation of lots

The product shall be assembled into identifiable lots, sub-lots, or in such other manner as may be laid down (see 6.2). Each lot shall, as far as is practicable, consist of items of a single type, grade, class, size and composition, manufactured under uniform conditions at essentially the same time.

6.2 Presentation of lots

The formation of the lots, the lot size and the manner in which each lot shall be presented and identified by the supplier shall be designated or approved by, or according to, the responsible authority. As necessary, the supplier shall provide adequate and suitable storage space for each lot, equipment needed for proper identification and presentation, and personnel for all handling of product required for drawing of samples.

7 Acceptance and non-acceptance

7.1 Acceptability of lots

Acceptability of a lot shall be determined by the use of a sampling plan or plans.

The term "non-acceptance" is used in this context for "rejection" when it refers to the result of following the procedure. Forms of the term "reject" are retained when they refer to actions the consumer may take, as in "rejection number."

7.2 Disposition of non-acceptable lots

The responsible authority shall decide how lots that are not accepted will be disposed of. Such lots may be scrapped, sorted (with or without nonconforming items being replaced), reworked, re-evaluated against more specific usability criteria, or held for additional information, etc.

7.3 Nonconforming items

If a lot has been accepted, the right is reserved to not accept any item found nonconforming during inspection, whether that item formed part of a sample or not. Items found nonconforming may be reworked or replaced by conforming items, and resubmitted for inspection with the approval of, and in the manner specified by, the responsible authority.

7.4 Classes of nonconformities or nonconforming items

Specific assignment of nonconformities or nonconforming items to two or more classes requires using a set of sampling plans. In general, the set of sampling plans have a common sample size, but different acceptance numbers for each class having a different AQL, such as in Tables 2, 3 and 4.

7.5 Special reservation for critical classes of nonconformities

Some types of nonconformities may have critical importance. This subclause specifies the special provisions for such types of designated non-conformities. At the discretion of the responsible authority, every item in the lot may be required to be inspected for such designated classes of nonconformities. The right is reserved to inspect every item submitted for such designated nonconformities and to not accept the lot immediately if a nonconformity of this class is found. The right is also reserved to sample, for specified classes of nonconformities, every lot submitted by the supplier and to not accept any lot if a sample drawn from it is found to contain one or more of these nonconformities.

7.6 Resubmitted lots

All parties shall be immediately notified if a lot is found not acceptable. Such lots shall not be resubmitted until all items are re-examined or retested and the supplier is satisfied that all nonconforming items have been removed or replaced by conforming items, or all nonconformities have been corrected. The responsible authority shall determine whether normal or tightened inspection shall be used on re-inspection and whether re-inspection shall include all types or classes of nonconformities or only the particular types or classes of nonconformities which caused initial non-acceptance.

8 Drawing of samples

8.1 Sample selection

The items selected for the sample shall be drawn from the lot by simple random sampling (see 2.1.5 in ISO 3534-2:1993). However, when the lot consists of sub-lots or strata, identified by some rational criterion, stratified sampling shall be used in such a way that the size of the subsample from each sublot or stratum is proportional to the size of that sublot or stratum (for further details see 2.25 in ISO 2859-0:1995).

8.2 Time for drawing the samples

Samples may be drawn after the lot has been produced, or during production of the lot. In either case, the samples shall be selected according to 8.1.

8.3 Double or multiple sampling

When double or multiple sampling is to be used, each subsequent sample shall be selected from the remainder of the same lot.

9 Normal, tightened and reduced inspection

9.1 Start of inspection

Normal inspection shall be carried out at the start of inspection, unless otherwise directed by the responsible authority.

9.2 Continuation of inspection

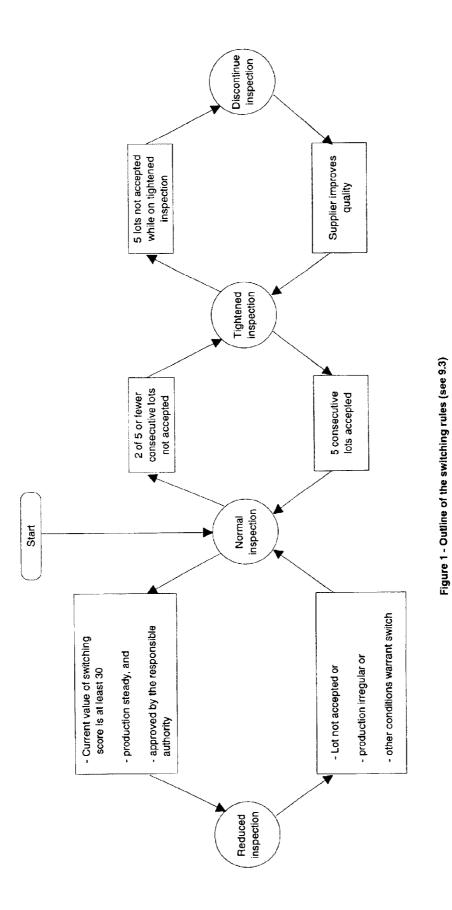
Normal, tightened or reduced inspection shall continue unchanged on successive lots, except where the switching procedures (see 9.3) require the severity of the inspection to be changed. The switching procedures shall be applied to each class of nonconformities or nonconforming items independently.

9.3 Switching rules and procedures (see Figure 1)

9.3.1 Normal to tightened

When normal inspection is being carried out, tightened inspection shall be implemented as soon as two out of five (or fewer than five) consecutive lots have been non-acceptable on original inspection (that is, ignoring resubmitted lots or batches for this procedure).

9.3.2 Tightened to normal


When tightened inspection is being carried out, normal inspection shall be re-instated when five consecutive lots have been considered acceptable on original inspection.

9.3.3 Normal to reduced

9.3.3.1 General

When normal inspection is being carried out, reduced inspection shall be implemented provided that all of the following conditions are satisfied:

- a) the current value of the switching score (see 9.3.3.2) is at least 30; and
- b) production is at a steady rate; and
- c) reduced inspection is considered desirable by the responsible authority.

Copyright by the International Organization For Standardization Thu Oct 07 17:28:13 2004 11

9.3.3.2 Switching score

The calculation of the switching score shall be initiated at the start of normal inspection unless otherwise specified by the responsible authority.

The switching score shall be set at zero at the start and updated following the inspection of each subsequent lot on original normal inspection.

- a) Single sampling plans:
 - 1) when the acceptance number is 2 or more, add 3 to the switching score if the lot would have been accepted if the AQL had been one step tighter; otherwise reset the switching score to zero;
 - 2) when the acceptance number is 0 or 1, add 2 to the switching score if the lot is accepted; otherwise reset the switching score to zero.
- b) Double and multiple sampling plans:
 - 1) when a double sampling plan is used, add 3 to the switching score if the lot is accepted after the first sample; otherwise reset the switching score to zero;
 - 2) when a multiple sampling plan is used, add 3 to the switching score if the lot is accepted by the third sample; otherwise reset the switching score to zero.
- NOTE The application of the switching score is illustrated in annex A.

9.3.4 Reduced to normal

When reduced inspection is being carried out, normal inspection shall be re-instated if any of the following occur on original inspection:

- a) a lot is not accepted; or
- b) production becomes irregular or delayed; or
- c) other conditions warrant that normal inspection shall be re-instated.

9.4 Discontinuation of inspection

If the cumulative number of lots not accepted in a sequence of consecutive lots on original tightened inspection reaches 5, the acceptance procedures of this part of ISO 2859 shall not be resumed until action has been taken by the supplier to improve the quality of the submitted product or service, and the responsible authority has agreed that this action is likely to be effective. Tightened inspection shall then be used as if 9.3.1 had been invoked.

9.5 Skip-lot sampling

The lot-by-lot inspection in this part of ISO 2859 may be replaced by skip-lot sampling when the requirements of ISO 2859-3 are fulfilled.

NOTE There are limitations to the use of the skip-lot procedures of ISO 2859-3 in place of the reduced-inspection procedures of this part of ISO 2859. Some of the AQLs and inspection levels are not applicable.

© ISO

10 Sampling plans

10.1 Inspection level

The inspection level designates the relative amount of inspection. Three inspection levels, I, II and III, are given in Table 1 for general use. Unless otherwise specified, level II shall be used. Level I may be used when less discrimination is needed or level III when greater discrimination is required. Four additional special levels, S-1, S-2, S-3 and S-4 are also given in Table 1 and may be used where relatively small sample sizes are necessary and larger sampling risks can be tolerated.

The inspection level required for any particular application shall be specified by the responsible authority. This allows the authority to require greater discrimination for some purposes and less for others.

At each inspection level, the switching rules shall operate to require normal, tightened and reduced inspection, as specified in clause 9. The choice of inspection level is quite separate from these three severities of inspection. Thus, the inspection level that has been specified shall be kept unchanged when switching between normal, tightened and reduced inspection.

In the designation of inspection levels S-1 to S-4, care shall be exercised to avoid AQLs inconsistent with these inspection levels. For instance, the code letters under S-1 go no further than D, equivalent to a single sample size of 8, but it is of no use to specify S-1 if the AQL is 0,1 %, for which the minimum sample size is 125.

The amount of information about the quality of a lot gained from examining samples drawn from the lot depends upon the absolute size of the samples, **not** upon the relative size of the sample to the lot size, provided the sample is small relative to the lot that is examined. In spite of this, there are three reasons for varying the sample size with the lot size:

- a) when the loss due to a wrong decision is high, it is more important to make the correct decision;
- b) with a large lot, a sample size can be afforded that would be uneconomic for a small lot;
- c) truly random sampling is relatively more difficult if the sample is too small a proportion of the lot.

10.2 Sample size code letters

Sample sizes are designated by sample size code letters. Table 1 shall be used to find the applicable code letter for the particular lot size and the prescribed inspection level.

NOTE For economy of space in the tables or to avoid unnecessary repetition in the text, the abbreviated term "code letter" is sometimes used.

10.3 Obtaining a sampling plan

The AQL and the sample size code letter shall be used to obtain the sampling plan from Tables 2, 3, 4 or 11. For a specified AQL and a given lot size, the same combination of AQL and sample size code letter shall be used to obtain the sampling plan from the table for normal, tightened and reduced inspection.

When no sampling plan is available for a given combination of AQL and sample size code letter, the tables direct the user to a different letter. The sample size to be used is given by the new sample size code letter, not by the original letter. If this procedure leads to different sample sizes for different classes of nonconformities or nonconforming items, the sample size code letter corresponding to the largest sample size derived may be used for all classes of nonconformities or nonconforming items, when designated or approved by the responsible authority. As an alternative to a single sampling plan with an acceptance number of 0, the plan with an acceptance number of 1 with its correspondingly larger sample size for a designated AQL (where available) may be used, when designated or approved by the responsible authority. As another alternative, the optional fractional acceptance number plans described in clause 13 may be used when approved by the responsible authority.

10.4 Types of sampling plans

Three types of sampling plans, single, double and multiple, are given in Tables 2, 3 and 4, respectively. When several types of plans are available for a given AQL and sample size code letter, any one may be used. A decision as to the type of plan, either single, double or multiple, when available for a given AQL and sample size code letter, shall usually be based upon the comparison between the administrative difficulty and the average sample size of the available plans. For the sampling plans given in this part of ISO 2859, the average sample size of multiple plans is less than for double, and both of these are less than the single sample size (see Table 9). Usually, the administrative difficulty for single sampling and the cost per item in the sample are less than for double or multiple sampling.

11 Determination of acceptability

11.1 Inspection for nonconforming items

To determine acceptability of a lot under percent nonconforming inspection, the applicable sampling plan shall be used in accordance with 11.1.1 to 11.1.3.

11.1.1 Single sampling plans (integer acceptance number)

The number of sample items inspected shall be equal to the sample size given by the plan. If the number of nonconforming items found in the sample is equal to or less than the acceptance number, the lot shall be considered acceptable. If the number of nonconforming items is equal to or greater than the rejection number, the lot shall be considered not acceptable.

11.1.2 Double sampling plans

The number of sample items first inspected shall be equal to the first sample size given by the plan. If the number of nonconforming items found in the first sample is equal to or less than the first acceptance number, the lot shall be considered acceptable. If the number of nonconforming items found in the first sample is equal to or greater than the first rejection number, the lot shall be considered not acceptable.

If the number of nonconforming items found in the first sample is between the first acceptance and rejection numbers, a second sample of the size given by the plan shall be inspected. The number of nonconforming items found in the first and second samples shall be accumulated. If the cumulative number of nonconforming items is equal to or less than the second acceptance number, the lot shall be considered acceptable. If the cumulative number of nonconforming items is equal to or nonconforming items is equal to or greater than the second rejection number, the lot shall be considered not acceptable.

11.1.3 Multiple sampling plans

In multiple sampling, the procedure shall be similar to that specified in 11.1.2. In this part of ISO 2859, there are five stages so that a decision will be reached by the fifth stage at the latest.

11.2 Inspection for nonconformities

In order to determine the acceptability of a lot in a nonconformities per hundred items inspection, the procedure specified for nonconforming inspection (see 11.1) shall be used, except that the term "nonconformities" shall be substituted for "nonconforming items".

12 Further information

12.1 Operating characteristic (OC) curves

The operating characteristic curves for normal and tightened inspection, shown in Table 10, indicate the percentage of lots which may be expected to be accepted under the various sampling plans for a given process quality. The curves shown are for single sampling, integer acceptance number plans; curves for double and multiple sampling are matched as closely as practicable. The OC curves shown for AQLs greater than 10 are applicable for inspection for number of

nonconformities; those for AQLs of 10 or less are applicable for inspection for nonconforming items. For AQLs of 10 or less these OC curves are also applicable to inspection for number of nonconformities.

For each of the curves shown, values of the quality of submitted product corresponding to selected values of probabilities of acceptance are shown in tabular form. In addition, values corresponding to tightened inspection, and values corresponding to sampling for number of nonconformities for AQLs of 10 or fewer nonconformities per 100 items are also given.

Normalized scheme OC curves found in Table 12 indicate the long-range percentage of lots of various qualities that will be accepted, taking into account the switching rules but disregarding the effect of the rule for discontinuation of inspection (9.4). The abscissa is the ratio of the process quality to the AQL. Each curve represents an acceptance number for normal inspection.

12.2 Process average

The process average can be estimated by the average percent nonconforming or average number of nonconformities per 100 items (whichever is applicable) found in the samples of product submitted by the supplier for original inspection, provided that inspection was not curtailed. When double or multiple sampling is used, only first sample results shall be included in the process average estimation.

12.3 Average outgoing quality (AOQ)

The average outgoing quality is the long-term average quality of outgoing product for a given value of incoming product quality, including all accepted lots, plus all lots which are not accepted, after such lots have been effectively 100 % inspected and all nonconforming items replaced by conforming items.

12.4 Average outgoing quality limit (AOQL)

The AOQL is the maximum of the average outgoing qualities for all possible qualities submitted for a given acceptance sampling plan. Approximate AOQL values are given in Table 8-A for each of the single sampling plans for normal inspection and in Table 8-B for each of the single sampling plans for tightened inspection.

12.5 Average sample size curves

Average sample size curves for double and multiple sampling, as compared with the corresponding single sampling plan for each acceptance number, are given in Table 9. These curves show the average sample sizes which may be expected to occur under the various sampling plans for given levels of process quality. The curves assume that the inspection is not curtailed (see ISO 3534-2:1993, 2.5.7).

12.6 Consumer's and producer's risks

12.6.1 Use of individual plans

This part of ISO 2859 is intended to be used as a system employing tightened, normal and reduced inspection on a successive series of lots to achieve consumer protection while assuring the producer that acceptance will occur most of the time if quality is better than the AQL.

Occasionally, specific individual plans are selected from this part of ISO 2859 and used without the switching rules. For example, a purchaser may be using the plans for verification purposes only. This is not the intended application of the system given in this part of ISO 2859 and its use in this way shall not be referred to as "inspection in compliance with ISO 2859-1". When used in this way, this part of ISO 2859 simply represents a repository for a collection of individual plans indexed by AQL. The operating characteristic curves and other measures of a plan so chosen shall be assessed individually for a plan from the tables provided.

12.6.2 Consumer's risk quality tables

If the series of lots is not long enough to allow the switching rules to be applied, it may be desirable to limit the selection of sampling plans to those, associated with a designated AQL value, that give consumer's risk quality not more than a specified limiting quality protection. Sampling plans for this purpose can be selected by choosing a consumer's risk quality (CRQ) and a consumer's risk (probability of lot acceptance) to be associated with it. Tables 6 and 7 give values of consumer's risk quality (CRQ) for a consumer's risk of 10 %. Table 6 applies when inspecting for nonconforming items and Table 7 applies when inspecting for number of nonconformities. For individual lots with quality levels less than or equal to the tabulated values of consumer's risk qualities, the probabilities of lot acceptance are equal to or less than 10 %. When there is reason for protecting against a specified limiting quality in a lot, Tables 6 and 7 may be useful for fixing minimum sample sizes to be associated with the AQL and inspection level specified for inspection of the series of lots. ISO 2859-2 gives details of the procedure for selecting sampling plans for lots in isolation.

EXAMPLE Assume a consumer's risk quality of 5 % nonconforming items with an associated probability of acceptance of 10 % or less is desired for individual lots. If an AQL of 1 % nonconforming items is designated for inspection of the series of lots, Table 6-A indicates that the minimum sample size shall be given by sample size code letter L.

12.6.3 Producer's risk tables

Tables 5-A, 5-B and 5-C give the probability of rejection for lots of AQL quality on normal, tightened and reduced inspections, respectively. This probability is denoted as producer's risk in 2.6.7 of ISO 3534-2:1993.

13 Fractional acceptance number plans for single sampling (optional)

13.1 Application of fractional acceptance number plans

This subclause specifies optional procedures for fractional acceptance number sampling plans. The optional procedures may be used with the approval of the responsible authority. Unless otherwise specified, standard procedures shown above shall be followed.

Fractional acceptance number plans are found in Tables 11-A, 11-B and 11-C. For normal and tightened inspection, the fractions 1/3 and 1/2 are found in place of the two entries with arrows in Table 2-A and 2-B between the plans for acceptance number 0 and acceptance number 1. For reduced inspection, the fractions 1/5, 1/3 and 1/2 are found in place of the three entries with arrows in Table 2-C between the plans for acceptance number 0 and acceptance number 1.

The use of fractional acceptance number plans does not require a change in sample size code letters, with the corresponding change in sample size, when the combination of sample size code letter and AQL results in a plan between the 0 and 1 acceptance number as described in 10.3.

13.2 Acceptability determination

13.2.1 Inspection for nonconforming items

13.2.1.1 Constant sampling plans

When the fractional acceptance number sampling plans remain constant for all lots, the following rules apply.

- a) When there is no nonconforming item in the sample the lot shall be considered acceptable.
- b) When there are two or more nonconforming items in the sample, the lot shall be considered not acceptable.
- c) When there is only one nonconforming item in the sample from the current lot, the lot shall be considered acceptable only if no nonconforming items have been found in the samples from a sufficient number of immediately preceding lots.

For an acceptance number of 1/2 one such lot is required. For an acceptance number of 1/3 two such lots are required. For an acceptance number of 1/5 four such lots are required. Otherwise the current lot shall be considered not acceptable. If the first lot inspected has one nonconforming item, that lot is not accepted.

16

© ISO

13.2.1.2 Non-constant sampling plans

When the sampling plan does not remain constant for each successive lot, because of varying lot sizes and/or switching, use an acceptance score that is calculated and used as follows.

- a) Reset the acceptance score to zero at the start of any phase of normal, tightened or reduced inspection.
- b) If the sampling plan obtained indicates an acceptance number 0, the acceptance score shall be kept unchanged.

If the given acceptance number is 1/5, add 2 to the acceptance score.

If the given acceptance number is 1/3, add 3 to the acceptance score.

If the given acceptance number is 1/2, add 5 to the acceptance score.

If the given acceptance number is 1 or more, add 7 to the acceptance score.

- c) When, for fractional acceptance number plans, the updated acceptance score prior to inspection is 8 or less, the lot can be considered acceptable only if there are no nonconforming items in the sample. When, for fractional acceptance number plans, the updated acceptance score prior to inspection is 9 or more, the lot can be considered acceptable only if there is at most one nonconforming item in the sample. When the acceptance number is an integer, use this acceptance number to determine acceptability (in accordance with 11.1.1 or 11.2).
- d) If one or more nonconforming items are found in the sample, reset the acceptance score to 0 (i.e. after making a decision regarding the acceptability of the lot).

The acceptance score shall be updated (added to) after obtaining the sampling plan but before deciding on the acceptability of the lot. The acceptance score shall be reset after the acceptability decision is made. In contrast, the switching score (see 9.3.3.2) shall be added to or reset after deciding on acceptability of the lot.

NOTE When an acceptance score is used for the case of constant sampling plans, the results are the same as 13.2.1.1.

13.2.2 Inspection for number of nonconformities

In order to determine the acceptability of a lot when inspecting for number of nonconformities, the procedures specified for inspection for nonconforming items (see 13.2.1) shall be used, except that the term "nonconformities" shall be substituted for "nonconforming items".

13.3 Switching rules

13.3.1 Normal to tightened and tightened to normal

These rules are the same as indicated in 9.3.1 and 9.3.2, respectively.

13.3.2 Normal to reduced

The rule for updating the switching score (9.3.3.2) under single sampling when using a fractional acceptance number is as follows.

- a) When the given acceptance number is 1/3 or 1/2, add 2 to the switching score if the lot is accepted; otherwise reset the switching score to zero.
- b) When the acceptance number is zero, add 2 to the switching score if no nonconforming items are found in the sample; otherwise reset the switching score to zero.

13.3.3 Reduced to normal inspection and discontinuation of inspection

The rules are the same as indicated in 9.3.4 and 9.4, respectively.

NOTE Fractional acceptance number sampling plans are not applicable under the ISO 2859-3 skip-lot sampling system.

13.4 Non-constant sampling plan

An example given in annex A illustrates the application of this acceptance sampling system using the optional fractional acceptance number plans with variable lot size.

It is assumed throughout this example that a series of lots are submitted for inspection for nonconforming items, and that it has been agreed to use an AQL of 1 % nonconforming items with general inspection level II. The results for the first 25 lots are given in annex A.

Table 1 - Sample size code letters (see 10.1 and 10.2)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lot size		Special inspection levels	action levels		Genera	General inspection levels	levels
8 1		S-1	S-2	S-3	S-4	1	II	III
0 0		A	A	۷	A	A	A	B
$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	-	A	A	A	A	А	в	ပ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		٨	A	8	8	В	U	D
0 0		۲	ß	В	U	U	۵	ш
00 0 0 0 0<		æ	В	o	U	o	ш	Ŀ
0 0	*	8	В	υ	٥	۵	ш	U
0 0	N	ß	υ	۵	ш	ш	U	т
0 0		B	v		ш	ш	Т	۔ ٦
0 0	-	v	v	ш	L	J	ر	¥
0000 000 000 000 000 000 000 000 000 0	32	U	٥	ш	U	I	¥	_ _
0000 000 Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ	100	C	٥	ш	თ	7	_ _	Σ
000 000 000 000 000 000 000 000 0000	35 (O	٥	LL.	т	¥	Σ	z
0000 T T T T T T T T T T T T T		۵	ш	U	J	<u>ب</u>	z	٩
D X Z		۵	ш	G	J	Σ	٩	σ
	500 001 and over	۵	ω	I	¥	Z	σ	æ

ISO 2859-1:1999(E)

Table 2-A — Single sampling plans for normal inspection (Master table)

ISO 2859-1:1999(E)

Same and the model series Accorptions or anity limit, ACL, in percent romonthy game and noncontramines per 100 here (normal inspection) Accorptions Corptions	<u> </u>		0				r						1							I
Acceptance quality limit, AQL. In percent noncontinuing lems and noncontonnites per 100 items (normal inspection) Semila for a point or so is 0.010 0.15 0.28 0.040 0.055 0.050 0.040 0.055 0.050 0.040 0.055 0.040		00	Ac B	30 31	44 4	\leftarrow	<u> </u>	-		<u> </u>			1							
Accopating mint, ACL in percent nonconforming items and nonconformings per 100 items (normal inspection) Semila are no parts Accopating or ols 0.010 OID OID OID Accopating items and nonconforming items and nonconformings per 100 items (normal inspection) Semila are no parts Control OLIS OLID OLID OLID Action Line Parts Actinde Line Line Line Line Line Line Line Lin					31	45				†						1				
Acceptance quality limit. AGL, in percent incontonning liens and incontonnings per 100 liens; fronting inspection) Similar dot onto 0.015 0.035 0.040 0.015 0.035 0.040 0.056 0.10 0.15 25 4.0 65 10 15 25 4.0 65 10 15 25 4.0 65 10 15 25 4.0 65 10 15 25 4.0 65 10 112 23 3 4 6 7 10 11 15 12 23 3 4 6 7 10 11 15 12 13 13 13 12 23 3 4 6 7 10 11 13 12 12 13 14 13 12 13 14 16 14 13 13 13 13 13 13 13 13 13 13 13 13 14 14 13 14 14		<u>ة</u>								-			 							
Acceptance quality limit. AGL, in percent incontonning liens and incontonnings per 100 liens; fronting inspection) Similar dot onto 0.015 0.035 0.040 0.015 0.035 0.040 0.056 0.10 0.15 25 4.0 65 10 15 25 4.0 65 10 15 25 4.0 65 10 15 25 4.0 65 10 15 25 4.0 65 10 112 23 3 4 6 7 10 11 15 12 23 3 4 6 7 10 11 15 12 13 13 13 12 23 3 4 6 7 10 11 13 12 12 13 14 13 12 13 14 16 14 13 13 13 13 13 13 13 13 13 13 13 13 14 14 13 14 14		8	kc Re				4 45	\leftarrow		<u> </u>			<u> </u>			<u> </u>			╞╼╎	
Acceptance quality limit, AGL, in percent nonconforming terms and nonconformites per 100 items (normal inspection) Semula correl outes for on ords ords on ords on ords ords ords on ords ords ords ords ords ords ords ords								45	٨	<u></u>			7 7			1				
Accopance quality limit, ACL, in percent nonconforming items and nonconformings per 100 items (normal inspection) Semile cone onto outs outs outs outs outs outs outs ou		250	AcF		14				$\langle =$	Ţ						1				
Acceptance quality limit. ACL, in percent nonconforming liems and nonconformings per 100 liems (normal inspectation strates are a series a series are a series are a series a series are a series are a series a series a serie	2	50	Re	80	11			31	<u> </u>	1						1				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	sctio			<u> </u>		- 			• •	!			 			 				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	Uspe	ş	PC B					2	\leftarrow											
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	nali	2		4	9		Ŧ	15	ស្ត	1~			1			1				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	nor	۰ ۵		e	2	7	<u>٩</u>	4		1			T I			l				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac) su	\$	c Re					11 0			⇐					<u> </u>				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	0 ite	<u> </u>					<u> </u>				N					 				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	10	25	Ac R				1			14 1	21 2	<⊨	 			i				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	s pe	15	å	3	N				ω	Ŧ	15					<u> </u>				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	mitie	<u> </u>		V	-		<u> </u>			1	1 14					 				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	nforr	₽	Ac Re		⇒	1 2	i .			•				<=		, ,				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	Duco	5		-	ሌ	~	~	m	4	ω				22	<u></u>					
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	d n	°.			7	~	-	2	e	5	7		4	21	V	1			' !	
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	is an	4,0	c Re	⇔	-	�	₽	2								4				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	item						ļ	-								8				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	ning	2,5	AcF		=>	0	\$V	₽	-				1				<≔			
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	nfor	1.5	; Re			⇒	-	∽	\$	~			F			15				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	ncol						1.			<u> </u> −								۲ د		
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	nt nc	°:	Ac R				≓>	0	¢										(令	
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	erce	65					i	<u> </u>		6	5	N	6	4	Q	-	1	15	52	
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	in p.						1	~~	0	₩		-								
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	d d	0,40	C Re				ı T		⇒	0	\diamond	\$	1 2							
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	iit, A												~							
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	v lii	0,2	AcF	·						>	0	4	5	_						
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	ualit	,15	c Re				i			į		-	\Diamond	\$	N		•	-		
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	0 0 0											0			-					
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	ptan	0,10	Ac B		·					A		⇒	0	\diamond	\$	-				
Sample 0.010 0.015 0.025 0.040 0 Size Ac Re Ac	cce	965					l			1				-	ሌ		N	e	4	
Sample size size Ac Re Ac Re Ac Re Ac Re Ac Re B B 13 13 13 20 50 80 125 500 125 125 500 125 0 1 125 125 0 1 125 125 0 1 125 200 200 200 200 200 200 200 200 200 2	⋖						1			1			~~	۰	4	2		N	6	
Sample size size Ac Re Ac Re Ac Re Ac Re Ac Re B B 13 13 13 20 50 80 125 500 125 125 500 125 0 1 125 125 0 1 125 125 0 1 125 200 200 200 200 200 200 200 200 200 2		,040	c Re				ļ						i	⇒	-	\diamond	♦		1 1	
Sample size size 3 2 5 5 5 6 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													·							
Sample 0.010 size 0.010 2 Ac Re 3 3 13 13 50 50 80 80 125 500 80 125 500 80 125 500 80 125 500 80 125 500 80 20 80 20 80 20 80 20 50 80 80 20 50 80 80 80 80 80 80 80 80 80 80 80 80 80		0,02								 					⇒	0	$\langle \rangle$	₽	-	
Sample 0.010 size 0.010 2 Ac Re 3 3 13 13 50 50 80 80 125 500 80 125 500 80 125 500 80 125 500 80 125 500 80 20 80 20 80 20 80 20 50 80 80 20 50 80 80 80 80 80 80 80 80 80 80 80 80 80		015	Re							1			1			5	-	~		
Sample size size size 3 3 5 5 5 5 2 2 2 2 2 2 3 15 5 0 8 8 8 0 8 0 8 0 8 0 8 0 0 8 0 1 2 5 0 5 2 0 5 2 0 2 2 0 2 2 0 2 2 3 2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5							i 			i +							0	~		
Sample size size size 3 3 5 5 5 5 2 2 2 2 2 2 3 15 5 0 8 8 8 0 8 0 8 0 8 0 8 0 0 8 0 1 2 5 0 5 2 0 5 2 0 2 2 0 2 2 0 2 2 3 2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5		0.010	\c B€				L			t	<u> </u>		1			۱ <u> </u>	⇒	- -	\$	
			٩																	
		Samp size		2	ъ	ŝ	ß	13	20	32	50	80	125	200	315	500	800	1 25(500	
	Pa a		در در		•••								L							
	l m	siz Cod	letti	×	£	o		ш	۲L.	σ	I	7	¥	-	Σ	z	٩	Ø	œ	

🔈 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $\mathbf{\hat{\Delta}}$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

© ISO

Table 2-B — Single sampling plans for tightened inspection (Master table)

© ISO

0,015 0,025 0,0 Ac Re Ac Ra Ac	Accep 0,040 0,065	œ ⊢		limit, Aul. in	percent		orming	liems an			iad sa	201	11 5 11 5 11 5 11 5 11 5 11 5 11 5 11		Sherrin	_			
0,025 Ac Ra		_				-										-	-		
Ac Re		0,10	0,15 0,25	5 0,40	0,65	1,0	1,5 2,	5 4,0	6,5	0	15	25	64	65 100	0 150	0 250	400	650	1 000
	Ac Re Ac Re	Ac Re A	Ac Re Ac Re	te Ac Re	Ac Re	Ac Re Ac	Ac Re Ac I	Ac Re Ac R	Ac Re Ac Re	Ac Re	Ac Re	Ac Re	Ac Re A	Ac Re Ac	Re Ac	Re Ac Re	Re Ac Re	e Ac Re	Ac Re
					C				\$	0	c=	⇔	1 2 2	е С	4	8 9	9 12 13	3 18 19	27 28
								⇒	- 0	C	\Rightarrow	~	2 3 3	4 5	ه و	9 12 1	13 18 19	9 27 28	41 42
							~			⇒	1	с 5	3 4 5	8 9	9 12	13 18	19 27 28	3 41 42	<=
		 			+ 			-	¦⇒ 	1 2	8 8	6 4	5 6 8	9 12	13 18	19 27	28 41 42		
									1 2	s S	3 7	56	8 9 12	13	18 19 27	27 28 41 42	42 ↓		
					⇒	0			2 2 3	3 4	5 6	о 8	12 13 1				<u></u>		
			1 1 1 1		- 0		<u> -</u> +→	N N	3 4	5 6	6 8	12 13	18 19		 	 	i	 	
			=>	- 0		$\overline{\Rightarrow}$	5	e e	4 5 6	07 60	12 13	18 19	4						
					⇒	1 2	ი ი	4	6 8 9	12 13	18 19	4							
			- -	;=> 	1 2	2 3 3	44 CD	8	9 12 13	18 19	¢	 	i		l 				
	⇒	0		- -	ຕ ເນ	3 4 5	9 9	9 121	13 18 19										
	t ° ∏}			2 2 3	0 4	5 6 8	9 12	13 18 19	<u>ء</u>									1	
	-	╞	1 2 2	3 3 4	9 5	8 9 1	12 13 18	18 19	1				_						
		1	5 3	4 5	ი დ	12 13 11	18 19 4	<u> </u>											
		0 0 0	3 4 5	9 9	12 13	18 19	¢				1			i	 				
- - - -	5 5 3	60 4	5 6 8	9 12 13	18 19	♧											 		
1 2																			

ISO 2859-1:1999(E)

Ac = Acceptance number

= Use the first sampling plan above the arrow.

\$\$

= Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

Re = Rejection number

Table 2-C — Single sampling plans for reduced inspection (Master table)

						1																						
Sample						Acci	eptanc	se qual	ity lim	t, AQL,	in per	cent no	nconfo	rming	items a	non bri	conforr	nities p	oer 10() items	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	ed insp	ection)	_				
size code	Sample size	0,010	0,015	0,025	0,040	0,065	0,10	0,1	5 0,25	5 0,40	0,65	1,0	1.5	2.5	5 4.0	6.5	ç	15	25	4	65	- 10	150	250	40	0 650		8
letter		Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	e Ac Re	Ř	Re Ac Re	de Ac Re	te Ac Re	te Ac Re		e Ac F	Ac Re Ac Re Ac Re	Re Ac Re		Ac Re Ac Re	e Ac Re	le Ac Re	te Ac Re	e Ac Re	e Ac Re	e Ac Re	le Ac Re		Ac Re A	Ac Re
∢	2								-			.			≎	0			-	5 5	6 6	4 5	6 7 8	8 10 1	10 11 14	15 21	22 30	31
60	2													→	<u> </u>	\$ 	<u> </u>	⇒	-	N N	8 6 6	4	¥ و	8 10	11 14	15 21	22 30	30 31
ပ	2	ł		i									⇒	0	\$		⇒	-	N N	33	4 5	6 6	3 8	9 10 1	11 14	15 21	52	<u> </u>
•	m											₽	0	\$			-	N	е е	4 5	6 6 7	2 8 5	9 10 1	11 14 1	15 21	2		<u></u>
ш	ß										=>	0	\$		≓> 	-	5 5 5	ъ	4	9	7 8 5	9 10 1	10 11 14 15 21 22	5 21 2		4		
F	BD									=>	-	\$ 		=>		5 5	ی به 4	ഹ	9 9 9	7	9 10 11		4	4				
g	13					1	е I I	I 1 1		0	♦		≓> ⊢	-	5	6 6 7	2 9	ω	8	9 10 11		1 1 1			<u>.</u>		<u>i</u>	-
т.	20	<u> </u>						=>	•	\$ 		⇒	- -	2	ہ س	4 5 6	6 7	80	9 10 11	- 								
~	32						⇒	0	\$ 		⇒	-	5	е Э	4 ت	6 6 7	6 6	10 11										
×	50	 	I	1		⇒	0	\$		≓> ├─	-	5	3 3 4	4 5	2	7 8 9	10 11	⊱						1 1 1	i			1
_	80				⇒	0	\$		=>		5 5	т С С	4 5 6	9	2 8	9 10 11												
¥	125			⇒	-	¢		⇒	-	N N N	3 3 3	4 5	6 6 7	80	9 10 1					· 								
z	200			+ 0	�		₽	-	5	9 9 9 9	4	6 6 7	7 8 9	9			i i		1	- 	1 1 1	<u> </u>	-		1		1	<u> </u>
٩.	315	⇒	-	<=		⇒	-	8	е о	4 5	6 6	7 8 9	9 10 1											·····				
a	500	- -	<=		⇒	1 2	3	e	4 ت	6 6 7	80	9 10 11	4															
н	800	Ŷ			1 2	23	3 4	s.	99	7 8 5	9 10 11	\$	┿ <u></u> 			⊨ ⊃ ¦	<u> </u>			÷		<u>∔</u>		┿ ╌ ╸	+		<u> </u>	<u>_</u>
\$	= Use t	= Use the first sampling plan below the arrow. II	sampl	ling pl	an be	low th	e arr		sampl	e size	equals	S. Or e	sample size equals, or exceeds. Iot size, carry out 100 % insnection	pt v	179 C			/ iner		ļ _		4				4	$\frac{1}{2}$	7

= Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection. = Use the first sampling plan above the arrow.

�

Ac = Acceptance number Re = Rejection number

r table)
n (Maste
nspectior
normal ii
g plans for
e sampling
- Doubl
Table 3-A

 $\hat{\mathcal{O}}$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

© ISO

23

l inspection (
or tightened
ing plans f
ible sampli
3-B Dou
Table

ster table)	per 100 items (tightened inspection)	15 25 40 65 100 150 250 400 650 1000	Ac Re	· · · · ·	0 2 0 3 1 3 2 5 4 7 6 10 9 14 15 20 23 29 0 2 3 1 5 2 5 4 7 16 10 9 14 15 20 23 29	3 1 3 2 5 4 7 6 10 9 14 15 20 23 29 4 4 5 6 7 10 11 15 15 20 24 24 25 50 50	1 3 2 5 4 7 6 10 9 14 15 20 23 29 4 4 5 6 7 10 11 15 16 27 24 34 35 55 5	2 5 4 7 6 10 9 14 15 20 23 29 29 25 6 7 10 11 15 16 23 24 24 24 25 53 53 53	4 7 6 10 9 14 A A 4	6 10 9 14 15 15 22 24	9 14 2	3 🗸							┝╶┨╞╶┼╴┤╴┽╸┨╸┽╺║╸┽╺╢╸┽╺╢╸┽╺╢╸┽┥┨╸┥┑	
Table 3-B — Double sampling plans for tightened inspection (Master table)	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	0 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0	e Ac Re			_					4 1 3 1 4 1 3 1		1 3 2 5 4 7 4 5 6 7 10 11	3 2 5 4 7 6 10 5 6 7 10 11 15 16	Image: 1 Image: 1 Image: 2 Image: 2		4 7 6 10 9 14 10 11 15 16 23 24	~		0 5
	· · ·		size Ac Re		CI 4	<u>ص</u> ص	5 10	8 16	13 26	20 40	32 64	50 100	80 160	125 250	200 400	315 630	- 200 - 200	800 1 600	1 250 2 500 *	2 000 4 000
		Sample size			First 2 Second 2	First 3 Second 3	First 5 Second 5	First 8 Second 8	First 13 Second 13	First 20 Second 20	First 32 Second 32	First 50 Second 50	First 80 Second 80	First 125 Second 125	First 200 Second 200	First 315 Second 315	First 500 Second 500	First 800 Second 800	First 1 250 Second 1 250	First 2 000 Second 2 000
	Sample	ezis	ietter	۲	в	v	۵	ш	Ц.	ъ	Т	ſ	¥	_	Σ	z	ط	σ	ш	S

🖓 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

igtriangleque = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

© ISO

\sim
e a
Ξ
5
Ť.
<u> </u>
j.
ö
č
Σ
$\overline{}$
_
ō
- <u>-</u> -
*
X
ğ
ö
ŝ
2
ъ
ň
Ξ.
r reduc
2
σ
e
~
)
0
÷
npling plans for
Ë
~0
0
_
D
2
0
7
F
Ø
Ű.
ę
5
q
Iduo
lduo
Doubl
2
2
2
ă
ă
2
ă
ă
ă
ă
able 3-C — Do
ă

Sample Sample size	Cumu-																					and the second	:				
Samp size						Accept	otance	tance quality limit,	limit, /	AQL, in	percer	nt nonc	onform	percent nonconforming items	ms and	and nonconformities	onforn	nities p	er 100	items	(reduc		per 100 items (reduced inspection)	2			ļ
	ple tative e sample	0.010	0,015	0,025	0,040	0,065	0.10	0,15	0,25	0,40	0,65	0'1	1,5	2,5	4,0	6,5	10	15	25	40	65	ē	120	250	400	650	1 000
		Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	a Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	e Ac Re	e Ac Re	e Ac Re	e Ac Re	Υc	Re Ac R	Re Ac Re	e Ac Re
	-											C			≎	•	U	U	*	*	•	*	*	•	•	*	*
						<u></u>								Ŷ	*	\$		⇒	•	*	•	•	*	*	•	•	* *
													⇒	•	\$		⇒	•	·	•	*	•	•	•	•	* (ζ== +
First 2 Second 2	014											⇒	*	\Diamond		⇒	0 - 0	0 60 60 40	-4 60	а ю	6 4 7 5 6	4 0	5 12 2	∽ 1 8	56 1	₽ <u>~</u>	
First 3 Second 3	93										=>	Ħ	\$		⇒	19 19 19 19 19 19 19 19 19 19 19 19 19 1	0 0	4 - 4 5 3	2 5 4	0 1	6 4 7 8 10 11	1 12 13	7 18	11 11 11 19 26 2	<u>⊊ ₹</u>		
First 5 Second 5	5 10								i i	=>	¥	\$		⇒	1 2	0 60 60 44	- 4 0 0	2 G 6 4	3 6 7 8	4 7 11 11	n și	<u>♦</u>					
First 8 Second 8	& L								⇒	•	\$		⇒	24 24 24 74 24 74 74 74 74 74 74 74 74 74 74 74 74 74 7	0 C 7 T 7 C	е 4 Ю О	2 5 6 4	3 6 4	4 7 10 11	υŭ	<u>ہ</u>						
First 13 Second 13	29 29 29							⇒	*	\$		⇒	0 F	0 3 4	- 4 ი თ	2 5 6 6	36 78	4 7	υŭ	<u>ू</u>							
First 20 Second 20	20 40						⇒	*	\$		⇒	0 1 0 1	0 9 7 7 7	+ 4 ເວິດ	5 5 4 0	3 6 7 8	4 7 10 11	1 12 13									
First 32 Second 32	2 84 84					⇒	*	\$		⇒	0 F	0 0 0 4 0 4	4 5 3	5 7 9 7	3 6 7 8	4 7 10 11	5 9 12 13										
First 50 Second 50	0 2 0 2 0				⇒	*	\$		⇒	0 F	0 M M M	1 4 5	2 5 6 4	36 78	4 7 10 11	5 9 12 13	<u>الم</u>										
First 80 Second 80	0 80 160			⇒	•	\$		⇒	9 10 1 0 1 0	0 M 6 4	4 ωπ	2 4 5 6	36 78	4 1 10 11	59 1213												
First 125 Second 125	5 125 5 250		⇒	•	\$		⇒	5 5 7 0 7 0	0 00	4 - 5 3	0 17 0 17	36 78	4 1 10 11	59 1213	<												
First 200 Second 200	0 200 0 400	⇒	*	<		⇒	0 -	2 0 2	3 1 3 4 5	5 4	3 6 7 8	4 7 10 11	59 1213	<													
First 315 Second 315	5 315 5 630	•	\		⇒	N N 7 0	9 0	3 1 3 4 4 5	3 5 4 5 5 4	3673	4 1 10 1	5 9 12 13	\leftarrow			 		 						1			
First 500 Second 500	0 500 0 1 000	∲			0 2 1 2	0 0	3 1 3 4 4 5	3 2 4 5 6	4 3 6 6 7 8	10 11	5 9 1 12 13	¢	-	_	-	_	_		-								

 $\hat{\omega}$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

© ISO

26

Copyright by the International Organization For Standardization Thu Oct 07 17:28:20 2004

r table)
(Mastei
inspection
or normal
plans f
sampling
- Multiple
Table 4-A —
Та

ince quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	10 15 25 40 65 100 150 250 400 650 1000	AC Re AC RC AC Re AC Re			╉	<⊨	# 2 # 3 # 4 0 4 0 5 1 7 2 9 4 12 8 16 7 -	0 3 0 3 1 5 1 6 3 8 4 10 7 14 11 19 17 27	0 3 1 4 2 6 3 8 5 10 8 13 13 19 19 27 29 38	1 3 2 5 4 7 5 9 9 12 12 17 20 25 28 34 40 48	3 4 4 5 6 7 9 10 12 13 18 19 26 27 37 38 56 57	* 3 * 4 0 4 0 5 1 7 2 9 4 12 6 16 7	0 3 1 5 1 6 3 8 4 10 7 14 11 19 17 27	1 4 2 6 3 8 6 10 8 13 13 19 19 27 29 38	2 5 4 7 5 9 9 12 12 17 20 25 28 34 40 48	4 5 6 7 9 10 12 13 18 19 26 27 37 38 56 57	* 4 0 4 0 5 1 7 2 9 7 7 7	1 5 1 6 3 8 4 10 7 14	2 6 3 8 6 10 8 13 13 19 19	4 7 5 9 9 12 12 17 20 25	6 7 9 10 12 13 18 19 26 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 4 0 5 1 7 2 9 5	1 6 3 8 4 10 7 14	3 8 6 10 8 13 13 19	5 9 9 12 12 17 20 25	
ning items and nor	2,5 4,0 6,5	Ac Re Ac Re Ac Re	• •		<	\$ \$ •	∱ # 2	0	0	0		# 5 # 2	0 2 0 3	0 2 0 3	0 2 1 3	↓ 1 2 3 4	# 2 # 2 # 3	020303	020314	0 2 1 3 2 5	123445	# 2 # 3 # 4	030315	031426	1 3 2 5 4 7	
percent nonconform	0,65 1,0 1,5	Ac Re Ac Re Ac Re							*		⇒	Ŷ		5			<u> Ч</u>		*		Ĥ ⊓	<u>↑</u> 1 * 2	0	0	0	
uality limit, AQL, in	0,15 0,25 0,40	Ac Re Ac Re Ac Re																						*	·····	
Acceptance q	0,040 0,065 0,10	Ac Re Ac Re Ac Re																								
	0,010 0,015 0,025	Ac He Ac He Ac He																								
	sample	size /					5	4	9	æ9	5	r)	9	5	12	15	ŝ	10	15	20	25	80	16	24	33	4
	Sample Sample size						First 2	Second 2	Third 2	Fourth 2	Eitr Titr	First 3	Second 3	Third 3	Fourth 3	Fifth 3	First 5	Second 5	Third 5	Fourth 5	Fifth 5	First 8	Second 8	Third 8	Fourth 8	CIEL
Sample	size code	letter	٩	æ	,	5		<u></u>	۵				0	ш	<u>.</u>			S	u.	<u>и</u>			ن ە	с о	ш. 	

 ∇ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 \mathcal{Q} = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or atternatively use the mutliple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

(continued)
laster table)
nspection (M
for normal i
mpling plans
Multiple sai
Table 4-A —

	-10010					Acct	eptanc	enb e:	ulity lim	it, AQL	, in pe	CONT	noncor	ntorm	ing iten	ns and	d non	conton	mities	per 10	00 iten	IS (NO	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	spectic	(j			
lative samole	_	0.010	0,015	0,025	0,040	0 0.065		0.10 0	0,15 0.	0.25 0.	0,40 0,	0,65	1,0	1,5	2,5	4,0	6,5	10	15	25	4	65	10 1	150	250	0 400		650 1 000
Size.		Ac Re	Ac Re	Ac Re	Ac Re	¥	Re Ac	Ac Re Ac	Ac Re Ac	Ac Re Ac	Ac Re Ac	Ac Re A	Ac Re A	Ac Re A	Ac Re A	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	e Ac Re	e Ac Re	e Ac Re	e Ac Re	te Ac He	He Ac He		Ac Re Ac Re
2												*	+ 2 +	2	*	#	4	0	1 7	6 7	¢=	<=	\	\	←			€
26												°	0 2 0	e	0 3	1 5	1 6	3 8	4	1 2 17	*							
39				;						*		•	2 0	0 3	4	2 G	3 8	6 10	8 13	13 19	5							
3	~			_								°	2 1	n	5 2	4 7	5 9	9 12	12 17	7 20 25	5							
φ	65		_						 =>			۔ 	2	4	4 5	6 7	9 10	12 13	3 18 19	9 26 27						i		
	8			<u> </u>					-	Į	*	*	* CV	ຕ ສ	*	4	0 5		8	¢=			_					
-	40										0	2	0 3 0	е 0	1	16	8 6	4 10	7 14						_			
	60		_						•		°	~	0 3 1	4	9 0 N	a e	6 10	8 13	13 19									
	80										•	5	3	5 2	4	о С	9 12	12 17	7 20 25	5								
	100			_			~	~				2 3	3 4 4	5	679	9 10	12 13	18 19	9 26 27									
	8	1 1 1		i		 		- -	<	*	# N	2 #	# C #	4	4	0 5	1 7	29	<=									
	5									。 	2	3	0 3 1	1 5	9 +	8 10	4 10	7 14										
	8							•		•	2	6	4	2 Q	3 8	6 10	8 13	13 19	a									
	128									•	2	6	25	4 7	2 2 2	9 12	12 17	20 25	5									
	160					-~' 				- =}	2 3	4	4 5	6 7	9 10	12 13	18 19	9 26 27	-+	=+					i	+	+	
	50					 		<u>~</u>		* 5	** CN	e	4	4	5 0	1 7	3	<─										
	100								•	0 2 0	3	ر س	- -	16	80 80 80	4 10	7 14											
	150	_				-	•		•	0 2 0	- 0	4	9 23	8 8	8 10	8 13	13 19	~			_		_					
	200								<u> </u>	2 1	3	Ŋ	4 1	0 0 0	9 12	12 17	20 25	10										
	250		_		⇒	•	-	1	۔ ۲	23	4 4	S	679	9 10	12 13	18 19	26 27					-+		1	1			+
	8					~	Į	-	* 2 *	*	# 0	4	4	05	1 7	5	⇐=							_				
	160							_	0 2 0	0 0	31	ۍ س	9	38	4 10	7 14			_									
	240				*				0 2 0	3 1	4	9	3 8 6	6 10	8 13	13 19												
	320							_	0 2 1	3	S	4 4	2 9 8	9 12	12 17 20	20 25							<u>.</u>					
	400	⇒	⇒	⇒	_				1 2 3	3 4 4	ŝ	6 7 9	9 10 1	12 13	18 19	26 27		n		-	2	2	-				_	

 $t_{\rm V}$ = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspec

 ${\boldsymbol{\bigtriangleup}}$ = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or atternatively use the mutiple sampling plan below, where available).

= Acceptance is not permitted for this sample size.

27

ISO 2859-1:1999(E)

હુ
table)
(Master tab
l inspection
s for normal
g plans t
sampling
Multiple
-
4- 4
Table

		Q	2						;					;									
		1 000	Ac Re	¢					İ					Ť					1				-
		650	Ac Re	\$					<u>i</u>					i 1				-	1				
		400	Ac Re	4					;				•••••	+					1				
				+					1					ł					i -				ו
		250	Ac Re	¢					$\frac{1}{1}$				<u>.</u>	i					+				
	ction	150	Ac Re	¢					1					1					1				
	uspei	100	Ac Re A	4					$\frac{1}{1}$			••••		$\frac{1}{1}$									
G	mali	-		⊢					-										1			_	
lude	l uor	65	Ac Re	¢										1									
ouc	item	Ş	Ac Re	4					+					+									_
s) (c	100	25	Ac Re	¢					1					<u>†</u>									
table	es pe	15	Ac He	¢					1					1					<u> </u>				
ter 1	ormiti		Ac Re Ac																1				
Table 4-A — Multiple sampling plans for normal inspection (Master table) (<i>concluded</i>)	nce quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	10		4					1 										Ļ				
l) nc	ou pu	6,5	Ac Re	₽					1					i I					l I	_			==
ectic	ms ai	4,0	Ac Re	¢					!			·		<u> </u> 					<u> </u>				_
)sp(ng ite	2,5	Ac Re	5 6 7	7 14	13 19	20 25	26 27	禄					1								_	
al ir	formi	1,5	Ac Re	~	10	13 1	17	19	6	4	19	25	27	Ĺ					-				
E L	ncon			5	8	10 8	12 12	13 18	7 2	10 7	13 13	17 20	19 26	6	14	19	25	27					
r ne	ut no	1,0	Ac Re	0	3	9		₽	-	4	æ	12	18	~	۲	13	20	19 26 2	⊱				
s fo	perce	0,65	Ac Re	•	1 6	а С	5 3	9 10	0	э Э	6 10	9 12	12 13	<u>م</u>	4 10	8 13	12 17	18 19	2 9	7 14	13 19	20 25	26 27
olan	Ľ,	0,40	Ac Re	4	ы	9	~	~	+	ę	80	6	10	5	80	9	12	5	~	10	13	17	\$
l Gu	t, AQ	0,25	e.	6	, m	4	5 4	5	4	<u>م</u>	3 9	7 5	7 9	4	9	8	6 6	10 12	5	8 4	10 8	12 12	13 18
ilid	y limi		e Ac	** (V	0 3	- 	3 3	4	*	-	4	5	9 2	0	1	<u>ه</u>	2	6	4	e 19	9	<u></u>	10 12
san	qualit	0,15	Ac Re	#	<u> </u>	õ	-	ო	#	0	-	ي. ان	4	ŧ	÷	26	4	67	0	1 6	3 8	5	6
ple	nce	0,10	Ac Re	۲ #	5 0	0	0	1 2	د #	е 0	е 0	с С	3 4	* 3	03	4	25	45	* 4	1 5	26	4 7	67
ultij	Accepta	0,065	Ac Re					>	~	~	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	~	<i>m</i>		т т	4	6	3	4	v v	2
Σ	Ϋ́					_		<u> </u>	*	0	0	0		* ~	0 7	0 ~~~	ہ ۲	2 3	*	3 0	33	3	4
۱ ۲		0,040	Ac Re	⇐									⇒	#	0	0	0	_	*	0	0	-	0
6 -4-		0,025	Ac Re			•			<=				-	=				⇒	# 2	0 2	0	0 2	1 2
[abl		0.015	Ac Re	_			_	⇒			•			<									
		0.010	Ac Re A				_						<u>-</u> >			•			2				
			_	5		10		~				~	~				0	'n	4	ç	0	0	-
		~~~~	size	125	250	375	8	625	500	400	600	800	1 000	315	630	945	1 260	1 575	500	1000	1 500	2 000	2 500
		Sample size		125	125	125	125	125	200	200	200	200	200	315	315	315	315	315	500	500	500	200	500
		Sample		First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Ē
	Sample	size code	otter		ŝ	z	uL 	_		ŭ	н а	UL.	_	-	ۍ ۲	- σ	<u>ш</u>	-	-	یّ ا	R T	ш. 	$\neg$
l	<i>5</i>		-																				

🗸 = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $\odot$  = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutiple sampling plan below, where available).

# = Acceptance is not permitted for this sample size.

Table 4-B — Multiple sampling plans for tightened inspection (Master table)

<u> </u>	ŞI	<u>و</u>																							
	1 000	e Ac Re	٠	++																					
	650	Ac Re	*	‡	‡	Ŷ								<u></u>											
	400	Ac Re	٠	<b>+</b> +	+ +	6 15	16 25	26 35	38 45	52 53	<	<u> </u>				_					_		<u> </u>		-
_	250	Ac Re	•	++	+++++++++++++++++++++++++++++++++++++++	3 10	10 17	17 24	25 31	34 35	6 15	16 25	26 35	38 45	52 53	Ŷ					_				-
ction)	150	Нө		+	+	80	42	17	22	24	10	1	24	31	35	Ŷ									
inspe	100	Re Ac	•			4 9	9 6	12 11	15 16	16 23	8 9	12 10	17 17	22 25	24 34	·									
tened		Re Ac		+	+	4	7 3	6	11 11	11 15	6 1	9 6	12 11	15 16	16 23	8	5	17	22	24					
s (tigh	65	Ac	•	‡	‡	4	2	6 4	7 6	7 10	4 0	7 3	۲ 6	11 11	11 15	6 1	9 6	12 11	15 16	16 23	ه 1	12	17	22	24
items	40	Ac He	*	‡	‡	#	-	N	4	θ	0	~	4	ø	10	0	0	~	:	15	-	ω	F	16	23
er 100	25	Ac He	₽	++	++	# 3	е 0	+	2 5	45	# 4	ۍ ۲	20 73	4 7	67	0	2 7	4	6 11	10 11	0 6	9 9	7 12	11 15	15 16
ties p(	15	Ac Re	U	弁	+	# 2	с 0	е 0	- 3	34	۳) #	е 0	1 4	2	45	#	15	28	4 7	67	4	27	49	6 11	10 11
quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	10	Ac Re			⇒	ت #	0 2	0 2	0	1	N #	ю 0	ю 0	1 3	4	ю #	с 0	4	N N	45	*	- 2	5 5	4	67
oncor	6.5	Ac Re /	₽	+						⇒	2	0 2	2	N 0	~	د، #	0 3	ო	ю	4	# ۲	е 0	4	2 5	2
and n	4.0	e B		∟					-		*		°	_		5	ŝ	2	2	2 3	2	e	3 1	ŝ	4
items		Re Ac		-~r											-	*	<u> </u>	°	•	11	5 #	2	2 0	1	2 3
ming	2,5	le Ac Re				ļ		<u> </u>												~	*	0	0	0	-
contor	1.5	e Ac Re				//////////////////////////////////////				⇒			*												⇒
it none	1.0	Ac Re				1			_		<u> </u>				⇒	<u> </u>		•							⇒
ercer	0,65	Ac Re				1			-		1									⇒	_		+		
L, in p	0,40	Ac Re		-		i 				-	i					i									⇒
it, AQ	0,25	Ac Re				1					   					1 1									⇒
ity lim	0,15	Ac Re				1					1			-					-						>
e qua	0,10	Ac Re		_		1							-												⇒
Acceptanc	0,065 0	Ac Re Ac	┢			i 1					i T L														<u>_</u>
Acce						] ]					     														<u>~</u>
	25 0,040	le Ac Re	F			1				_							-								⇒
	5 0,025	e Ac Re				/   										1									⇒
	0,015	Ac Re		_		└   					I					   									⇒
	0,010	Ac Re								-			-												⇒
Cumu-	lative sample	Si Ze				5	4	9	æ	9	9	ų	6	12	15	5	10	15	20	25	8	16	24	32	40
	Sample size					2	2	2	01	N	e	e	e	6		5	ß	ß	2	ß	æ	8	8	80	
	Sample		-		-	First	Second	Third	Fourth	Eith H	First	Second	Third	Fourth	Eith Eith	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Eift Fi
Sample		atter	₹		0		Ň	<u>_</u>				Ś	ш	<u></u>			ŝ					S	თ		
s	U				Ι	L										L.									

= Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $\bigtriangleup$  = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or atternatively use the mutliple sampling plan below, where available).

# = Acceptance is not permitted for this sample size.

ISO 2859-1:1999(E)

30

Copyright by the International Organization For Standardization Thu Oct 07 17:28:22 2004

$\sim$
-
g
ത്
ະ
2
- 5
- 7
~ >
0
- Ó
ت ر
-
-
- 33
_ <b>L</b>
- CD
- <b>-</b>
ČA.
5
Ξ
$\sim$
-
2
0
÷.
0
- ñi
¥.
<u>a</u>
CC C
ž
_
-
0
<u>ە</u>
ē
<u> </u>
e
ىتە -
_
÷
Б
tigh
tigh
r tigh
or tigh
for tigh
for tigh
s for tigh
is for tigh
ins for tigh
ans for tigh
lans for tigh
plans for tigh
plans for tigh
g plans for tigh
ig plans for tigh
ng plans for tigh
ling plans for tigh
oling plans for tigh
pling plans for tigh
npling plans for tigh
mpling plans for tigh
ampling plans for tigh
sampling plans for tigh
sampling plans for tigh
e sampling plans for tigh
le sampling plans for tigh
ole sampling plans for tigh
ple sampling plans for tigh
tiple sampling plans for tigh
Itiple sampling plans for tigh
ultiple sampling plans for tigh
lultiple sampling plans for tigh
Multiple sampling plans for tigh
Multiple sampling plans for tigh
<ul> <li>Multiple sampling plans for tigh</li> </ul>
<ul> <li>Multiple sampling plans for tigh</li> </ul>
<ul> <li>Multiple sampling plans for tigh</li> </ul>
Ĭ I
Ĭ I
-B — Multiple sampling plans for tigh
Ĭ I
Ĭ I
Ĭ I
Ĭ I
ole 4-B Mı
Ĭ I

	650 1 000	Ac Re Ac Re	4					1					   										1				_
	400 6	Ac Re Ac											+										1				
	250	Ac Re A	¢=					;					<u> </u>					<u> </u>					1				
bection	150	Ac Re /	⇐					<u> </u> 					<u> </u>										<u> </u>				_
ed insp	100	Ac Re	<b>(</b> =					Ļ					<u> </u>										<u> </u>				
(tighter	65	Ac Re	¢						-																		_
Items	\$	Ac Re	⇐								<del>.</del>		 						<del></del>								_
ber 100	55	AC Re	8	6 12	11 12	5 16 22	3 23 24	⇐		~						•	<u>.</u>						<u> </u>				_
mities p	15	e Ac Re	9 0	3 9	9 7 12	1 11 15	15 16	-	6 12	2 11 17	5 16 22	5 23 24	<-		2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	<u>.</u>									-
ptance quality limit, AQL, in percent nonconforming Items and nonconformittes per 100 Items (tightened inspection)	10	te Ac Re	4 0 4	5 2 7	6 4	7 6 11	7 10 11	4 0 6	7 3 9	9 7 12	11 11 15	11 15 16	6 1 8	9 6 12	12 11 17	15 16 22	16 23 24	₹=	12	17	N	4	<u> </u> 				_
nd nor	0 6,5	Re Ac Re	*	-	4	5	9 2	0	5 2	6 4	7 6 1	7 10 1	4	7	9 7 1	1 11	11 15 1	- 9	9 6 1	12 11	15 16 22	16 23 24	\} ∎	12	17	22	24
Items a	2,5 4,0	Ac Re Ac Re	# 5	0 8	3 1	3	4	*	3	4	ں 4	5	•	5 2	6 4	7 6 1	7 10 1	4	7 3	9 7 1	11 11	11 15 1	- 9	9 6 1	12 11	15 16 2	16 23 2
orming	1,5 2,	Ac Re Ac	*	2	0 7	-	3	* 2	3	3	<b>ດ</b>	4 4	*	3	4	5 4	5	4	5 2	6 4	- <b>9</b>	7 10	0 7	7 3	6	11 11	11 15
onconfi	1.0	Ac Re Ac	*	<u> </u>	•	•	- >	*	2	2 0	2	ю N	**	с 0	э Э	3	4	# 07	3	4	5 4	5	•	5	6 4	7 6	7 10
rcent no	0,65	Ac Re A					· ·	*	•	•	<u> </u>		*	2	2	<del>ہ</del> ہ	5	#± <\	3	3	3 2	4	*	е Г	4	5 7	5
, in pe	0,40	Ac Re			•							-			•	0	⇒	*	0 2 0	0 2 0	0 2 1	8	*	3 0	3 1	3 2	4
it, AQL	0,25	Ac Re					⇒			•						•		""	_				* ~	0 2 0	0 2 0	0 2 1	1 2 3
ality lin	0,15	Ac Re						 				⇒			•								   				⇒
ince qu	0,10	Ac Re													·		⇒			*			_				⇒
Accepta	0,065	Ac Re							_													Ŷ			٠		
	5 0,040	e Ac Re	_															i									⇒
	5 0,025	te Ac Re						L			_		L					 									⇒
	10 0.015	Re Ac Re											L										 				₽
	e 0,010	Ac Re	_						_																		⇒
		97 57 57	13	26	ŝ	22	65	20	4	60	80	100	32	64	96	128	160	20	100	150	200	250	8	160	240	320	<b>6</b>
	Sample size			5	5	13	ţ	20	8	53	50	8	33	ß	32	32	32	ន	50	2	22	ß	8	8	8	8	8
<b></b>				2		~			2	ъ	÷	~		Z	-	£	_		ğ	ŋ	£	ے ا	Ħ	ğ	τ	£	_
	size Sample code		First	Second	Third	Fourth	ŧ	First	Second	Third	Fourth	ŧ	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	臣	First	Second	Third	Fourth	μ μ

exceeds, lot size, carry out 100 % inspection. equals, or  $\sqrt{-2}$  = Use the first sampling plan above the arrow.  $4^{-2}$  = Use the first sampling plan above the arrow. Use the

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the mutiple sampling plan below, where available).

# = Acceptance is not permitted for this sample size.

ð
Ō
Ō.
2
5
Č
0
O.
-
<b>a</b>
<u> </u>
<b>_</b>
table)
Ξ.
5
<b>.</b>
Ś
<u>0</u>
Σ
$\sim$
5
ō
÷.
ច
Ű.
<b>Q</b>
ŝ
Ë
Ð
Ó
Ē
ē
÷.
-
^
-
-
2
g
5
8
đ
-
bu
- <del>}</del>
a
5
ക
đ
<u> </u>
lulti
- 3
Ē
2
1
m
- ক
Lable
g
Tab
-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1								Acces		il curo	hy limit	õ	in ner		nconto	i nuinte	items 6	ou put	nconf	ormitie	sper	100 ite	ms (tig	htene	d insp	action)				
Statel         Statel<	<u>a</u>								Acce	prance		۱ ۱	į												L.		1	SED 1	-		000
Fine         Serie         Acria	• ≜				0,010	0,015	_		40 0,0		-				-				-	-+		-+	_								
First       125       125       125       13       14       0       0       0       1       0       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       1       0       0       1       0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1       1       <t< th=""><th></th><th></th><th></th><th>size</th><th>Ac Re</th><th>Ac Re</th><th></th><th></th><th></th><th></th><th></th><th></th><th>ВЧ</th><th>He</th><th></th><th>Ac</th><th>Be</th><th></th><th></th><th></th><th>c Re Ac</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>¢c Be</th></t<></th1<>				size	Ac Re	Ac Re							ВЧ	He		Ac	Be				c Re Ac										¢c Be
Second         125         220         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th=""><th>1</th><td>First</td><td>125</td><td>125</td><td>=</td><td>=</td><td></td><td> </td><td></td><td></td><td></td><td>~</td><td></td><td>* 6</td><td></td><td>4</td><td>9</td><td>°</td><td>- ح</td><td></td><td><u>}</u></td><td><u> </u></td><td></td><td>, &lt;=</td><td></td><td>¢</td><td>⇐</td><td></td><td></td><td>~</td><td><b>{</b></td></th0<>	1	First	125	125	=	=						~		* 6		4	9	°	- ح		<u>}</u>	<u> </u>		, <=		¢	⇐			~	<b>{</b>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Second		250		_					°	N		е Г		~	9	2													
Figure         135         600         130         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200	-	Third		375				•			0	2	<del>ر</del>		9	σ	=	17													
Fine         ISS         655         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I		Fourth		500											~	÷	15 16	22													
First         200         200         200         200         400         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th="">         1</th1<></th1<>		Ц	125	625	_		⇒	_		-	- _}		-		~	=	9	24					-		+	+		+	-		
Second         200         400         1         0         2         0         3         1         2         7         3         6         12           Thrid         200         600         1         1         2         6         4         7         13         13         1         2         6         4         7         13         13         13         13         13         13         13         13         13         12         13         13         12         13         12         13         12         13         13         12         13         12         13         12         13         12         13         12         13         12         13         12         13         12         13         12         13         12         13         12         13         12         12         13         12         12         12         13         12         12         13         12         12         12         13         12         12         13         12         12         13         12         13         12         13         13         12         13         12         13         13	1	First	200 200	200		<u> </u>			_	*	4			4	4	9	8	~													
Thual         200         600 $1$ $2$ $3$ $1$ $2$ $3$ $1$ $2$ $3$ $1$ $2$ $3$ $1$ $2$ $3$ $1$ $2$ $3$ $1$ $2$ $3$ $1$ $3$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <		Second		40						°	2	ę		Ś	~	<b>б</b>															
Fourth         200         800 $1$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$	а.	Third		600			*			0	ŝ	ŝ		9	đ	12											_				
Filth         200         1 000		Fourth		800						°				2	Ŧ	15	\$ 22										-			_	
First         315         315         315         315         315         315         315         315         315         315         315         315         315         315         315         315         315         315         315         315         315         326         315         325         3         8         7         31         117         7         31         117         7         315         1575         945         7         31         1135         16         1         1135         16         1         1         315         1576         1         1         2         6         1         1135         16         1         1         2         2         3         4         5         7         10         115         15         2         3         6         1         17         1         17         1         17         1         17         1         17         11         17         11         17         1         17         1         17         1         17         1         17         1         17         1         17         11         17         11         17         11         17				1 000		⇒			~			4		~	Ŧ	16	3 24						+			-				1	<u> </u>
Second       315       630       1       0       2       0       3       1       5       2       7       3       6       12       11       17         Third       315       945       1       1       2       6       3       1       2       6       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th>1</th> <td>First</td> <td>┣</td> <td>315</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>* 2</td> <td>2</td> <td></td> <td></td> <td>4</td> <td>g</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	First	┣	315					*	* 2	2			4	g		<u> </u>								_	_					
Third         315         945 $1$ $2$ $6$ $4$ $2$ $6$ $4$ $2$ $6$ $4$ $2$ $6$ $4$ $2$ $6$ $4$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $2$ $6$ $4$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <		Secon							0	~	n			2	თ		_														
Fourth         315         1260         0         2         1         3         4         5         6         1         15         16         1         1         15         15         1         1         15         15         1         1         15         15         2         4         5         6         1         15         15         2         4         5         6         1         15         15         2         1         15         15         2         1         1         15         15         2         1         1         15         16         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< th=""><th>0</th><td>Third</td><td></td><td></td><td></td><td>*</td><td></td><td></td><td>0</td><td>2</td><td></td><td></td><td>9</td><td>6</td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	0	Third				*			0	2			9	6	12																
Fight         315         1575 $\checkmark$ 1         2         3         4         5         7         101         15.16         23.24		Fourth							•	3	e,	Ś	~	Ξ	15	6 22							_		_						
First         500         500         1000 $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $\#$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $0$ $4$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $2$ $1$ $1$ $2$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$		Fifth			₽			~	-		4	5	~	÷	19	5						+	$\frac{1}{1}$	+		-i					+
Secord         500         1 000         0         2         0         3         1         5         2         7         3         9         6           Third         500         1500         *         1         0         2         0         3         1         4         2         6         1         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11         15         16         11		First				⇐		*			ю г	_	4		8	<u> </u>															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Secon					_	0		e			~	6																	
Fourth         500         2 000         1         0         2         1         3         2         4         7         6         1         1         15         16         13         16         13         16         13         16         13         16         13         16         13         16         13         16         13         16         13         16         13         16         13         16         13         16         13         16         12         3         4         4         5         6         7         10         11         15         16         23           First         800         800         800         1         600         2         10         11         15         16         23           Third         800         2<400         0         2         0         2         10         1         15         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	æ							0	~	e	4	9	თ	₽ P										_							
Fifth         500         2.500         U         ↓         1         2         3         4         5         6         7         10         11         5.16         23           First         800         800         1600         602         #         2         10         11         5         16         13         16         13         16         13         16         12         12         12         12         12         12         12         10         11         15         16         12         15         16         12         15         16         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <t< th=""><th></th><td>Fourt</td><td></td><td></td><td></td><td>_</td><td></td><td>•</td><td>2</td><td></td><td>ŝ</td><td>2</td><td>Ŧ</td><td>15</td><td>6 22</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>		Fourt				_		•	2		ŝ	2	Ŧ	15	6 22													_			
First         800         800         #           Second         800         1 600         0           Third         800         1 600         0           Furth         800         2 400         0           Furth         800         3 200         0           Frith         800         4 000         1		Eift L				-	~			4	S	~	Ξ	16	3 24	╡	_ _		5	╡	┓	5	╞	┇	┑		-	-	- -	,	1
Second         900         1 600         0           Third         800         2 400         0           Fourth         800         3 200         0           Faith         800         4 000         1	1	First	_				*	2																		_					
Third         800         2 400         0           Fourth         800         3 200         0           Fifth         800         4 000         1		Secon					۰	~				-																			
800 3 200 0 800 4 000 1	ŝ						0	8						_																	
800 4 000 1		Fourt					0	3																							
		臣					-	2	_	_		-	$\neg$	-1		-1	-	-	-	-		1	1	1	1						
		;		-																											

4 = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the muttiple sampling plan below, where available).

# = Acceptance is not permitted for this sample size.

_
e)
tab
2
ste
Иа
Ē
<u>ō</u>
5
ğ
<u>.</u>
<b>b</b>
nce
edi
L L
ę
ns
g plai
9
ill.
đ
3ar
<u>0</u>
İğ
E
Σ
ç
e 4
ğ
Та

Burkels         Common listing part 100 loss 0 cords         Cord Data Could listing part 100 loss 0 cords         Could Could listing part 100 loss 0 cords         Could Could listing part 100 loss 0 cords         Could Could listing part 100 loss         Could Could listing could listing part 100 loss         Could Could listing could listing part 100 loss         Could Could listing could listing part 100 loss         Could Could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could listing could li																														
Barriel Barriel and and anti- trant         Acceptance quality init, AQL, in persent forrontoming terms and noncontomilies per 100 terms (aduoed rispection).           Barriel and anti- serve         Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela Acrela A			00	Ac Re	•	•	4	<u> </u>	<u></u>	<u>i</u>				_											7					
Barriels         Samuels         <					•	<b> </b> .		6		;					+										_					
Barries and same and same and same and same and same and and and and and and and and and and						-									+					-					-					
Acceptarce quality imit, AQL, in percent innoconforming fema and innoconformings per 100 lame (reduced inspection           Barrow           Same           Same <th colspan="5" s<="" td=""><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>Ľ</td><td></td><td>5</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ļ</td><td></td><td></td><td></td><td>_</td><td>1</td></th>	<td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>Ľ</td> <td></td> <td>5</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td>_</td> <td>1</td>						-			-	-	Ľ		5	<u> </u>										ļ				_	1
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	6				•	٠	*	‡	+	<						=	_			1					1					
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	actio		3	AC He	٠	•	•	‡	‡	<₽			-		<u>;</u> ;				_	_			_		,					
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	d insi		3	er de		÷	•	‡	‡	Ŷ					1					Ţ		_			-					
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	educe	8			*	*		+	+			10	12							+										
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	ms (r			_	-		•								_	, c	0 ;	2	N Ç	2	1									
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	00 Ite			2					_						-						<u> </u>		0 0		-					
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	Der		'   ÷	2	_	*	*								+-			ŧ (	<u>۽</u>	2 4		<b>თ</b> .	9	[™] 5						
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	mities				4	₽	٠	+	‡	*	-	2	e	ŝ		, .														
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	confor	9			4		⇒	‡	‡			1 4			ł.															
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	non	6.5	Ac Bo		•	\$	4	⇒	‡						1					ľ					1					
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	1s and	4.0	E C		৶	•	\$	4	⇒	5			2	2			) (*	, r	<u>ک</u> د	r (		· ·	а и	n n						
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	ig iten	2.5	_			⇒	•	4	4			_	_		+	~	1 0	1 0	1 0	-+			_							
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	formir	5	E	2			->	_	<u>_</u>						*	-		· · ·												
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	Ducon		_ <b>▲</b>	_					-+	4					+				~	1				> <del>~</del>						
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	ent no		_	-	+-	+			_									_						<b>⇒</b>						
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	n perc	0.6	Ř		-+-	+			⊅			*			¢					Ŀ				⇒						
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	al, i	0,40					_		-					⇒			*			¢										
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	imit, A	0,25							_					_				-	⇒	•		•								
Sample         Cumu. size         Cumu. annoe         Acceptance           Sample         size         0.010         0.015         0.025         0.040         0.065         0.11           size         size         Ac Re	l dilty	0,15	Ac Re						-										_	1				ĥ						
Sample         Cumu.           Sample         1910         0.015         0.025         0.046           size         ample         1910         0.015         0.025         0.046           size         ample         1910         0.015         0.025         0.046           size         arangle         ample         Ar Re         Ar Re         Ar Re         Ar Re           First         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <t< td=""><td>nce dr</td><td>1 2</td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></t<>	nce dr	1 2			1	1																		<u> </u>						
Sample         Cumu.           Sample         1910         0.015         0.025         0.046           size         ample         1910         0.015         0.025         0.046           size         ample         1910         0.015         0.025         0.046           size         arangle         ample         Ar Re         Ar Re         Ar Re         Ar Re           First         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <t< td=""><td>ceptar</td><td>L</td><td>C Re</td><td></td><td></td><td></td><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>   </td><td>_</td><td></td><td></td><td>1</td><td></td></t<>	ceptar	L	C Re					+	+				_							 	_			1						
Sample         Sample         Lumu- lative         OID         OIDS         O.225           Sample         size         asmple         5010         0.015         0.025         0.025           size         size         asmple         size         Ac Re         Ac Re         Ac Re           size         size         Ac Re         Ac Re         Ac Re         Ac Re           First         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2	Act	040 0	Re A	╞		i	- <u>+</u>	- <del> </del> -	+			~								<u>.</u>				~						
Sample Sample Sample Lettwork Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample			BB AC	1			+	+	-					ļ						-				⇒						
Sample Sample Sample Lettwork Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample			e Ac I			Ŧ	+		+								_			 				⇒						
Sample Sample Sample Lettvore Sample Sample Size size size size size size size size s			Ac H	=	+	+	+	- <u>+</u> -	+									_		i				⇒						
Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Street 2 Third 2 Third 2 First 2 Second 3 First 3 Second 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5				F	ļ	+		+	+	_	-	_		-	_			_					-	⇒						
Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Street 2 Third 2 Third 2 First 2 Second 3 First 3 Second 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5 First 5	Cumu-	lative sample	size		Γ	T				N .	<b>t</b> u		0	2	9	ę	6	12	15	ŝ	10	15	50	25						
Sample Sample First First First First First First First First					1	Ť	╀	1	,	<u>v</u> 0				~	e	e	e		3	5	5		<u>م</u>	5						
		_		-			╁	╋	ŝ		hird				Li Cal	puope	Third	ourth	Ę.	-irst	cond	hird	urth	Ę.						
	Sample		letter	V	α				┿	ů.			-	-		ů		<u>ш</u>	-	-	Se		<u>ц</u>							

 $\bigtriangledown$  = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

 $\mathfrak{S}$  = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

 *  = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the multiple sampling plan below, where available).

# = Acceptance is not permitted for this sample size.

$\sim$
5
õ
3
2
1
5
0
S S
$\sim$
r table) (c
<u> </u>
Ъ
8
er ta
<u> </u>
e
77
<i>d</i> i
Ř
2
$\underline{}$
ection (Mas
0
1
ö
ð
ā
0
Ë
l inspe
ъ
ā
ŭ
Ē
Ē
ŏ
Ľ
<u> </u>
ō
s for reduced inspect
Ó
ë
ampling plar
Ť
pling p
5
Ĕ
.=
7
Ξ
2
3
S
ው
<u> </u>
പ
10
ult
2
2
1
0
1
ble 4-(
Table
Table
닕

	8	æ	¢				i					ī					i					]
	1 000	Ac Re	<u> </u>				-															$\neg$
	650	Ac Re	⇐				1					1				_	1					
	4 6	Ac Re	4									1					i					
		le Ac					+								-		1					
2	250	Ac Re	¢				i	-									į					
actio	150	Ac Re	⇐														<u>+</u>					∍
inspi	ŝ	Ac Re	⇐				İ					Í										_
lced							-÷									. <u></u>						-
(red	65	Ac Re	<-																			
tems	40	Ac Re	⊱=									<u> </u>							:			-
1001	25	Ac Re	~																			
per			2	80	10	12	13										-					-
litles	15	Ac Re	0	e	с С	т б	얻															
nform	10	Ac Re	0 4	27	49	6 11	10 11	0	99 19	6 10	9 12	12 13	<=									=
oncol	6,5	Ac Re	4	ω	~	8	8	4	~	თ	÷	Ξ	ц	80	2	12	2 13	<u> </u>				
nd n(		Re Ac	0	4	5	4	6 7	4	9	7 4	8	8 10	4	7 3	9 6	11 8	11 12	2	80	9	12	5
Acceptance quality fimit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	4,0	Ϋ́ς	*	-	~	en	с С	0	-	N	4	7	0	~	4	ø	2	۰	e	9	6	12
ng ite	2,5	Ac Re	# 3	03	4	2 5	4	m #	4	2	3 5	56	0 4	1 6	2 7	<b>4</b>	78	4	2 7	<b>4</b> 9	6 11	10 11
omir	1,5	R.	~	ŝ	e	б	ষ	e	ŝ	4	S	5	e	4	ۍ	ŝ	6	4	9	2	8	80
cont	⊢	le Ac	* 2	5	5	5	2 3	# (V	3 0	<del>ب</del>	3 2	4 4	3 #	- -	4 2	5 3	5 5	3 0	4	5	5 4	6 7
tnor	0;-	Ac He	*	o	0	0	-	#	0	0	÷	ю	#	0	-	~	4	#	-	~	e	2
ercen	0,65	Ac Re					⇒	€\  ##	0	0	0 2	1 2	# 2	0	0 3	- 3	3 4	# 3	0	4	25	4
in p	0,40	Ac Re /										>	5	N	~	~	2	5	n	3	n	4
AQL							-						** 	0	•	<u> </u>		*	5	0	2	2 3
linit.	0.25	Ac Re											i I				~	*	0	0	0	-
ality	0.15	Ac Re			*			<=					-					 				⇒∕
inb a	0,10	Ac Re					 						<u> </u>				_					⇒
otand													-									
Accel	0,065	Ac Re						i				=>		-	*	_						
	0,040	Ac Re	=					i					<u> </u>		~		⇒			٠		
	0,025	Ac Re											<u> </u>									⇒
		В В В											<u> </u>					i I I				
	0,015	Ac Re											1 					1				
	0,010	Ac Re	-	-		;		i T					i L									⇒
-1,001	lative semula	BZIS		16	24	32	4	13	26	g	52	33	20	40	60	80	100 1	32	64	96	128	160
	Sample		8	æ	80	8	8	13	13	13	13	13	20	20	20	20	20	8	32	32	32	32
	Sample		First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth		First	Second	Third	Fourth	Fith	First	Second	Third	Fourth	Fith
	size Size	letter		<del>س</del>					03	¥					 					Σ		
<u>ــــّ</u>								1										<b>.</b>				

 $\heartsuit$  = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

45 = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or alternatively use the muttiple sampling plan below, where available).

# = Acceptance is not permitted for this sample size.

~
20
ŏ
Ĵ.
Q
S
5
$\sim$
ିତ
ā
a
نب
ē
ŝ
ő
Ξ
, L
Ĕ
5
ě
č
-=
Ď
80
ž
Ō
5
<u> </u>
<u>_</u>
, v
Ĕ
8
д
5
Ĕ
멑
E
80
d)
Ĭ
ġ.
Ħ
2
2
Ŷ
4
Ū.
ã
al
$\vdash$

<u> </u>	8	쁂	¢					ī					T	÷				1				
	1000	Ac Re	Ľ				_	i.										1				
	650	Ac Re	¢					<u> </u> 					   					1				_
	8	Ac Re	¢		_			1					+					1				_
	$\vdash$							-										+				
Ê	250	Ac Re						i i	_				i					i i				
Dectio	150	Ac Re	¢⊧					ı i					+					1 1				-
d insp	ŝ	Ac Re	¢			_		<u> </u>					1.					1				
educe	65	Ac Re	¢															Ļ				
sms (r	\$	Ac Re	2					 					1								_	
100 ite	25	Ac Re A	1															   				
s per 1			1					-					1					1				
rmities	15	Re Ac Re	4					)   														
e quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	₽ ₽	e Ac Re	₽										<u>т</u>					   				-
uou pi	6,5	Ac Re	∣Ҿ																			
ms an	4,0	Ac Re	Ҿ										<u>!</u>					<u> </u>				
ing ite	2,5	Ac Re	0 5	8 0	6 10	9 12	12 13	¢-					<u> </u> 									_
nform	1,5	Ac Re	4	2 7	4 0	6 11	10 11	0 5	90 10	6 10	9 12	12 13	<=									_
nonco	1,0	Ac Re	4	1 6	2 7	4 80	7 8	4	2 7	4 9	Ξ	10 11	0 5	3 8	10	12	12 13	4				
rcent	0,65	Ac Re	e	4	ŝ	S	9	4	g	2	8	60	4	~	9	11 9	÷	ŝ	80	9	12	13
in pe	0,40	Ac Re A	* (*)	<del>ب</del>	4	5	5 5	3	4	5 2	5	6 7	4	6	7 4	8 6	8 10	4	7 3	9	11 9	11 12
AGL	0.25 0	ъе	*	0 9	с Г	3	4	* *	<del>г</del>	4	5 3	a a	3	4	5	5	6 7	4	6 2	7 4	8	8 10
ty limit	0,15 0,	Re Ac	*	0 N	5	 2	3	# ~	9	н Е	3	4	# m	3	4	5 3	5 5	0 8	4	5 2	5 4	6 7
qual	10 0,	Re Ac	#	0	•	0	-	*	0 73	3	-	5	*	0 8	-	3	4	*	3 1	4 2	5 3	5 5
ance	Ó	Ac					⇒	*	0	0	0	-	#	0	0	-	б	*	0	-	2	4
Acceptanc	0,065	Ac Re	<b></b>					-				⇒	10 #	0 2	0 2	0	1 2	۲3 #	о 3	03	1 3	34
◄	0,040	Ac Re	¢				_										⇒	N #	0 2	0 2	0 2	2
	0,025 (	Ac Re						Ŷ					     						-	-		
	0,015 0	Ac Re					<u>ا</u>	-	-	•												
	0,010 0,	Ac Re Ac					~											-				_
											-	=>			•			۶.				_
Cumu-	lative sample	Size	8	ş	150	8	250	8	160	240	320	<b></b>	125	250	375	20	625	200	40	600	800	1 000
	Sample size		50	20	23	50	20	8	80	8	80	8	125	125	125	125	125	200	200	200	200	200
	Sample		First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Efth	First	Second	Third	Fourth	Fifth	First	Second	Third	Fourth	Fifth
ampie	size code	etter		s	z	<u> </u>			ŭ		u.			ũ	0	<u>u</u>	_		ű		<u> </u>	_
้ดี		-																				

 $\odot$  = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

4 = Use the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

* = Use the corresponding single sampling plan (or alternatively use the double sampling plan below, where available).

++ = Use the corresponding double sampling plan (or atternatively use the mutliple sampling plan below, where available).

# = Acceptance is not permitted for this sample size.

Table 5-A — Producer's risk for normal inspection

(in percent of lots not accepted for single sampling plans)

with bioling method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method method m																												
****         0.010         0.026         0.040         0.055         0.14         0.15         0.25         0.04         0.55         0.14         0.19         250         473         431         166         137         173         141           2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Sample size	Sample				Accep	otance	; quali	ty limi	t, AQI	-, in p∉	srcent	nonco	nform	ing ite	ms an	uou pu	confor	mities	per 1(	00 iten	ns (no.	rmal ir	specti	(uo			
2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	code letter	size	0,010	<b>),015</b> (	0.025		0,065		0,15	0,25	0,40	0,65	1,0	- 1	2,5	4,0	6,5	9	15	55	4					<u> </u>		1 000
	A	2																	9,45*									1,35
5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	۵	e																	7,54			-			-		,979 (	0,627
8         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	U	5													11.8 11,9		10,8* 10,8*	9,02 8,15	4,05								2,17	
	۵	B												11,3 11,4	7,15° 7,16°	10,5* 10,5*	9,63 9,10	4,74 3,81	3,38							,73		
	ш	13												6,85° 6,86°	10,8° 10,8°	9,63 9,32	5,41 4,80	4,31 3,42	1,48	1,83					2,17			
32         32         32         32         32         32         32         32         32         32         32         173         173         173           50         50         7         7         50         754*         105*         833         1.66         1.68         1.71         1.73         0.935         0.940           50         7         7         7         7         1.18         7.15         10.5         8.03         1.66         1.67         1.73         0.935         0.940           80         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7	Ľ	20										12,2 12,2		9,45° 9,45°	9,02 8,82	4,74 4,39	4,31 3,74	1,66 1,13	1,19	1,37		1,41						
50         51         51         715         10.8         9.02         4.05         3.83         1.66         1.83         1.37         1.03           80         80         7         5         7.15         10.5         9.53         4.66         1.66         1.61         1.73         0.935         1.03           80         80         7         1         7         11.3         7.15'         10.5'         9.53         4.66         3.26         1.47         1.73         0.935         1.03           1125         7         7         11.3         7.15'         10.5'         9.53         4.66         3.26         1.48         1.73         1.73         0.607           1125         7         7         10.5'         9.63         4.74         4.33         1.66         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1.73         1	U	32									12,0 12,0	7,63* 7,64*	10,5° 10,5°	8,42 8,30	4,74 4,52	4,11 3,77	1,96 1,58	1,68 1,17	1,04		1,20							
B0         F         F         F113         7,15'         10,5'         9,63         4,74         3,36         1,66         1,63         1,73         1,73           125         1         2         1         1         3,75'         10,5'         9,58         4,66         3,26         1,65         1,47         1,43         1,23           125         1         2         1         1         8,41'         10,1'         8,99         4,87         3,74         1,96         1,97         1,73         1,43         1,23           200         2         2         3,31         1,66         1,66         1,66         1,66         1,66         0,626         0,626           315         1         2         1,12         7,15'         9,45'         9,00         4,71         4,31         1,66         1,71         1,73         1,40         0,626           315         1         2         1,31         1,56         1,56         1,56         1,41         1,60         1,41         0,626         1,41         1,23         1,23         1,41         1,60         1,41         0,626         1,41         1,56         1,41         1,56         1,41	r	50			<b></b>					11.8 11.8	7,15* 7,15*	10,8" 10,8"	9,02 8,94	4,05 3,92	3,83 3,62	1.66 1,44		1,37 0,935		0,940								
125         1         1         1         6         6         1         0.1         9.02         4.92         3.83         1.25         1.48         1.37         1.95           200         200         4         4         4.1         10.1*         8.99         4.87         3.74         1.96         1.93         1.93         1.91         1.60           200         201         12.2         7.15*         9.45*         9.02         4.71         4.25         1.66         1.13         1.26         1.52         1.13           315         11.8         7.44*         10.2*         8.20         4.56         3.82         1.56         1.56         1.52         1.73         1.41         1.22         1.13         1.22         1.13         1.56         1.56         1.56         1.52         1.41         1.53         1.41         1.55         1.56         1.52         1.13         1.26         1.52         1.13         1.26         1.52         1.13         1.56         1.52         1.13         1.56         1.52         1.13         1.56         1.52         1.13         1.56         1.52         1.13         1.56         1.52         1.53         1.73	~	80							11,3 11,3	7,15* 7,15*	10,5° 10,5°	9,63 9,58	4,74 4,66	3,38 3,26	1,66 1,52	1,68 1,47			0,607									
200         20         4,74         4,31         1,66         1,13         1,37         1,73           315         2         1         4,25         9,45'         9,00         4,71         4,25         1,60         1,31         1,26         1,52           315         315         1         1         1,26         3,82         1,83         1,55         0,932         1,41         0,833         1,57         1,02           315         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< td=""><td>¥</td><td>125</td><td></td><td></td><td></td><td></td><td></td><td>11,8 11,8</td><td>6,41° 6,41°</td><td>10,1-</td><td></td><td>4,92 4,87</td><td>3,83 3,74</td><td>1,25 1,18</td><td>1,48 1,36</td><td>1,37 1,19</td><td></td><td>0,940 0,626</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	¥	125						11,8 11,8	6,41° 6,41°	10,1-		4,92 4,87	3,83 3,74	1,25 1,18	1,48 1,36	1,37 1,19		0,940 0,626										
315         11.8         7,44*         10,2*         8,20         4,56         3,92         1,55         0,936         1,52         0,936         1,52         0,936         1,52         0,936         1,52         0,936         1,52         0,936         1,51         1,14           500         11.8         7,15*         10,8*         9,02         4,05         3,83         1,66         1,83         1,37         1,03         0,940           710         11,8         7,15*         10,8*         9,01         4,04         3,81         1,66         1,32         0,971         0,802         1,41           800         11,3         7,15*         10,5*         9,63         4,73         3,37         1,64         1,77         1,73         0,607         0,857           800         11,3         7,15*         10,5*         9,63         4,73         3,37         1,64         1,77         1,73         0,607         0,857           800         11,3         7,15*         10,5*         9,63         4,73         3,37         1,64         1,77         1,73         0,607         0,857           11         2500         11,8         6,41*         10,1*		200					12,2 12,2	7,15° 7,15°	9,45° 9,45°	9,02 9,00	4,74 4,71	4,31 4,25	1,66 1,60	1,19 1,13	1,37 1,26	1,73 1,52	1,41 1,13											
500         11.8         7.15*         10.8*         9.02         4.05         3.83         1.66         1.83         1.37         1.03           800         11.3         7.15*         10.5*         9.63         4.74         3.81         1.65         1.73         1.73         0.971           800         11.3         7.15*         10.5*         9.63         4.74         3.38         1.66         1.77         1.73         0.607           11.3         7.15*         10.5*         9.63         4.73         3.37         1.64         1.66         1.74         1.73         0.607           11.3         7.15*         10.5*         9.63         4.73         3.37         1.64         1.66         1.77         1.73         0.607           11.250         11.8         6.41*         10.1*         9.02         4.92         3.83         1.25         1.48         1.77         1.56         0.940           11.250         11.8         6.41*         10.1*         9.02         4.92         3.82         1.24         1.35         0.907           11.250         7.15*         9.47         4.31         1.66         1.37         1.95         0.907 <td>Σ</td> <td>315</td> <td></td> <td></td> <td></td> <td></td> <td>7,44° 7,44°</td> <td></td> <td>8,20 8,19</td> <td>4,56 4.54</td> <td>3,92 3.89</td> <td>1,83 1,80</td> <td></td> <td>0,936 0,882</td> <td>1,52 1,41</td> <td>1,02 0,883</td> <td></td>	Σ	315					7,44° 7,44°		8,20 8,19	4,56 4.54	3,92 3.89	1,83 1,80		0,936 0,882	1,52 1,41	1,02 0,883												
800         11,3         7,15'         10,5'         9,63         4,74         3,38         1,66         1,68         1,77         1,73           11,3         7,15'         10,5'         9,63         4,73         3,37         1,66         1,74         1,74         1,73           11,3         7,15'         10,5'         9,63         4,73         3,37         1,66         1,74         1,68           1250         11,8         6,41'         10,1'         9,02         4,92         3,83         1,25         1,48         1,37         1,95         0,940           11,8         6,41'         10,1'         9,02         4,92         3,82         1,24         1,37         1,95         0,940           2         11,1,8         6,41'         10,1'         9,02         4,74         4,31         1,66         1,37         1,36         0,907           2         2000         7,15'         9,45'         9,02         4,74         4,30         1,66         1,36         1,41         0,907	z	500					10,8° 10,8°	9,02 9,01	4,05 4,04	3,83 3,81	1,66 1,63	1,83 1,79			0,940 0,857		-											
1         250         11,8         6,41*         10,1*         9,02         4,92         3,83         1,25         1,48         1,37         1,95           1         2         0,11         8,641*         10,1*         9,02         4,92         3,83         1,25         1,48         1,37         1,95           2         0,11         8         6,41*         10,1*         9,02         4,92         3,82         1,24         1,35         1,91           2         0,00         7,15*         9,45*         9,02         4,74         4,31         1,66         1,37         1,73         1,41           2         0,002         7,15*         9,46*         9,02         4,74         4,30         1,65         1,36         1,41	۵.	800				10,5° 10,5°	9,63 9,63	4,74 4,73	3,38 3,37	1,66 1,64	1,68 1,66	1.77 1,74		0,607 0,570														
2 000 7,15° 9,45° 9,02 4,74 4,31 1,66 1,19 1,37 1,73 7,73 7,17	o	1 250				9,02 9,02	4,92 4,92		1,25 1,24	1,48 1,47	1,37 1,35	1,95 1,91	0,940 0,907															
	æ	2 000					4,31 4,30	1,66 1,65	1,19 1,18	1,37 1,36	1,73	1,41 1,38																

NOTES

1 The producer's risk is the probability of nonacceptance for lots of AQL quality.

2 Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection) *** 0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 0.55 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.065 0.10 0.15 0.25 0.040 0.055 0.10 0.15 0.25 0.040 0.055 0.10 0.15 0.25 0.040 0.055 0.10 0.15 0.25 0.040 0.055 0.10 0.15 0.25 0.040 0.055 0.10 0.15 0.25 0.040 0.055 0.10 0.15 0.25 0.040 0.055 0.10 0.15 0.25 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.050 0.040 0.04	Acceptance	Acceptance	Acceptance				y limit, AQL, in p	, AQL, in p	d li d	l a L	Cent n	onconf	formin	lg item	and and	nonco	onform	lities p	er 100	items	(tight	tened ir	inspect	1 1		
									<del>}</del>		8	2	<u>0</u>	ç,		n o						_	_	6,81 6,38	0 000 38 6,98	0 1 000 8 5,25
															<u> </u>	17.7 18.3	13,7* 14,2*	17.9*	17,3	12,1	13,4 B	8,39 4,	4,03 4,	4,27 3,74	4 4,09	9 2,21
															18,1 18,5	15,5° 15,9°	21.0° 21.6°	17,3	13,2 1	14,3		6,81 4,	4,27 5,	5,19 5,25	25 6,16	ω
														18,1 18,3	15,1* 2 15,3* 2	22,2* 22,6*	19,1 18,7	12,1	14,3 1	10,5 8	8,19 E	6,38 3,	3,74 5,	5,25 5,12	2	
13													17.7 17.8	15,5* 2 15,6* 2	22,2* 22,4*	20,7 20,5	14,3 13,4	13,4	11,1 8	8,19 8	8,79 E	6,98 4,	4,09 6,	6,16		
20												18,1 1 18,2 1	13,7° 2 13,8° 2	21,0° 21,1°	19,1 19,0	14,3 13,7	14,3 13,3	8,39	6,81 6	6,38 6	6,98					
32											18,B 18,8	15,1° 1 15,2° 1	19,7° 19,8°	19,1 19,0	13,8 13,5	15,8 15,2	10,5 9,44	5,58	6.38 6	6,22						
50 18,1	18,1	18,1	18,1	18,1	18,1	18,1	18,1	18,1 18,2	18,1 18,2	-	15,5* 15,5*	21,0*	17,3 17,3	13,2 12,9	14,3 13,9	11,1 10,4	6,81 5,79	4,27	5,19							<u> </u>
80 18,1 15,1* 18,1 15,2*									15,1* 15,2*		22,2*	19,1 19,1	12,1	14,3 14,1		8,19 7,51	6,38 5,38	3.74								-
125 17,1 14,6° 21,0° 17,1 14,6° 21,0° 17,1 14,6° 21,0°	14.6* 14.6*	14.6* 14.6*	14.6* 14.6*	14.6* 14.6*	14.6* 14.6*	14.6* 14.6*	14.6* 14.6*		21,0		19,6 19,5	13,2 13,1	12,1 9	9,70 9,44	6,81 6,41	6.34	5,19 4,28									
200 18,1 13,7' 21,0' 19,1 18,1 13,7' 21,0' 19,1	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	13,7* 21,0* 13,7* 21,0*	21,0° 21,0°		19,1 19,1		14,3 14,2	14,3 14,2	8.39 8.24	<del>}</del>	6,38 5,99	6,98 6,32		<u>+</u>								
315         18.5         14.8*         19.3         18.7         13.4           18,5         14.8*         19.3         18.7         13.3	14,8° 19,3° 18,7 14,8° 19,3° 18,7	14,8° 19,3° 18,7 14,8° 19,3° 18,7	14,8° 19,3° 18,7 14,8° 19,3° 18,7	14,8° 19,3° 18,7 14,8° 19,3° 18,7	14,8° 19,3° 18,7 14,8° 19,3° 18,7	14,8° 19,3° 18,7 14,8° 19,3° 18,7	18,7 18,7		13,4 13,3		15,2 15,1	86 6 88 6	5,16 5,03	5,80	5,52 5,15						$\left  \right $			<u> </u>		
17,3 13,2 17,3 13,1	15,5° 21,0° 17,3 13,2 15,5° 21,0° 17,3 13,1	15,5° 21,0° 17,3 13,2 15,5° 21,0° 17,3 13,1	15,5° 21,0° 17,3 13,2 15,5° 21,0° 17,3 13,1	15,5° 21,0° 17,3 13,2 15,5° 21,0° 17,3 13,1	21,0° 17,3 13,2 21,0° 17,3 13,1	17,3 13,2 17,3 13,1	13,2 13,1	<u> </u>	14,3 14,3	÷		+	4,27 54,14							┼──		$\left  \right $	-			
-	15,1° 22,2° 19,1 12,1 14,3 15,1° 22,2° 19,1 12,0 14,3	15,1° 22,2° 19,1 12,1 14,3 15,1° 22,2° 19,1 12,0 14,3	15,1° 22,2° 19,1 12,1 14,3 15,1° 22,2° 19,1 12,0 14,3	22.2° 19,1 12,1 14,3 22,2° 19,1 12,0 14,3	22.2° 19,1 12,1 14,3 22,2° 19,1 12,0 14,3	12,1 14,3 12,0 14,3	14,3 14,3		10,5		+	6,38	+											+		
1 250 17.1 14.6 21.0 19.6 13.2 12.1 9.70 6.81 17.1 14.6 21.0 19.6 13.1 12.1 9.68 6.77	14.6° 21.0° 19,6 13,2 12,1 9,70 14.6° 21.0° 19,6 13,1 12,1 9,68	14.6° 21.0° 19,6 13,2 12,1 9,70 14.6° 21.0° 19,6 13,1 12,1 9,68	21,0° 19,6 13,2 12,1 9,70 21,0° 19,6 13,1 12,1 9,68	21,0° 19,6 13,2 12,1 9,70 21,0° 19,6 13,1 12,1 9,68	19,6 13,2 12,1 9,70 19,6 13,1 12,1 9,68	12,1 9,70 12,1 9,68	9,70 9,68		6,81 6,77		7,00	5,19 5,10									┢					
2 000 18,1 13,7* 21,0° 19,1 14,3 14,3 8,39 6,81 6,38 18,3 18,1 13,7* 21,0° 19,1 14,3 14,3 8,39 6,81 6,34	13.7* 21.0' 19.1 14.3 14.3 8.39 6.81 13.7* 21.0' 19.1 14.3 14.3 8.38 6.81	13.7* 21.0' 19.1 14.3 14.3 8.39 6.81 13.7* 21.0' 19.1 14.3 14.3 8.38 6.81	21.0° 19.1 14.3 14.3 8.39 6.81 21.0° 19.1 14.3 14.3 8.38 6.81	19,1 14,3 14,3 8,39 6,81 19,1 14,3 14,3 8,38 6,78	14,3 8,39 6,81 14,3 8,38 6,78	8,39 6,81 8,38 6,78	6,81 6,78		6,38 6,34		6,98 6,92				<u> </u>											
3 150 18,7 18,7	18,7	18,7	18,7							1								-			<u> </u>					

1 The producer's risk is the probability of nonacceptance for lots of AQL quality.

2 Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

Size         0.010           Intrier         A         2         0.010           B         B         2         2         0           O         C         2         2         2         0	10 0,015																							
		5 0,025	0,040	0,065	0,10	0,15	0,25	0,40	0,65	1,0,1	1,5 2,	2,5 4,0	0 6,5	10	15	25	40	65	100	150	250	400	650	1 000
													12,2 12,6	2 7,15* 6 7,19*	9,45*	9,02	4,74	4,31	1,66	1,19	1,37	1,73	1,41	1,35
							<u> </u>					7,69 7,84	59 5,40° 34 5,48*	)* 7,15* 3* 7,19*	9,45*	9,02	4,74	4,31	1,66	1,19	1.37	1,73	1,41	1,35
											4 4	4,88 2,33 ⁺ 4,94 2,30 ⁺	(3° 3,39° (0° 3,29°	9° 4,72° 9° 4,42°	3,69	1,44	0,908	1,07	0,453	0,380	1,37	1,73	1,41	
										44	4,40 2,0 4,43 2,0	2,07* 2,94* 2,05* 2,87*	14* 4,51* 17* 4,33*	1* 3,69 3* 2,80	1,09	0,729	9 0,775	0,396	0,38	0,667	1,03	0,607		
ы С						-				4,88 2, 4,90 2,	2,07* 3,1 2,06* 3,1	3,16* 4,72* 3,12* 4,61*	'2* 4,27 31* 3,70	7 1,44 0 0,856	6 0.729	9 0,912	2 0,453	0,629	1,37	1,03	0,940			
т 8									5,07 2 5,08 2	2,33° 2, 2,32° 2,	2,94* 4,7 2,91* 4,6	4,72* 4,15 4,65* 3,81	15 1,59 31 1,20	9 0,908 0 0,502	8 0,775	5 0,453	3 0,571	1,77						
G 13								5,07 2 5,08 2	2,56° 3 2,56° 3	3,39° 4, 3,37° 4,	4,51* 4; 4,47* 4,	4,27 1,59 4,06 1,35	59 1,09 35 0,793	9 1,07 33 0,646	6 0.396	5 0,629	9 1,77							
Н 20							4,88 4,88	2,33* 3 2,32* 3	3,39° 4 3,38° 4	4,72* 3, 4,69* 3,	3,69 1, 3,57 1,	1,44 0,908 1,30 0,741	08 1.07 41 0.788	1,07 0,453 0,788 0,239	3 0,380	0 1,37								
J 32						4,69 4,69	2,33	3,30* 5 3,29* 5	5,06° 4	4,15 1, 4,07 1,	1,29 0,5 1,21 0,6	0,908 1,00 0.803 0.836	00 0,558 36 0,389	58 0,571 39 0,330	1 0 1,04									
K 50					4,88 4,88	2,07° 2,07°	3,16° 3,16°	4,72*	4.27 4.21	1,44 0, 1,38 0,	0,729 0,912 0,453 0,674 0,813 0,361	912 0,4 13 0,3	53 0,629 61 0,454	29 1,37 54 0,935	2									
В0 В0				5,07 5,07	2,33° 2,33°	2,94* 2,93*	4,72° 4,71°	4,15 4,12	1,59 0 1,56 0	0,908 0, 0,866 0,	0,775 0,453 0,720 0,395	453 0,571 395 0,468	71 1,77 68 1,43	7 3										
M 125			4,88 4,88	2,39° 2,39°	3,16* 3,16*	4,21* 4,21*	3,98 3,96	1,44 C 1,42 C	0,957 0 0,929 0	0,912 0, 0,873 0,	0,912 0,321 0,493 0,873 0,293 0,434	0,493 1,37 0,434 1,19	37 19											
N 200		4,88 4,88	2,33° 2,33°	3,39* 3,39*	4,72* 4,72*	3,69 3,68	1,44 (	0,908 0,891	1,07 0	0,453 0,380 0,430 0,350		1,37 1,26												
P 315	4,62 4,62	2 2,26*	3,20° 3,20°	4,92* 4,92*	4,03 4,02	1,24 1,23	0,861 0,851	0,861 0,942 0,513 0,851 0,926 0,496		0,518 0,936 0,493 0,882	0,936 0,882													
G 500 4,88 4,88	38 2,07* 38 2,07*	** 3,16* ** 3,16*	4,72* 4,72*	4,27 4,26	1,44 1,43	0,729 0,724	0,912 (0,902 (	0,453 C 0,444 C	0,629 0,611	1,37 1,32														
R 800 2,33*	3° 2.94° 3° 2.94°	4.72°	4,15 4,15	1.59 1,59	စ်စ်		0,775 0,453 0,571 0,769 0,447 0,561		1,77 1,74															

NOTES

1 The producer's risk is the probability of nonacceptance for lots of AQL quality.

2 Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

Copyright by the International Organization For Standardization Thu Oct 07 17:28:25 2004

Table 6-A — Consumer's risk quality for normal inspection percent nonconforming for single sampling plans, for inspection for percent nonconforming)

<u>j</u>

53,8 41,5 21,9 58,4 44,4 34,0 24,2 69,0* 57,6* 29,1 2 54,1* 40,6 36,0 18,6 39,8* 30,4 22,4 13,8 15,7 6,5 27.1 68,4 24,5 26,8 27,0* 37,3* 17,8 53,6 14,3 4,0 19,7 9,91 8,84 Ň 25,2* 17,5* 11,3 36,9 7,60 15,8 12,9 9,24 6,33 5,60 រ ស 18,1 16,4" 25,0 11,8 8,16 11,6 10,3 5,82 5. 7,29 4,85 4,00 3,51 Acceptance quality limit, AQL, percent nonconforming items 11,0* 7,56 16,2 7,50* 6,52 3,06 2.25 0.1 4,59 5,27 3,71 2,51 0,65 4,78 10,9 4,87* 4,20 2,92 1,92 3,31 2,34 1,41 7,01 6 0,40 2,11 4,54* 1,23 8,1 6,94 3,07 3,08 2,64 1,85 1,47 0,25 0,940 0,769 2,86* 1,68 1,16 4,50 1,93 1,33 1,97 0,15 0,588 0,833 1,84* 1,24* 1,23 1,06 0,741 2,84 0,10 1,16* 0,788 0,463 0,534 1,83 0,776 0,664 0,065 0,735" 0,485 0,425 1,14 0,334 0,497 0,040 0,728 0,311 0,266 0,311 0,464 0,025 0,459 0,290* 0,199* 0,194 0,015 0,287 0,186* 0,124* 0,010 0,116* 0,184 Sample size 250 2 000 200 125 315 500 800 CN e 33 8 8 8 8 ŝ ω Sample code size letter < ß o ۵ ш Ø T ¥ ≥ z ٩ σ œ Ц., -_

NOTES

At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

 Table 6-B
 Consumer's risk quality for tightened inspection

 (in percent nonconforming for single sampling plans, for inspection for percent nonconforming)

54,1* 68,4 39,8* 21,4 19,3 40,6 36,0 30,4 24,7 9 27,1 53,6 24,5 17,8 37,3* 27,0* 13,9 26,8 15,7 12,2 6,5 19,7 36,9 12,9 8,76 25,2* 11,3 17,5* 15,8 10,2 4,0 7.77 8 8.16 6,42 11,8" 11,6 10,3 25,0 16,4* 7,29 5,59 4,92 ŝ 11,0" 7,50* 7,56 6,52 4,59 4,09 16,2 3,08 5,27 3,54 Ω, Acceptance quality limit, AQL, percent nonconforming items 2,92 1,98 10,9 4,87* 4.78 4,20 3,31 2,59 2,21 0,1 7,01 4,54* 3,07 42 0,65 6,94 3,08 2,64 50,1 1,24 2.1 ,85 0,888 0,40 2,86 4,50 **1**,97 1,93 1,68 1,33 1,16 1,04 0,833 0,25 0,741 0,649 1,23 1,24* 1,06 2,84 84* 0,776 0,534 0,463 0,15 0.788* 83 1,16 0,664 0,425 0,735* 0,497* 0,485 0,334 0,10 4 0,311* 0,065 0,728 0,311 0,464" 0,266 0,040 0,290* 0,199* 0,459 0,194 0,186* 0,025 0,287 0,123 0,124* 0,116* 0,015 0,184 0,010 0,115 Sample 2 000 250 3 150 200 315 200 800 size 125 2 e ŝ ω 5 20 32 30 80 Sample code size letter σ œ т Σ z ۵ S m C ш G ~ ¥ 4 u. _

NOTES

At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the binomial distribution.

e

Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

© ISO

ISO 2859-1:1999(E)

 Table 6-C
 Consumer's risk quality for reduced inspection

 (in percent nonconforming for single sampling plans, for inspection for percent nonconforming)

**6**9'0* 69,0* 75,3 65,5 73,2* 80,4 52,3 46,7 37,4 ₽ ຄູ່ 68,4* 57,6 53,8 30,6 18,6 •0'69 44,4 58,4 6,5 24,7 68, ģ 40,6 36,0 39,8* 54,1* 68,4 68,4* 4 0,4 30,4 23,4 15,7 N. 8 27,0* 12,8 53,6" 37,3* 24,5 19,7 68,4 26,8 10,2 7,60 5,5 15,4 53,6 25,2* 36,9* 17,5* 15,8 12,9 9,74 6,42 4,85 1,5 8,27 18,1 Acceptance quality limit, AQL, percent nonconforming items 25,0* 11,8" 11,6 8,16 3,06 36,9 16,4* 10.3 4,09 0, 6,29 5,21 25,0 11,0* 0,65 16,2 7,50* 6,52 1,92 7,56 3,96 2,59 3,32 5,27 0,40 2,10 10,9* 2,52 16,2 7,01 4,78 4,20 1,62 4,87 3,31 0.25 10,9 6,94* 3,07 3,08 1,59 4,54 2,64 2,11 1.31 0,15 0,997 6,94 4,50 2,86* ,97 1,93 1,68 g 0,10 0,833 2,84* 4,50 1,23 1,06 ¥, 1,24' 0,065 0,788* 0,776 0,664 1,83* 1,16 2,84 0,040 0,485 0,735* 0,497* 1,83 1.14 0,025 0,311* 0,728* 0,464* 1,14 0,015 0,460* 0,290* 0,728 0,010 0,459 0,287' Sample size 125 315 200 500 800 13 80 N ~ ŝ e ഗ ω g 8 22 Sample sode size letter ۵ ∢ C ш Q Σ Δ LL. Τ ~ ¥ ____ z ۵. σ œ

NOTES

----

1 At the consumer's risk quality, 10% of lots will be expected to be accepted

2 All the values are based on the binomial distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

© ISO

Table 7-A — Consumer's risk quality for normal inspection (in nonconformities per 100 items for single sampling plans, for inspection for nonconformities per 100 items)

Γ		1 000	916	793														
		650	409	277	1 076													
		400	1 006 1 409 1 916	939 1 277 1 793	766 1	672												
		250	770 1	671	564	479 4	414											
		150	589 7	514 6	403	352 4	295 4											
		10 10	464 5	392 5	308 4	252 3	217 2											
		65				<u> </u>		=		<u></u>								<u> </u>
			6 334	309	5 235	7 193	9 155	1 141	-		,							
		40	4 266	7 223	185	3 147	5 119	0 101	9 88,1	4								
	sme	52	. 194	177	134	116	90,5	77,0	62,9	56,4						<u> </u>		
	100	15	125*	130	106	83,5	71,3	58'9	48,1	40,3	35,2							<u> </u>
	ies per	₽	116*	83,0*	77,8	66,5	51,4	46,4	36,8	30,8	25,2	22,5						
	nformit	6,5	115	77,5*	49,8*	48,6	40,9	33,4	29,0	23,5	19,3	16,1	14,1					
-	nonco	4,0		76,8	46,5*	31,1*	29,9	26,6	20,9	18,5	14,7	12,3	10,1	8,95				
	I, AQL,	2,5			46,1	29,1*	19,2*	19,4	16,6	13,4	11,6	9,42	7,70	6,39	5,64			
	lity limi	1,5				28,8	17,9*	12,5*	12,2	10,6	8,35	7,42	5,89	4,89	4,03	3,52		
•	ce dra	1,0					17,7	11,6*	7,78*	7,78	6,65	5,34	4,64	3,74	3,08	2,52	2,25	
	Acceptance quality limit, AQL, nonconformities per 100 items	0,65						11,5	7,26*	4,98*	4,86	4,26	3,34	2,94	2,35	1,93	1,61	1,41
	¥	0,40							7,20	4,65* 4,98*	3,11*	3,11	2,66	2,12	1,85	1,47	1,23	1.01
		0,25								4,61	2,91*	1,99*	1,94	1,69	1,34	1,16	0,942	0.770
		0,15									2,88	1,86*	1,25*	1,23	1,06	0,835	0,742 0,942	0,589 0,770
		0,10										1,84	1,16*	791	0,778		0,534	
		0,065											1,15	0,731 0,738* 0,791*	,498	0,486	0,426	0,334 0,464
		0,040												0,731 0	,465* (	,311*	0,311	0,334
	ľ	0,025 (													0,461 0,465" 0,498" 0,778	0,288 0,291* 0,311* 0,486 0,665	199* (	),266 (
	ŀ	0,015 0													<u> </u>	1,288 0	,186* 0	,125* C
	ŀ	0,010 0														0	0,184 0,186* 0,199*	116 0
	Sample	size	2	ო	2	æ	13	20	32	20	80	125	200	315	200	800	1 250 0	2 000 0,116" 0,125" 0,266
Samole		code letter	A	ß	U	٥	W	Ŀ	IJ	T	7	×	 	×	z	۰ م	0	R 2

1 At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the Poisson distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-A).

осо ната ната Со Со Со Со Со Со Со Со Со Со	0.010 0.015	5 0.025							-	•		יער, הסח	contorm	intes per	Acceptance quality limit, AQL, nonconformities per 100 items	us							
			0,040	0,065	0,10	0,15	0,25	0,40 0	0,65	0.1	1,5 2	2,5 4,0	0 6,5	2	15	25	40	65	<del>1</del> 8	150	250	400	650 1 000
														115	116*	125*	194	266	334	464	650	689	1 238 1 748
						•							76,8	8 77,5*	83.0	130	177	223	309	433	593	825 1	1 165 1 683
												46,1	,1 46,5*	5* 49,8*	* 77,8	106	134	185	260	356	495	669	1 010
											2	28,8 29,1*	1. 31,1*	1* 48,6	s 66,5	83,5	116	162	222	908 303	437	631	
										-	17.7 17	17,9* 19,2*	2* 29,9	9 40,9	9 51,4	71,3	100	137	190	269	388		
-	_								-	11,5 11	11,6* 12	12,5* 19,4	4 26,6	6 33,4	46,4	65,0	88,9	124					
33								~	7,20 7,	7,26* 7,	7,78* 1:	12,2 16,6	,6 20,9	9 29,0	0,6	55,6	77,4						[
Н							•	4,61 4	4,65* 4,	4,98* 7	7,78 1(	10,6 13	13,4 18,5	5 26,0	35,6	49,5							
о 90 Г							2,88 2	2,91* 3	3,11* 4	4,86 6	6,65 8,	8,35 11,6	,6 16,2	2 22,2	30,9								
K 125						1,84 1	1,86* 1	1,99* 3	3,11 4	4,26 5	5,34 7,	7,42 10,4	4 14,2	2 19,8									
L 200					1,15	1,16* 1	1.25*	1,94 2	2,66 3	3,34 4	4,64 6,	6,50 8,89	39 12,4	4									
M 315				0,731 (	0.738* 0.791*		1,23	1,69 2	2,12 2	2,94 4	4,13 5,	5,64 7,86	36										
N 500			0,461	0,461 0,465* 0,498*	0,498*	0,778	1,06	1,34 1	1,85 2	2,60 3	3,56 4,	4,95											
Р 800		0,288	0,288 0,291* 0,311*		0,486	0,665 0,835		1,16 1	1,62 2	2,22 3	3,09								- 7-	-			
Q 1 250	0,184	t 0,186° 0,199°	0,199*	0,311	0,426	0,534 0,742		1.04	1,42 1	1,98													
R 2 000 0,1	0,115 0,116" 0,125" 0,194 0,266	• 0,125*	0,194		0,334	0,464 0,650 0,889	.650 0		1,24														
S 3 150		0,123																					

NOTES

1 At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the Poisson distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-B).

Table 7-C — Consumer's risk quality for reduced inspection

(in nonconformities per 100 items for single sampling plans, for inspection for nonconformities per 100 items)

	1 000	1 916	1 916														
	650	1 409	1 409	1 409													
	400	1 006	1 006 1 409	1 006 1 409	666												
	250	770	770	770	671	564	;										
	150	589	589	650	514	403											
	100 1	464	464	527	433	308											
	65	334	334	400	351	260	193										
	40	266	266	334	266	211	162	119									
SL	25	194*	194	266	223	160	132	100	77,0								
Acceptance quality limit, AQL, nonconformities per 100 items	15	125*	125*	194	177	134	666	81,0	65,0	48,1							
es per 1	10	116°	116"	125*	130	106	83,5	61,5	52,7	40,6	30,8					·	
oformitie	6,5	115	115*	116*	83,0*	77,8	66,5	51,4	40,0	32,9	26,0	19,3					
noncor	4,0		115	115*	77,5*	49,8*	48,6	40,9	33,4	25,0	21,1	16,2	12,3				
I, AQL,	2,5			115	76,8*	46,5*	31,1*	29,9	26,6	20,9	16,0	13,2	10,4	7,70			
lity limi	1,5				76,8	46,1'	29,1*	19,2*	19,4	16,6	13,4	9,99	8,43	6,50	4,89		
nce qua	1,0					46,1	28,8*	17,9*	12,5*	12,2	10,6	8,35	6,39	5,27	4,13	3,08	
cceptar	0,65						28,8	17,7*	11,6*	7,78*	7,78	6,65	5,34	4,00	3,34	2,60	1,93
A	0,40							17,7	11,5*	7,26*	4,98*	4,86	4,26	3,34	2,54	2,11	1,62
	0,25								11,5	7,20*	4,65*	3,11*	3,11	2,66	2,12	1,60	1,32
	0,15									7,20	4,61*	2,91*	1,99*	1,94	1,69	1,34	0,999
	0,10										4,61	2,88*	1,86*	1,25*	1,23	1,06	0,835
	0,065											2,88	1,84*	1,16*	0,731 0,731 0,738 0,791	0,778	0,665
	0,040												1,84	1,15*	.0,738	0,461 0,461* 0,465* 0,498*	0,288* 0,291* 0,311* 0,486
	0,025													1,15	0,731	0,465	0,311
	0,015														0,731	0,461	0,291
	0.010															0,461	0,288
Sample	size	N	2	3	n	ŝ	8	13	20	32	50	80	125	200	315	200	800
Sample size	code letter	۲	8	ပ	۵	ш	Ľ	IJ	I	7	¥		¥	z	٩.	σ	æ

NOTES

1 At the consumer's risk quality, 10% of lots will be expected to be accepted.

2 All the values are based on the Poisson distribution.

3 Superscript * denotes that the value is for the optional fractional acceptance number sampling plan (see Table 11-C).

ISO 2859-1:1999(E)

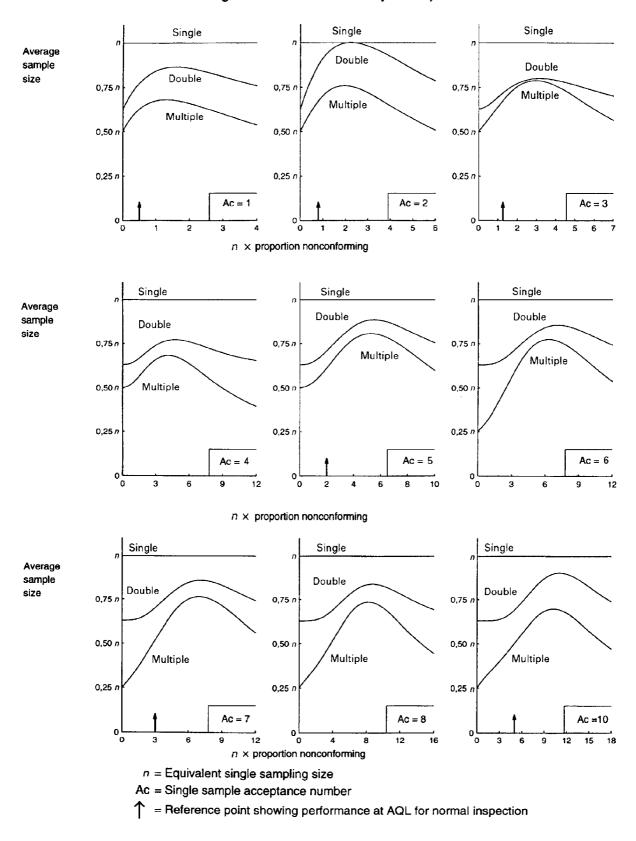
G
č
8
٩
Ð
<u> </u>
ā
Ε
sam
0)
<u>۳</u>
ĝ
5
Ľ
Ē
8
ទ
Ř
5
2
-
62
5
õ
or no
õ
Its
Ē
Ξ
~
Ξ
- Ta
Ē
ົດ
č
ō
Ð
Ž
0
ě
rag
Ъ
ž
4
-
1
8
<u>e</u>
ab
Ë

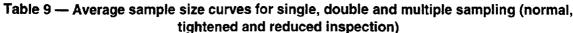
	9	ور ا	8		r		1	Т		1		-				<b></b>		-						Γ		1	$\neg$
	1 000	1 085	1 102							-				L							_						
	650	733	723	661																							
	400	470	489	434	413																						
	250	326	313	293	271	254														_							
	150	224	218	188	183	167																					
(ion)	100	158	149	131	117	113																					
Inspect	65	97,1	106 1	89,4	81.6	72,3	73,3																				
ormal	4	68,6	64,7	63,4	55,9	50.2	47,0	_	45,8																		
ems (n	25	42,0	45,7	38.8	39'6	34,4	32,6	-	29,4		5°27																
100 it	15		28,0	27,4	24,3	24,4	22,4		20,4	¢ ¢	0,0	а с я	2														
ies per	9			16,8 16,0	17,1 17,0	14,9 15,1	15,8	14.0	14,3	13,1	13,3	11,7	12,0	11.7	1,9												
nformit	6,5	18,4 14,8			10,5 10,1	10,5 10,5	9,71 0.75	5,'s 06,6	10,0	8,94	9,06	8,16	8,27	7,52	7,61	7,33	7,41										
nonco	4,0		12,3 10,5			6,46 6,32	6,86 6,86	6,07	6,08	6,34	6,38	5,59	5,63	5,22	5,26	4,70	4,73	4,65	4,69								
ns and	2,5			7,36 6,70			4,20	4.28	4,27	3,88	3,89	3,96	3,98	3,58	3,60	3,26	3,28	2,98	3,00	2,93	2,94						
ing iter	1,5				4,60 4,33			2,62	2,60	2,74	2,74	2,43	2,43		2,54	2,24	2,24	2.07	2,08	1,88		1,83	1,84				1
anform	1,0					2,83 2,73				1,68	1,67		1,71		1,55	1,58		1,42	_	1,31	.31	-	1,18	1,17	1,17		-
Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection)	0,65		·				1,84		_			1,05			1,10		0,971	1.01	-				0,817			0,733	0,734
percer	0,40							_	1,13		-	-	-	0,672 1		_	0,685 0,	_	0,617 1				0.559 0,		0,523 0,		0,470 0,
AQL, in									-	36	8		_	0,6	0,6	_										_	
limit, 4	0,25									0,736	0,72	_				0,420	-+						0,396		0,358		0,327
quality	0,15											0,460	0,45					0,267	0,266	0	0	0,243	0,243	0	0,254	0	0,224
otance	0,10													0,294	0,293					0,168	0,168	0,171	0,171	0,155	0,155	0,158	0,158
Acce	0,065									_						0,184	0,183					0,105	0,105		0,110		0,0971
	0,040							ł							-			0,117	117			-			0,0672 (	686 0	0,0686 0
								+			-		_		_			õ		<u>8</u>	8			0,0	0'0	0,0420 0,0686 0,0971	000
	0,025														_					0,0736		_	_			0,042	0,0420
	0,015																					0,0460	0,0460				
	0,010							T			┦		1				T				+			0,0294	0,0294		-
Sample	eize 0	8		2		13	•	+	,		_			 		0	-	2		0		ç		_	-	8	
				ω) 		÷	20	Ì	25	20	<u>`</u>	8		125	:	200		315	-	500	-	800	; 	1 250	<u>'</u>	2 000	r
Sample size	code letter	۲	80	ပ	٥	ш	u_	6	5	I	:	د		¥	:			Σ		z		٩	.	C	,	œ	

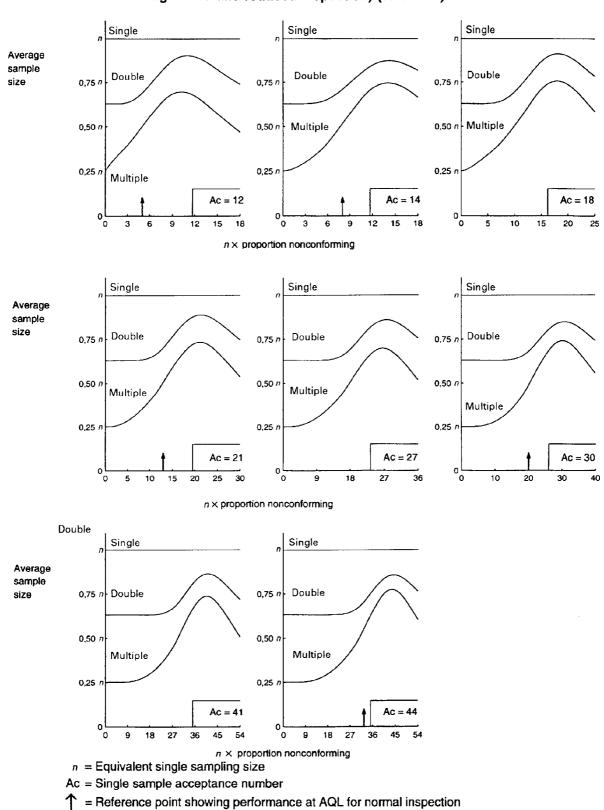
NOTE

Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

g plar
e sampling
n (Single
l inspection
nits for tightened
E
g quality li
outgoing qualit
- Average outg
Table 8-B —


		1 000	966	1 020													T							
		650 1	619	644	612												+							
		400	397	412	387	382								T										
		250	257	265	247	242	235																	
		150	158	172	159	155	149														_			
ans)	ction)	100	97,1	106	103	99,3	95,2																	
id bi	inspec	65	68,6	64,7	63,4	64,3	61,1	61,9																
nplir	htened	40	42,0	45,7	38,8	39,6	39,6	39,7	38,7															
e sal	ems (tig	25		28,0	27,4	24,3	24,4	25,7	24,8	24,7												<b> </b>		
Singl	100 ite	15			16,8	17,1	14,9	15,8	16,1	15,9	-	0,01		_			$\downarrow$							
s) uo	ies per	10	18,4 14,8			10,5 10,1	10,5 10,5	9,71 9,75	9,90 10,0	10,3		10,1	6 ⁶				_							
pecti	nformit	6,5		12,3 10,5			6,46 6,32	6,86 6,82	6,07 6,08	6,34 6,38	-		6,36	_	6,25									
d ins	l nonco	4,0			7,36 6,70			4,20 4,14	4,28 4,27	3,88 2,89		3,98	4,12	_	,4 8,		<b>6</b> , 5							
tene	ms and	2,5				4,60 4,33			2,62 2,60	2,74	2,43	2,43	2,53		2,58		-	2,47 2,48						
tigh	ning ite	1,5					2,83 2,73			1.68	1,71	1,71	1,55		1,59	1,63	_	1,59	1					
tor stor	conform	1,0						1,8 <b>4</b> 1,79			1,05	1,05	1,10					1, 1, 1, 13			0,990 0,991			
li mit	ant non	0,65							1,15 1,13				0,672	0.686	0,685	0,617	/19/0	0,634 0,634	0,643	0,644	0,636 0,636	0,619	2122	ĺ
uality	n perce	0,40								0,736				0.420	0,419	0,435	0,435	0,388 0,388	0,396	0,396	0,412 0,412	0,397	2000	
utgoing quality limits for tightened inspection (Single sampling plans)	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	0,25										0,457		T			_	0,274	<u> </u>		0,253 0,254	0,257		
ıtgoi	lity limit	0,15											0,294	2021			_	0,168 0,168	÷		0,155 0,155			
ge or	ce qual	0,10 (									-				0,183			50	0,105 0		0,110 0,110 0			
vera	ceptan	0,065 0									-	_			ō	0,117	111,0		o l	o	0,0672 0 0,0672 0	0,0686 0,0971	3	
<b>∢</b> 	Ac															6		35			000	20 0,0	2	
Table 8-B — Average or		0,040																0,0735				0,0420		
Table		0,025																	0,0460				0,0267 0,0267	
		0,015																			0,0294 0,0294			
		0,010															+					0,0184		
	Sample	size O,	5	3	5	8	13	20	32	50		00	125		200	315	+	500		 }	1 250	2 000	3 150	
								Ċi	3	ŝ		0	4	+	ন্ <u>য</u>			<u>م</u>		) 	-	5	31	
	Sample size	code letter	۲	Ð	ပ	۵	Э	L	U	Ι	-	D.	¥		ن	Σ		z	•	•	a	œ	S	


NOTE


Upper entries are for inspection for nonconformities per 100 items and are based on the Poisson distribution. Lower entries are for inspection for percent nonconforming and are based on the binomial distribution.

Copyright by the International Organization For Standardization Thu Oct 07 17:28:28 2004

ISO 2859-1:1999(E)







## Table 9 — Average sample size curves for single, double and multiple sampling (normal, tightened and reduced inspection) (concluded)

		_											2 000				2		~	<u>ิ</u> ก	g	4	ŝ	8	9
																	1 000		277	1 122	1 206	1 354	1 533	1 728	1 916
									000	3/	/	+	1 800 1 900				$\setminus$		859	<u>995</u>	1 073	1214	1 383	1 568	1 748
									À	/			1700 18		(A		650	1	629	745	812	934	1 083	1 248	1 409
(s							7	/				+#	1 600		ng plan:	100 items)	X		517	622	684	795	933	1 087	1 238
ial plans	su (i					X						4	1 500	_	le sampli	mities per	400		374	462	515	612	733	870	1 006
Individu	pling pla practicable								650		/		00 1 400	AULS > 10	for sing	1 nonconfo	X	l items)	305	384	432	521	633	761	889
10-A — Tables for sample size code letter A (Individual plans)	hart A Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)											+	1 200 1 300	JU Items for	Table 10-A-1 — Tabulated values for operating characteristic curves for single sampling plans	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	250	p (in nonconformities per 100 items)	239	308	351	431	533	651	770
code le	ves for simatched at						Z					-#4	1 100	nties per 10	aracterist	ent noncon	X	onconformi	175	235	272	342	433	540	650
ple size	<b>ristic cur</b> mpling are										/		1 000	попсоптоги п.	ating ch	tion (in perc	150	p (in n	145	199	233	298	383	484	589
for sam	characte I multiple se		/						0.	Z		Н	006	Ls ≤ 10, in al inspectio	tor oper	mal inspect	100		89,3	131	158	211	284	371	464
Tables	<b>perating</b> double and					2					/		700 800	it noncontorming for AULS ≤ 10, in no Limits (AQLs) for normal inspection.	ed values	y Limit, nor	65		41,2	68,3	87,2	127	184	255	334
10-A —	Chart A O (Curves for			Ζ				/	Ž		7	Ш	600 7	imits (AQL	Tabulate	ance Qualit	40		21,8	40,9	55,1	86,4	134	196	266
Table	บั										7	Π.	500	in percent ce Quality L	I0-A-1	Accepte	25		7,43	17,8	26,6	48,1	83,9	135	194
			/								/	#	400	oroduct <i>(p</i> .) Acceptance	Table 1		6,5		0,503	2,56	5,27	14,4	34,7	69.3	115
									135 40 CS		/		200 300	duality of submitted product ( <i>p</i> , in percent honcomorming for AULs ≤ 10, in honconformities per 100 items for AULs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.			6,5	p (in percent nonconforming)	0,501	2,53	5,13	13,4	29,3	50,0	68,4
	Percent of lots expected to be accepted (P_									f		N II °	6 0 0	NOTE Va			ď	3	0'66	95,0	90,0	75,0	50,0	25,0	10,0
Д		90	80	70	60	50	40	e e	5	20	10	J													

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)

48

Copyright by the International Organization For Standardization Thu Oct 07 17:28:30 2004

1 862 2 088 1 000

1 335 1 529 650

972

1 141 400

1 007 848

722 870 250

657 800

526 655 150

315 420 65

237 332 4

150 230

77,6 90'06

5,0 1,0

Table 10-A-2 — Sampling plans for sample size code letter A

	1 000	Ac Re Ac Re	22 27 28 30 31	(*) (*)		*	1 000	
items)	650	Ac Re	19 21 22	(*)		*	X	0 items)
per 100	$\setminus$	Ac Re	15 18 19	(*)		*	650	s per 10(
ormities	400	Ac Re		(*)		*	X	formities
ionconfo	X	Ac Re	11 12 13 14	£		*	 400	noncon
ng and n	250	Ac Re	10	£		*	X	iing and
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	X	Ac Re	сл co	*		+r	250	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
ant nonc	150	Ac Re	7 8	*		*	X	cent non
(in perce	100	Ac Re	5 6	*)		*	150	ı (in per
pection (	65	Ac Re	3 4	*		*	100	spection
rmal ins	40	Ac Re	2 3	(*)		*	 65	tened in
imit, no	25	Ac Re	1	*)		*	 40	mit, tighi
Quality L	15	Ac Re		use code letter	m		25	uality Lii
ptance (	10	Ac Re		use code letter	ပ		15	tance Q
Accel	$\square$	Ac Re		use code letter			9	Accep
	6,5	Ac Re	•	*		*	X	
	< 6,5	Ac Re	⇒	⇒		⇒	<ul><li>10</li></ul>	
Cumu- lative	sample	size	5					
Type of samp-	ling	plan	Single	Double		Multiple		

= Acceptance number

**Rejection number** ţ,

Ac Re

use single sampling plan above (or alternatively use code letter D) 11

ISO 2859-1:1999(E)

use single sampling (or alternatively use code letter B) ŧI.



49

£

expedicible (Curves for double and multiple sampling are matched as closely as practicable) (curves for double and multiple sampling are matched as closely as practicable) (curves for double and multiple sampling are matched as closely as practicable) (curves for double and multiple sampling are matched as closely as practicable) (curves for double and multiple sampling are matched as closely as practicable) (curves for double and multiple sampling are matched as closely as practicable) (curves for double and multiple sampling are matched as closely as practicable) (curves for double and multiple sampling are matched as closely as practicable) (curves for double and multiple sampling are matched as closely as practicable) (curves are Acceptance Quality Linits (AQLs) for normal inspection.	(urves for double and multiple sampling are matched as closely as practicable) accessed (r, ) (urves for double and multiple sampling are matched as closely as practicable) (urves for double and multiple sampling are matched as closely as practicable) (urves are accessed as closely as practicable) (urves are Acceptance Quality Limits (AQLs) for normal inspection.	expected to be	Chart B Operating characteristic curves for single sampling plans		
100     200     800     800     100     100       100     200     300     800     800     100     100       100     200     300     800     800     100     100     100       100     200     300     800     800     100     100     100     100       100     200     300     800     800     800     100     100     100       101     200     300     400     100     100     100     100     100       101     200     300     800     800     800     100     100     100	100     200     800     100     100     100       100     200     800     100     100     100     100       100     200     800     100     100     100     100       100     200     800     900     100     100     100       100     200     800     900     100     100     100       100     200     800     900     100     100     100       100     200     800     900     100     100     100       100     200     800     900     100     100     100	accepted (P a)	(Curves for double and multiple sampling are matched as closely as practicable)		
100       200       300       300       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1	100     200     600     100     100     100     100     100       100     200     600     100     100     100     100     100     100       101     200     600     100     100     100     100     100     100       101     200     600     100     100     100     100     100     100       101     200     600     700     800     900     100     100     100     100       101     200     300     400     700     100     100     100     100       101     200     300     400     700     100     100     100     100       101     200     300     400     700     100     100     100     100				E
M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M       M <td>100     200     300     300     300     100     100       100     200     300     300     100     100     100     100       100     200     300     300     300     100     100     100     100       100     200     300     300     300     100     100     100     100     100       100     200     300     400     100     100     100     100     100       100     200     300     400     100     100     100     100     100       100     200     300     400     100     100     100     100     100</td> <td></td> <td></td> <td></td> <td></td>	100     200     300     300     300     100     100       100     200     300     300     100     100     100     100       100     200     300     300     300     100     100     100     100       100     200     300     300     300     100     100     100     100     100       100     200     300     400     100     100     100     100     100       100     200     300     400     100     100     100     100     100       100     200     300     400     100     100     100     100     100				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100     200     300     100     100     100       100     200     300     300     100     100     100       100     200     300     300     300     100     100     100       100     200     300     300     300     100     100     100     100       100     200     300     300     300     100     100     100     100       100     200     300     300     300     100     100     100     100       101     200     300     300     300     100     100     100     100       101     200     300     300     300     100     100     100     100       101     200     300     300     300     100     100     100     100				
100     200     800     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100 <td>100     200     650     650     1000       100     200     100     1000     1000       100     200     200     100     1000       100     200     200     100     1000       100     200     200     100     1000       100     200     200     100     100     100       100     200     200     100     100     100       100     200     200     100     100     100       100     200     200     100     100     100       101     200     200     100     100     100       101     200     200     100     100     100       101     200     200     100     100     100       101     200     100     100     100     100</td> <td></td> <td></td> <td></td> <td></td>	100     200     650     650     1000       100     200     100     1000     1000       100     200     200     100     1000       100     200     200     100     1000       100     200     200     100     1000       100     200     200     100     100     100       100     200     200     100     100     100       100     200     200     100     100     100       100     200     200     100     100     100       101     200     200     100     100     100       101     200     200     100     100     100       101     200     200     100     100     100       101     200     100     100     100     100				
100         200         300         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>The set acceptance Quality of submitted productions for AQLs 10, in percent nonconforming for AQLs 10, in percent nonconforming for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQ</td> <td></td> <td></td> <td></td> <td></td>	The set acceptance Quality of submitted productions for AQLs 10, in percent nonconforming for AQLs 10, in percent nonconforming for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, in nonconforming set 100 items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQLs 210, items for AQ				
Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained         Constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Xo     650     650     600       Xo     650     650     650       100     200     300     400     100       100     200     300     400     100     100       100     200     300     600     100     100     100       100     200     300     400     100     100     100     100       100     200     300     400     100     100     100     100     100       100     200     300     400     500     600     100     100     100       100     200     300     400     500     100     100     100       100     200     300     400     100     100     100     100       100     200     300     400     100     100     100     100	100 200 300 400 500 600 100 100 100 100 100 100 100 100 1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	The set acceptance Quality of submitted product ( $p$ , in percent nonconforming for AQLs $\leq$ 10, in nonconformities per 100 items for AQLs $>$ 10, in nonconformities per 100 items for AQLs $>$ 10).				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint         Constra         Constraint         Constraint	The set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of				
100     200     300     400     650     100       100     200     300     400     500     100     100       100     200     300     400     500     100     100     100       100     200     300     400     500     100     100     100     100       100     200     300     400     500     100     100     100     100     100       100     200     300     400     500     100     100     100     100     100       100     200     300     400     500     100     100     100     100     100       100     200     300     400     500     100     100     100     100       100     200     300     100     100     100     100     100     100	The set acceptance Quality of submitted product ( $p$ , in percent nonconformities per 100 items for AQLs > 10 NOTE Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.				
$x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ $x_0$ <th< td=""><td>The set of the set of</td><td></td><td></td><td></td><td></td></th<>	The set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of				
The last of the first of the last of the	The first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100 200 300 400 500 600 700 800 900 100 1 200 1 300 1 400 1 500 1 800 200 United product ( $p$ , in percent nonconformities per 100 items for AQLs > 10) NOTE Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.	1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2	X 200 1 X 250 1 X 250 1 1 1 X 400 1 1 1 1 X	1000	
$100  200  300  400  500  600  700  800  900  1000  1200  1300  1400  1500  1600  1700  1800 \\ Outlify of submitted product (p, in percent nonconforming for AQLs \leq 10, in nonconformities per 100 items for AQLs > 10) \\ NOTE Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.$	100 200 300 400 500 600 700 800 900 1000 1200 1300 1500 1500 1500 1800 Cuality of submitted product ( $p$ , in percent nonconforming for AQLs $\leq$ 10, in nonconformities per 100 items for AQLs > 10) NOTE Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.				
$\begin{array}{                                    $	100 200 300 400 500 600 700 800 900 1 000 1 200 1 300 1 400 1 500 1 800 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 8000 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 800 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8000 $1000$ 1 8			/	
100 200 300 400 500 600 700 800 900 1 000 1 100 1 200 1 300 1 600 1 700 1 800 1 800 1 800 1 800 1 800 $100$ 1 800 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ 1 800 $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$	NOTE Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.			<i> </i>	
Quality of submitted product ( $p$ , in percent nonconforming for AQLs $\leq$ 10, in nonconformittes per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.	Quality of submitted product ( <i>p</i> , in percent nonconforming for AQLs ≤ 10, in nonconformities per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.				Ê,
	Values on curves are				2
	Table 10 D 4 Tabulated contraction and and an and an and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		s are Acceptance Quality Limits (AQLs) for normal inspection.		

		and and a	Dialice Cu	מוול רוו וו	10111011	Innadei	An parent		iorrilling a	nd noncor	Senie 101		erisj			
4,0	4,0	15	25	40	65	100	X	150	X	250	X	400	X	650	X	1 000
p (in percent							- fin non		1	lomoti Ol						
nonconforming)								ICOLIGITION I	nez ber in	nu nems)						
0,334	0,335	4,95	14,5	27,4	59,5	6'96	117	159	203	249	345	419	572	651	947	1 029
1,70	1,71	11,8	27,3	45,5	87,1	133	157	206	256	308	415	496	663	748	1 065	1 152
3,45	3,51	17,7	36,7	58,2	105	144	181	234	288	343	456	541	716	804	1 131	1 222
9,14	9,59	32,0	57,6	84,5	141	199	228	287	347	408	530	623	809	903	1 249	1 344
20,6	23,1	55,9	89,1	122	189	256	289	356	422	489	622	722	922	1 022	1 389	1 489
37,0	46,2	89,8	131	170	247	323	360	434	507	580	724	832	1 045	1 152	1 539	1 644
53,6	76,8	130	171	223	309	392	433	514	593	671	825	<b>6</b> 26	1 165	1 277	1 683	1 793
63,2	6'66	158	210	258	350	438	481	565	648	730	890	1 008	1241	1 356	1 773	1 886
78,5	154	221	280	335	437	533	580	671	761	848	1 019	1 145	1 392	1 513	1 951	2 069
6,5	6,5	25	40	65	100	$\left  \right\rangle$	150	X	250	X	400	X	650	X	1 000	X
		Accept	tance Qua	lity Limit,	tightened	inspection	) (in perce	ent noncol	nforming	and nonco	nformitie	s per 100	items)			
	4,0 <i>p</i> (in percent nonconforming) 0,334 1,70 3,45 9,14 9,14 9,14 9,14 20,6 37,0 53,6 63,2 78,5 6,5		4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0 3,51 3,51 3,51 3,51 23,1 23,1 23,1 26,8 99,9 99,9 154 154	4,0       15       25       40       65       100       150       250       400       201         1,71       11,8       27,3       45,5       87,1       133       157       203       249       345       419         1,71       11,18       27,3       45,5       87,1       133       157       206       256       308       415       496         3,51       17,7       36,7       58,2       105       144       181       234       288       343       456       541         9,59       32,0       57,6       84,5       141       199       228       287       347       408       530       623       23         23,1       55,9       89,1       122       189       256       289       356       422       489       622       722       722       722       75       75       893       730       890       1008       1       145       1       1<82	4,0         15         25         40         65         100         700         150         250         400         700 $p$ (in nonconformities per 100 items) $p$ (in nonconformities per 100 items) $p$ (in nonconformities per 100 items) $p$ (in nonconformities per 100 items) $p$ (in nonconformities per 100 items) $0.335$ $4,95$ $14,5$ $27,4$ $59,5$ $96,9$ $117$ $159$ $203$ $249$ $345$ $419$ $572$ $3,51$ $17,7$ $36,7$ $89,4$ $133$ $157$ $206$ $203$ $249$ $345$ $419$ $572$ $3,51$ $17,7$ $36,7$ $84,5$ $144$ $181$ $234$ $406$ $663$ $223$ $320$ $223$ $302$ $437$ $507$ $580$ $622$ $722$ $922$ $144$ $1165$ $1165$ $1165$ $1165$ $1165$ $1165$ $1165$ $1165$ $1165$ $1165$ $1241$ $1165$ $1241$ $1165$ $1241$ $125$ $923$ <	4,0       15       25       40       55       100       70       150       70       250       400       760       550         1,71       11,8       27,3       45,5       87,1       133       157       203       249       345       419       572       651       10         3,51       17,7       36,7       58,2       105       144       181       234       456       541       716       804       1         3,51       17,7       36,7       58,2       105       144       181       234       456       541       716       804       1         9,59       32,0       57,6       84,5       141       199       228       287       347       406       663       748       1         23,1       55,9       89,1       122       189       233       360       434       507       580       622       722       922       1022       1       176       152       1       176       152       1       177       1       1       1       105       1       1       1       1       1       1       1       1       1       1       1

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

₽ŝ

Table 10-B-2 — Sampling plans for sample size code letter B

45 1 000 Ac Re 57 5 ‡ 25 56 4 Re 42 29 53 1 000 ‡ 22 23 Å 4 22 38 Be ñ 650 ‡ Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items) Å 4 8 37 Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) 20 Re 35 28 650 ‡ 16 15 Å 34 27 Ac Re 23 27 400 ‡ -26 5 5 4 Ве 24 400 ‡ Å φ თ 33 15 Ac Re Ŧ 6 250 ‡ 4 ထ Не 5 5 16 250 ‡ Å ø 2 42 Ac Re = 6 ŝ 150 ‡ 0 ŝ N Hе 7 Ŧ ð 150 ‡ å 4 ₽ æ Ac Re <u>6</u> æ G 2 ‡ ~ თ თ Ве ø ю  $\sim$ <u>6</u> 65 + Ac ഹ 2 ø Ве 4 e S 4 ‡ 65 å c -4 Re 3 4 ო 4 ‡ 22 Å C I Э 0 Ве 2 N N -22 ‡ 25 Å 0 -Rel code letter use 9 ŝ O Ac_ Be code letter 9 use ۵ å å letter code 6,5 use ∢ Å Ac Re 4 6,5 * * 0 < 4,0 Ac Re 6,5 ⇒ = ⇒ sample lative Cumu size ტ N 4 Type of Double Multiple Single sampplan ling

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number

Ac

**=** 

Re = Rejection number

*

= use single sampling plan above (or alternatively use code letter E)

++ = use double sampling plan above (or alternatively use code letter D)

B

		г 50 г			r					I	
		1 100	650		618 691	733	0 806	893	986	1 076	1 131
	3	1 000	X		568 639	629	749	833	923	1010	1 064
		006	400		391 449	482	542	613	691	766	814
		800 plans	ams)		343 343	429	485	553	627	669	745
(s		700 npling	250 It		251 298	325	374	433	499	564	605
al plan; g plans cable)		600 > 10) <b>ngle sar</b>	formities p	7	207	273	318	373	435	495	534
dividus ampling as practi		500 for AQLs <b>is for s</b> l	d noncon 150	0 items)	150 185	206	245	293	348	403	438
Table 10-C — Tables for sample size code letter C (Individual plans)         Chart C Operating characteristic curves for single sampling plans         (Curves for double and multiple sampling are matched as closely as practicable)		250 300 100 200 300 400 500 600 700 t nonconforming for AQLs ≤ 10, in nonconformities per 100 items for AQLs > 10) Limits (AQLs) for normal inspection. Tabulated values for operating characteristic curves for single sampling	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) 10 15 25 40 85 25 10	<i>p</i> (in nonconformities per 100 items)	122 154	173	208	253	304	356	389
le lette ves for matched		300 nities per <b>acterist</b>	t nonconfe	conformiti	95,4 123	140	172	213	260	308	339
<b>ze cod</b> stic cur		200 anconform <b>ng char</b>	in percen	<i>p</i> (in non	70,1 93.9	109	137	173	216	260	289
nple si aracteri ^{Mtiple sarr}		100 ≤ 10, in no ispection. <b>operati</b>	spection (		58,1 79.6	93,1	119	153	194	235	263
for san ating ch	§ 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	250 300 100 t nonconforming for AQLs ≤ 10, in no Limits (AQLs) for normal inspection. <b>Tabulated values for operati</b>	40 40		35,7 52.3	63,0	84,4	113	148	185	210
ables Opera		300 nforming fo AQLs) for r <b>ated valu</b>	Lity Limit, 25		16,5 27.3	34,9	50,7	73,4	102	134	155
D-C - Ta Chart C (Curves		250 ent noncol by Limits ( - Tabula	ance Qua		8,72 16.4	22,0	34,5	53,5	78,4	106	126
ble 10		200 , in perce nce Quali	Accept		2,97	10,6	19,2	33,6	53,9	8.77	94,9
Та		150 200 product (p, in per Acceptance Que <b>Table 10-C-1</b>	2.5		0,201 1.03	2,11	5,75	13,9	27,7	46,1	59,9
		100 ubmitted p curves are	10	rcent rming)	3,27 7.64	11,2	19,4	31,4	45,4	58,4	65,7
8 <b>%</b> ~		50 100 150 200 250 300 100 200 300 400 500 600 Quality of submitted product (p, in percent nonconforming for AQLs ≤ 10, in nonconformittes per 100 items for AQLs > 10) Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. Table 10-C-1 — Tabulated values for operating characteristic curves for single	2.5	p (in percent nonconforming)	0,201 1.02	2,09	5,59	12,9	24,2	36,9	45,1
Percent of tots expected to be accepted (P _e )		NOTE Q.5			0'66 92'0	0'06	75,0	50,0	25,0	10,0	5,0
С	100 100 100 100 100 100 100 100	o - ∟					• • •				

Binomial distribution used for entries corresponding to inspection for nonconforming Items, Poisson for inspection for number of nonconformities. NOTE

Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)

ISO 2859-1:1999(E)

1 241

1171 650

908

835 400

687

612 250

509

456 150

403

348

320

262

201

168

133

92,1 4,0

77,8

60,2

1,0

4,0

65

4

25

ŝ

Table 10-C-2 — Sampling plans for sample size code letter

C

1 000 1 000 Ве code letter asn B ¥0 Ac Re 45 57 č 650 ‡ 4 52 56 a B 42 29 53 650 ‡ 22 23 Š 4 22 Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 Items) Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Ac Re 38 31 400 ‡ 80 1 37 Ве 20 28 35 400 ‡ Å 27 14 11 16 15 8 Ac Re 22 27 250 ‡ 26 19|21 Re 24 250 ‡ Å ₿ σ 23 Ac Re 15 6 F 150 ‡ 4 ထ  $\sim$ 13 0 16 Ac Re 150 ‡ Ř ю φ Ac Re 5 11 σ 100 ‡ 9 ഹ 42 Ве Ŧ ი  $\sim$ 90 ‡ 2 Å æ 4 Ве œ φ 10 ‡ 65 Ac ~ ო თ Re 9 5  $\sim$ ‡ 65 4 Å ŝ N φ Ве ц 4 ო 40 ‡ 25 Ac ĉ 4 å ¢ 4 ი 25 ‡ 5 Ac 0 ო ŝ Яе 2 N N <del>1</del>5 ‡ 20 Ac 0 --Ac Re code letter 6,5 use 9 Ω Ac Re code letter 0,5 use ш Be code letter asn 4,0 മ Ac Ac Re 2,5 -4 . * 0 < 2,5 Ac Re < 4,0 ⇒ = ⇒ sample Cumulative size ß ო Θ Double Multiple Type of Single sampplan ling

STD.IS0 2859-1-ENGL 1999 🎟 4851903 0803907 910 📾

use next subsequent sample size code letter for which acceptance and rejection numbers are available

Acceptance number

₽ * **B** * ‡

11

⇒

= Rejection number

- use single sampling plan above (or alternatively use code letter F)
  - = use double sampling plan above (or alternatively use code letter D)

Copyright by the International Organization For Standardization Thu Oct 07 17:28:32 2004

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

tightened inspection (in percent nonconforming and nonconformities per 100 items)

Acceptance Quality Limit,

9

2 2

54

Copyright by the International Organization For Standardization Thu Oct 07 17:28:32 2004

672 617

3

437

33**4** 

252 274

577

432 479 509 568

392

312 352 378

272

217

190 222 243

163 193

135

121

92,8 116 131 164 4

63,9 83,5 96'9 126 32

49,0 66,5

33,7 48,6

43,3 53,8 60,0 70,7

15,9 25,0 31,2 43.8 2,5

25,0 10,0 7,8,7 105 5

59,3 83,0

37,4

28,8 17,3

40,6 30,3

57,6

59,0 47,1

5,0 0,1 ₽

707 76

665 732 <u>§</u>

465 522 250

429

318

285

252

218

200

212

162 180

147 164 100

59

Table 10-D-2 — Sampling plans for sample size code letter D

Ac Re > 400 > 400 = = 4 Ве 45 16 38 48 27 400 5 57 57 Å 25 56 4 4 ø 1 8 56 5 53 25 Re 42 29 35 45 ß 400 Ş 33 52 9 38 4 26 52 ω Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items) Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Ъе 23 38 2 9 5 27 34 38 250 Å 2 30 37 Ξ 19 28 4 37 Ве 28 5 S 20 17 5 24 š 35 250 Å0 цO 2 27 34  $\geq$ 25 8 ო Ac Re 16 22 27 4 6 25 6 27 150 26 3 26 5 Ξ 20 N 5 Ъе 19 4 N 1 24 23 ω 24 150 Å 8 ല്ല 16 თ ø Ξ 33 e 1 15 6 10 19 Ве Ţ 2 5 Å ß 4 Ω ⊴ ~ 4 œ 33 16 5 9 5 12 Ac Re 6 თ 8 ß М ŝ Ξ ø 0 c ~ 11 13 13 Ве σ 0 2 ŝ æ 65 Å <u>o</u> N N ß 0 ო თ ø Ве Ŧ 1 σ ~ 4  $\sim$ σ 11 65 Ac 9 <u>o</u> œ 4 0 N 4 ø Ac Re 10 10 œ φ 4 ø ω თ 4 ო 0 ~ თ ო ഹ a В 9 ഗ S 9 ~ 4 ~ ~ 25 4 ğ ഹ g N -ഗ # N ÷ Ве e ю 4 ŝ m 10 4 ŝ ß 25 å e -4 # 0 -N 4 Ве e Э 4 2 ი e e 4 2 15 å N 0 ო # 0 0 ო Re 2 2 2 2 2 3 2 2 6,5 9 AcI 0 # 0 0 0 -Ac Re code letter 6,5 4,0 use ω Be code letter 4,0 use LL. Å Ac Re code letter 2,5 use o Ac Re -1,5 2,5 * * 0 < 1,5 Be < 2,5 ⇒ ⇒ ⇒ Å sample lative Cumusize 5 10 ω ഗ N G 80 Type of Single Double Multiple sampplan ling

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number

R A

⇐ ⇒

= Rejection number

use single sampling plan above (or alternatively use code letter G)

= acceptance not permitted at this sample size

ISO 2859-1:1999(E)

		<del> </del>			<u> </u>			
			20	250	238 266	282	310	526 626
			450	X	219 246	261	288	355
			4 6 6	150	150 173	185	208	266
			350 ns	$\overline{\lambda}$	132 153	165	187	241
			0 356 ng plans	100	96,7 115	125	144	192 192
10-E — Tables for sample size code letter E (Individual plans) hart E Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)			40 50 60 0 100 150 250 300 300 250 300 300 300 300 300 300 300 300 300 3	$\square$	79,6 95,7	105	122	167
ividua IIng pla			250 250 s > 10) single	65 00 items	57,5 71,1	79,2	94,1	51 F
10-E — Tables for sample size code letter E (Individual p nart E Operating characteristic curves for single sampling plans (Curves for double and mutitole sampling are matched as closely as practicable)			10       20       30       40       50       60       50       50       25         Quality of submitted product ( <i>p</i> , in percent nonconforming for AQLs ≤ 10, in nonconformities per 100 items for AQLs > 10)       20       25         Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       100       150       200       25         Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       Table 10-E-1 — Tabulated values for operating characteristic curves for single         Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconform	(in nonconformities per 100 items)	46,9 59,2	66,5	80,2	97,4 117
letter or single			150 100 item: stic cui	40 hconform	36,7 47,5	54,0	66,3	100
e code urves fo			100 mities per aracteri	n no	27,0 36,1	41,8	52,6	00,7 83.1
<b>le size</b> Istic cu moling ar			ing che	25	22,4 30,6	35,8	45,8	74.5
samp aracter atiole sar			50 50 in nor pection.	15	13,7 20,1	24,2	32,5	43,0 57.1
es for iting ch	80 80 80 80 80 80 80 80 80 80 80 80 80 8		0 – – – – – – – – – – – – – – – – – – –	<del>1</del> 0	6,33 10,5	13,4	19,5	39.3
- Tabl Opera			50 60 50 50 50 50 50 50 50 50 50 50 50 50 50	6,5	3,35 6,29	8,48	13,3	30,2 30,2
• 10-E - Chart E			50 nonconfo imits (AC <b>Tabuía</b> nce Qua	4,0	1,14 2,73	4,09	7,39	20.7
Table C		××××××××××××××××××××××××××××××××××××××	40 40 Quality L <b>D-E-1</b>	1,0	0,0773 0,395	0,810	2,21	5,05 10.7
-		83	10 20 30 40 Quality of submitted product ( <i>p</i> , in percen Values on curves are Acceptance Quality <b>Table 10-E-1</b> –	orming)	6,95 11,3	14,2		36.1
			is are Ac	1.0         4.0         6.5         10           p         (in percent nonconforming)	3,58 6,60	8,80	<u></u>	28.0
			20 on curve	4,0	1,18 2,81	4,17	7,41	19,4
of lots to be			10 Values	1.0 <i>p</i> (in	0,0773	0,807	2,19	10,1 10,1
Percent of lofs expected to be	accopted (F_)			Pa	99,0 95,0	90'0	75,0	25,0
Ε	100 80 70 80 70 80 70	50 30 10	-					

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

	9		œ	9	2	0	4	6	4	ي ک	7	$\mathbb{N}$	
	250		238	266	282	310	344	379	414	435	477	$\wedge$	
	X		219	246	261	288	321	355	388	409	450	250	
	150		150	173	185	208	236	266	295	313	349	X	
	X		132	153	165	187	213	241	269	286	321	150	(
00 items)	100		96,7	115	125	144	167	192	217	233	264	X	00 items
es per 10	X		79'6	95,7	105	122	4	167	190	205	235	100	ties per 1
conformiti	65	00 items)	57,5	71,1	79,2	94,1	113	134	155	168	196	Х	Iconformi
and nonc	X	ies per 1(	46,9	59,2	66,5	80,2	97,4	117	137	150	176	65	and non
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	40	p (in nonconformities per 100 items)	36,7	47,5	54,0	66,3	82,1	100	119	130	155	X	ice Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
nt noncor	X	o (in none	27,0	36,1	41,8	52,6	66,7	83,1	100	111	134	40	ent nonco
(in perce	25		22,4	30,6	35,8	45,8	59,0	74,5	90,5	101	123	X	in perc
spection	15		13,7	20,1	24,2	32,5	43,6	57,1	71,3	80,9	101	25	rspection
iormal in:	10		6,33	10,5	13,4	19,5	28,2	39,3	51,4	59,6	77,3	15	htened i
ly Limit, r	6,5		3,35	6,29	8,48	13,3	20,6	30,2	40,9	48,4	64,7	10	, Limit, tiç
ce Qualit	4,0		1,14	2,73	4,09	7,39	12,9	20,7	29,9	36,5	51,1	6,5	e Quality
Acceptan	1,0		0,0773	0,395	0,810	2,21	5,33	10,7	17,71	23,0	35,4	1,5	Acceptanc
	10	ming)	6,95	11,3	14,2	19,9	27,5	36,1	44,4	49,5	58,8	X	A
	6,5	onconfor	3,58	6,60	8,80	13,4	20,0	28,0	36,0	41,0	50,6	10	
	4,0	p (in percent nonconforming)	1,18	2,81	4,17	7,41	12,6	19,4	26,8	31,6	41,3	6,5	
	1,0	<i>p</i> (in p	0,0773	0,394	0,807	2,19	5,19	10,1	16,2	20,6	29,8	1,5	
	<i>ح</i> ⁶		99,0	95,0	90,0	75,0	50,0	25,0	10,0	5,0	1,0		

Copyright by the International Organization For Standardization Thu Oct 07 17:28:33 2004

Table 10-E-2 --- Sampling plans for sample size code letter

ш

Ac Re > 250 > 250 ¢ ¢ ⇐= Ac Re 45 16 27 38 48 9 57 57 250 4 5 25 56 ശ 23 \$ 56 25 42 15 35 45 å 29 53 53 250 Ş 9 4 23 52 26 88 22 ø Ac Re 2 5 31 22 38 27 34 38 150 100 items) 8 4 37 F 5 28 4 37 Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Ве 28 20 35 2 5 24 35 9 150 Å 5 2 27 8 4 25 3 e Limit, tightened inspection (in percent nonconforming and nonconformities per Ac Re 22 16 27 4 19 25 27 თ 100 Ξ 26 <u>ల</u> 26 5 2 ~ 20 Ве 19 4 24 4 22 1 24 ω 100 Å ĝ 33 6 σ ø Ξ 23 Re 15 ÷ 0 0 5 17 6 ~ 65 8 4 8 ₽ 8 ~ 4 ω Ac Re 13 0 16 12 15 16 ۵ თ 65 N 2 ÷ S ω 0 ო Re ÷ 13 10 42 13 ი ŝ œ 4 Å 0 2 N ഗ 0 e G σ æ 6 11 11 11 ~ 4 ~ თ 4 Å 0 <u>o</u> œ 4 0 N 4 ø å 10 ø 4 æ 9 ശ œ Ð 22 Å e თ 0 ŝ o ~ e æ 9 ю ~ 4 ŝ ø 1 ~ 5 32 ₽ ŝ N Θ ω # N 4 Ве 4 ო ю ო e 4 ŝ ŝ 15 ₽ Ş -4 ო 0 ** N 4 -Ве ო 4 თ e N e က 4 6,5 ₽ Å N ო # 0 0 e 0 -Quality Ac Re N ŝ N CL N ŝ ŝ 2 4,0 6,5 0 0 0 -# 0 -Be Acceptance code 25 letter 4,0 use u. Å å code letter 5 2 use G Å å code letter 1,5 use ۵ Å Ъ, 1,0 ມີ . . Å ¢ Ве < 1,0 < 1,5 ⇒ = Å sample Cumulative size Ϋ́ 9 ₽ E ŝ æ m ശ o Type of Multiple samp-Single Double ling plan

use next preceding sample size code letter for which acceptance and rejection numbers are available H

> = ⇒

letter for which acceptance and rejection numbers are available sample size code use next subsequent 11

Acceptance number п Ac

**Rejection number** B Ве

- use single sampling plan above (or alternatively use code letter H) 11
- acceptance not permitted at this sample size н #

F

			65		62,9 74.5	81,2	93,4	108	125	141	151	
	<u>5</u>		$\mathbb{X}$		51,7 62.2	68,4	79,5	93,3	109	124	133	
	light state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the		40		37,4 46.2	51,5	61,2	73,3	87,0	101	109	-
	e ind	items)	$\left  \right\rangle$		30,5 38.4	43,2	52,1	63,3	76,1	88,9	97,2	
plans) plans ^{ble)}	S S S S S S S S S S S S S S S S S S S	es per 100	25	0 items)	23,9 30 <u>.</u> 8	35,1	43,1	53,3	65,1	77,0	84,8	
10-F — Tables for sample size code letter F (Individual plans) Chart F Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)		Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	X	p (in nonconformities per 100 items)	17,5 23.5	27,2	34,2	43,3	54,0	65,0	72,2	
r F (Ind single s: as closely	100 100 100 100 100 100 100 100	ng and nor	15	onconformi	14,5 19,9	23,3	29,8	38,3	48,4	58,9	65,7	
de lette rves for	40 per 100 ite	onconformi	10	b (ju uc	8,93 13.1	15,8	21,1	28,4	37,1	46,4	52,6	
size co eristic cu ampling are	20 20 arting chi	percent no	6,5		4,12 6,83	8,72	12,7	18,4	25,5	33,4	38,8	
iample characte multiple se	¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	pection (in	4,0		2,1B 4,09	5,51	8,64	13,4	19,6	26,6	31,5	
es for s perating	50 50 mail insp	normal ins	2,5		0,743 1,78		4,81	8'39	13,5	19,4	23,7	
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	ality Limit,	0,65		0,0503 0,256	0,527	1,44	3,47	6,93	11,5	15,0	
	ent nonconft	ptance Qu	9	(	9,75 14,0	16,6	21,6	27,9	34,8	41,5	45,6	
Table	30 30 30 30 30 30 30 30 30 30 30 30 30 3	Acce	6,5	conforming	4,36 7,14	9,02	12,8	18,1	24,2	30,4	34,4	-
	10 20 30 Cuality of submitted product (p, in percent Values on curves are Acceptance Quality I		4,0	p (in percent nonconforming)	2,27 4,22	5,64	8,70	13,1	18,7	24,5	28,3	
	f submittee		2,5	p (in pe	2 0,759 1,81		4,81	8,25	12,9	18,1	21,6	000
of lots 1 to be 1 (P_)			0,65		0,0502 0,256		1,43	3,41	6,70	10,9	13,9	000
Percent of lots expected to be accepted (P_)	0 8 8 2 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0		<i>√</i> e		99,0 95,0	90'0	75,0	50,0	25,0	10,0	5,0	
F												

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)

	¢	#	₩	∰≸		Æ,	∰ ⁸						Д,	Å.	÷	
	0		20	30	•	40	20		20	4	60		80	100	120	140
	Quality of submitted product	submitted §		( $p$ , in percent nonconforming for AQLs $\leq$ 10, in nonconformities per 100 items for AQLs > 10)	t nonconfo	rming for A	\QLs ≤ 10,	in noncon	formities p	ber 100 itei	ms for AQI	.s > 10)				
NOTE	Values on	curves are	Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.	ice Quality	Limits (AQ	ils) for nor	mal inspec	ction.								
			I				•					•		:		
			Ē	Table 10-F-1 Tabulated values for operating characteristic curves for single sampling plans		bulated v	values t(	or operat	ting chai	racterist	tic curve	s for sin	gle samp	oling pla	INS	
				Accept	ance Quali	ity Limit, no	ormal inspe	action (in p	ercent nor	nconformir	non bria pr	conformitie	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	items)		
ď	0,65	2,5	4,0	6,5	10	0,65	2,5	4,0	6,5	10	15	X	25	$\left  \right\rangle$	40	X
		p (in pen	p (in percent nonconforming)	informing)						p (in no	ncontormit	(in nonconformities per 100 items)	) items)			
0'66	0,0502	0,759	2,27	4,36	9,75	0,0503	0,743	2,18	4,12	8,93	14,5	17,5	23,9	30,5	37,4	51,7
95,0	0,256	1,81	4,22	7,14	14,0	0,256	1,78	4,09	6,83	13,1	19,9	23,5	30,8	38,4	46,2	62,2
90'06	0,525	2,69	5,64	9,02	16,6	0,527	2,66	5,51	8,72	15,8	23,3	27,2	35,1	43,2	51,5	68,4
75,0	1,43	4,81	8,70	12,8	21,6	1, 44,	4,81	8,64	12,7	21,1	29,8	34,2	43,1	52,1	61,2	79,5
50,0	3,41	8,25	13,1	18,1	27,9	3,47	8,39	13,4	18,4	28,4	38,3	43,3	53,3	63,3	73,3	93,3
25,0	6,70	12,9	18,7	24,2	34,8	6,93	13,5	19,6	25,5	37,1	48,4	54,0	65,1	76,1	87,0	109
10,0	10,9	18,1	24,5	30,4	41,5	11,5	19,4	26,6	33,4	46,4	58,9	65,0	77,0	88,9	101	124
5,0	13,9	21,6	28,3	34,4	45,6	15,0	23,7	31,5	38,8	52,6	65,7	72,2	84,8	97,2	109	133
1,0	20,6	28,9	35,8	42,1	53,2	23,0	33,2	42,0	50,2	65,5	80,0	87,0	101	114	127	153
	1. 0	4,0	6,5	10	$\mathbb{X}$	1,0	4,0	6,5	10	15	X	25	$\left  \right\rangle$	40	X	65

ISO 2859-1:1999(E)

© ISO

ISO 2859-1:1999(E)

Type of samp-	Cumu- lative			Accept	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	ality Limi	it, norma	l inspec	tion (ir	perce	ent no	nconfor	ming an	d nonce	nformit	es per	r 100 i	tems)		
ling	sample	< 0,65	0,65	1,0	X	1,5	2,5	4,0	6,5		10	15	X	25	X		64	X	65	> 65
plan	size	Ac Re	Ac He	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re		Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	<b></b>	Ac Re	Ac Re	Ac Re	Ac Re
Single	20	ħ	0 1				4 7	3	ო 	45	9	7 8	6 8	10 11	12	13 14	15	18 19	21 22	ŧ
Double	13	⇒	*	nse	nse	use	0	0 0	-	8 9 9	ۍ ۲	ى ب	4 7	ი ა	ڡ	10 7	=	9 14	11 16	⇒
	26			code	code	code	1 2	3 4	4	5 6	7	9 10	10 11	12 13	15	16 18	19	23 24	26 27	
				letter	letter	letter														
	5	⇒	*	ш	т	IJ	N #	N #	#	#	4	4	0 4	0	0	9	~	+ 8	6 5	ŧ
	10						0	3 0	0	3	Ŋ	16	27	80 10	e	9 4	10	6 12	7 14	
Multiple	15						0	е 0	4	د» +	Q	е С	4 9	6 10	~	12 8	13	11 17	13 19	
	20						0 2	+ 3	2	5 4	2	9 2	6 11	9 12	Ę	15 12	17	16 22	20 25	
	25						-	ъ 4	4	5 6	7	9 10	10 11	12 13	15	16 18	19	23 24	26 27	
		< 1,0	1,0	X	1,5	2,5	4,0	6,5	2	F	15	X	25	$\square$	40	$\square$	$\nabla$	65	X	> 65
				Accepta	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	ity Limit,	tightene	ed inspe	ction (i	n perc	sent ne	onconfo	irming a	nd nonc	onformi	ties pe	ar 100	items)		

Table 10-F-2 — Sampling plans for sample size code letter F

= use next preceding sample size code letter for which acceptance and rejection numbers are available

⇐ ⇒

- = use next subsequent sample size code letter for which acceptance and rejection numbers are available
- Ac = Acceptance number
- Re = Rejection number
- * = use single sampling plan above (or alternatively use code letter J)
- # = acceptance not permitted at this sample size

F

l <b>ans</b> le)	ç
: <b>sampling p</b> aly as practicabl	50
Chart G Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)	
eristic curve ampling are m	e e e e e e e e e e e e e e e e e e e
<b>ting charact</b> e and multiple s	e e e e e e e e e e e e e e e e e e e
t G Operat	к
Char (0	a
	23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	2 2
of lots 1 to be 1 (P_a)	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Percent of lots expected to be accepted (P _a )	



- I				Hanne L		ומוווא רוווווי	Acceptance quality Linit, normal rispection (in percent noncomorming and nonconformines per jub rems)	) uninada	uapiad ui		orming an				ims)			
0,40		1,5	2,5	4,0	6,5	10	0,40	1.5	2,5	4,0	6,5	10	X	15	X	25	$\left \right\rangle$	40
		p (in p	percent no	p (in percent noncontormin	(guir						p (in non	p (in nonconformities per 100 items)	es per 10	0 items)				
0	0,0314	0,471	1,40	2,67	5,88	9,73	0,0314	0,464	1,36	2,57	5,58	9'08	11,0	14,9	19,1	23,4	32,3	39,3
ō	0,160	1,12	2,60	4,38	8,50	13,1	0,160	1,11	2,56	4,27	8,17	12,4	14,7	19,3	24,0	28,9	38,9	46,5
01	0,329	1,67	3,49	5,56	10,2	15,1	0,329	1,66	3,44	5,45	9,85	14,6	17,0	21,9	27,0	32,2	42,7	50,8
0	0,895	3,01	5,42	7,98	13,4	19,0	0,899	3,00	5,40	7,92	13,2	18,6	21,4	26,9	32,6	38,2	49,7	58,4
	2,14	5,19	8,27	11,4	17,5	23,7	2,17	5,24	8.36	11,5	17,7	24,0	27,1	33,3	39,6	45,B	58,3	67,7
	4,24	8,19	11.9	15,4	22,3	29,0	4,33	8,41	12,3	16,0	23,2	30,3	33,8	40,7	47,6	54,4	67,9	78,0
	6,94	11.6	15,8	19,7	27,1	34,0	7,20	12,2	16,6	20,9	29,0	36,8	40,6	48,1	55,6	62,9	77,4	88,1
	8,94	14,0	18,4	22,5	30,1	37,2	9,36	14,8	19,7	24,2	32,9	41,1	45,1	53,0	60,8	68,4	83,4	94,5
	13,4	19,0	23,8	28,1	36,0	43,2	14,4	20,7	26,3	31,4	41,0	50,0	54,4	63,0	71,3	79,5	95,6	107
	0,65	2,5	4,0	6,5	10	X	0,65	2,5	4,0	6,5	10	X	15	X	25	X	40	X
			Accept	Acceptance Quality	lity Limit,	tightened	<ul> <li>Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)</li> </ul>	(in percer	nt noncon	formina a		nformities.	ner 100 it	'ems)				

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

© ISO

ISO 2859-1:1999(E)

	<ul><li>40</li></ul>	Ac Re	<b></b>	⇒			Ę					> 40	
	40	Ъе	22	16	27	t	თ	4	19	25	27	$\overline{\mathbb{V}}$	
		Å	51	÷	26		N	2	13	8	26		
(su	$ \vee $	l e	19	4	24		æ	12	17	22	24	40	(su
iten	$ \wedge$	Å	18	6	23		-	9	÷	16	53	4	0 ite
100	25	Ac Re	15	11	19	Τ	2	10	13	17	19	$\mathbb{N}$	5
per	15	Ac	4	~	18			4	œ	12	18	$ \Lambda $	s pe
ities	$\nabla$	Re	13	10	16	T	e	0	12	15	16		nitie
lorm	IÅ	Ac Re	12	ۍ ا	15		0	ю	2	Ŧ	15	25	nforr
con		e Be	Ŧ	6	ę	1	ъ С	œ	10	12	13	$\nabla$	
Поп	15	Ac Re	10	ப	12		0	ю	9	6	12	M	2 p
and	大7	ъ	6	~	=	┥	4	~	ი	Ŧ	Ŧ	<u> </u>	g an(
ning	X	AcF	æ	4	10		0	2	4	9	10	15	min
lorn	É	l @	ω	φ	10	┥	4	9	8	თ	10	$\overline{\mathbf{N}}$	onfor
Cor	10	Ac Re	~	6	5		0	-	e	ъ	۰ ص	IХ	Duco
t noi		L	ц С	2 C	2	╈	4	ۍ ۲	φ	~	~	$\uparrow$	tu
rcent	6,5	Ac Re	ۍ س	N	9		*		N	4	9	2	ercei
bei	<b> </b>		4		<u>ب</u>	+		ო	4	ц. LD			ď
on (ir	4,0	Ac Re		-	4		##	0	-	N	4	6,5	juoi
ectic			<del>.</del>	с С	4	╉	2	 ო	m	ო	4	+	pecti
insp	2,5	Ac Re	2	0	ო		#	0	0	-	e	4,0	ins
mai	$\vdash$	· · ·	2	N	2	╉	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\left  \right $	ened
٦ E	1,5	Ac Re	-	0	-		*	0	0	0	-	2,5	ighte
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)					0 1							+	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
l Ţ	1,0	Ac Re		esn	code		I					1.5	L L L
Qual	$\mathbf{k}$											$\left\{ -\right\}$	ualit
DCe (	X	Ac He		use	code	Ialla	7					0	o e
ptar	$\left  \right\rangle$						· · · · · · · · ·					$\overline{\mathbf{h}}$	tano
Acce	0,65	Ac Re		use	code	ana	ш					IXI	cep
					<u> </u>	- T						/ \	¥
	0,40	Ac Re	-	*			*					0,65	
			0			╉		<del></del>			<u>.</u>		
	< 0,40	Ac Re	⇒	⇒			⇒					< 0,65	
		<				1						V	
Cumu- lative	sample	size	32	20	40		æ	16	24	32	40		
Cumu- lative	san	si	e)	C)	4		~	-	CI CI	Ś	4		
1.0				e		╀	· · · · · · · · · · · · · · · · · · ·		ē			1	
Type of samp-	ling	plan	Single	Double					Multiple				
⊢ °			(0		_				Σ				

Table 10-G-2 — Sampling plans for sample size code letter G

- = use next preceding sample size code letter for which acceptance and rejection numbers are available
- = use next subsequent sample size code letter for which acceptance and rejection numbers are available
- = Acceptance number

Ac

⇐ ⇒

Re = Rejection number

*

G

- use single sampling plan above (or alternatively use code letter K)
- # acceptance not permitted at this sample size

Copyright by the International Organization For Standardization Thu Oct 07 17:28:35 2004

0 5 10 15 20 25 30 35 40 45 50 E	30 35 40 45
Quality of submitted product ( <i>p</i> , in percent nonconforming for AQLs ≤ 10, in nonconformities per 100 items for AQLs > 10) NOTE Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.	rming for AQLs ≤ 10, in nonconformities per 100 items for AQLs > 10) Ls) for normal inspection.

Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items,
1,0         1,5         2,5 <i>p</i> (in percent n           0,300         0,886         1,68           0,715         1,66         2,78           1,07         2,22         3,53           1,07         2,22         3,53           1,07         2,22         3,53           1,92         3,46         5,10           3,33         5,31         7,29           5,29         7,69         10,0           7,56         10,3         12,9           9,14         12,1         14,8           12,6         15,8         18,7           12,6         2,5         4,0           1,5         2,5         4,0
1,0 0,715 0,715 0,715 1,07 1,07 1,07 7,56 3,33 3,33 3,33 3,33 3,33 3,33 3,33 3

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Copyright by the International Organization For Standardization Thu Oct 07 17:28:36 2004

Table 10-H-2 — Sampling plans for sample size code letter H

Ac Re > 25 25 ŧ 4 ⇐ ۸ 22 16 19 25 Ве 27 თ 4 23 52 Å = 26 13 2 20 26 5  $\sim$ 19 17 4 24 <u>n</u> 22 24 100 items) æ å Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) 25 Å 8 23 Ξ 9 33 o ø å 5 = 19 17 19 5 0 ~ 15 Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per Å 4 8 ğ 8 -4 ~ ω 13 16 15 16 Ве 0 Ģ σ 2 15 Ac ₽ ŝ ក្ខ Ŧ 0 ო ဖ ~ 13 13 Ве Ξ თ ഹ ę æ 5 Å 2 42 2 ŝ 0 ო ശ σ Re Ξ = o ~ 4 ~ ð Ξ <u>0</u> Å 2 2 ω 4 0 N 4 ശ 5 В 9 œ ø 4 ø ω σ 6,5 Ac 0 ო ഹ  $\sim$ ---ო თ ດ ω ഗ ~ 4 ŝ 9 Ве ~ 2 6,5 4,0 Åc ŝ N φ # -N 4 ø Ac Re | 4 ო S ო ო 4 ഗ ഗ 2,5 4,0 ო 4 # 0 N 4 Ac Re e e 4 2 ო e c 4 2,5 ň N 0 ო # 0 0 ന Ве ŝ N 2 2 2 2 2 2 1,0 1,5 Å 0 # 0 0 0 -Be code 0,65 letter asn 0, 7 å Ве code 0,65 letter use ¥ Å Ве code letter 4 use G Å ò Ве 0,25 0,40 * × Ş 0 < 0,25 < 0,40 Ac Re ⇒ ⇒ ⇒ sample Cumulative size 64 13 26 65 20 32 39 52 Type of Multiple ŧ Double Single sampplan ling

use next preceding sample size code letter for which acceptance and rejection numbers are available

use next subsequent sample size code letter for which acceptance and rejection numbers are available B

Acceptance number 11

Åc

⇒

11

Rejection number JI. æ

* #

use single sampling plan above (or alternatively use code letter L) П

acceptance not permitted at this sample size п

The metric for the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th
$ \begin{array}{c cccc}  & & & & & & & & & & & & & & & & & & &$
$ \begin{array}{c cccc}  & & & & & & & & & & & & & & & & & & &$
$ \begin{array}{c cccc}  & & & & & & & & & & & & & & & & & & &$
S     S     S     S       S     S     S     S       S     S     S     S       Inty of submitted product (p, i)     Interded product (p, i)     Interded product (p, i)       Inty of submitted product (p, i)     Interded product (p, i)     Interded product (p, i)       Inty of submitted product (p, i)     Interded product (p, i)     Interded product (p, i)       Inty of submitted product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded product (p, i)       Interded product (p, i)     Interded product (p, i)     Interded prodi)
1     0.446     0.657     1.03       1     0.667     1.03     1.73
be be c c c c c c c c c c c c c
be unality of st. 0,15 0,0126 0,13 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0,641 0

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities.

23,3 27,2 30,9 38,2 33,4 မှု 18,3 21,7 25,2 27,4 31,8 15,8 19,0 22,2 24,3 28,5 9 13,3 16,3 19,3 21,2 25,2 Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items) 10,8 13,5 16,2 18,0 21,8 6,5 20,0 16,4 9,59 12,1 14,7 7,09 9,28 11,6 16,4 13,1 4,0 12,6 4,59 6,39 8,35 9,69 2,5 10,5 3,34 4,90 6,65 7,87 1,5 2,10 8,30 3,37 4,86 5,93 0,1 0,866 1,73 5,76 3,74 0,25 2,88 18,3 21,3 29,5 24,2 26,0 15,8 21,4 23,2 26,6 18,6 10 13,3 16,0 20,3 23,6 18,6 10,8 13,3 17,3 20,5 15,7 6,5 9,55 11,9 18,9 14,3 15,8 7,06 9,14 11,3 15,6 12,7 4,0 4,57 8,16 12,0 6,30 9,41 2,5 3,33 4,84 6,52 7,66 10.1 ŝ 3,33 2,09 4,78 5,79 8,01 1,0 0,863 1,72 3,68 2,84 5,59 0,25 NOTE 50,0 25,0 10,0 5,0 o, F

31,2 35,2 37,8 42,9

27,1

Table 10-J-2 — Sampling plans for sample size code letter

7

Ac Re > 15 40 ⇐ ⇐ = ۸ 16 9 25 2 27 4 27 Be Be σ ŝ Å 3 Ξ 26 8 26 3 2 ~ 19 24 17 Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items) 3 24 4 R Be ω Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) 5 Ac 8 9 33 33 F თ 9 Ве 3 6 17 <u>6</u> Ţ ~ 2 3 20 Å 4 ß N ω ~ 4 ω Be 13 16 15 16 2 2 9 6 9 Ac ក ഹ F 0 ന ø ~ ę 5 Ве F 9 ₽ 2 σ ŝ ω 6,5 å 2 ≌ ₽ 2 ŝ 0 ო ဖ თ 11 Ве F ი ~ 4 ~ თ Ξ 6,5 Å ₽ 2 æ 4 0 N 4 ഗ Be <u>0</u> 9 ω ø 4 ശ ထ σ 4,0 Å ო 0 ---ო ഗ ~ თ σ В φ ŝ ~ 4 ŝ φ ~  $\sim$ 2,5 4,0 Åc ø φ ഗ N # ŝ 4 В 4 ო ഗ 3 ო 4 S ഗ 1,5 2,5 Acl ო 4 # 0 N 4 -Ве с 4 N ო ო ო 4 e <u>ا</u> ی 1,0 Å N Ċ * 0 0 ო 0 -N 2 å N 2 2 ² N 2 0,65 1.0 Ac 0 # 0 0 0 -Ве code 0,65 0,40 letter use ¥ Å å 0,40 code letter esn _ Å Ac Re letter code 0.25 use I Re 0,25 5 * * ō Ac 0 < 0,25 < 0,15 e H ⇒ = ⇒ Å sample Cumulative size 100 8 20 \$ 80 80 8 ß Type of Multiple Double Single sampling plan

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number

Ac

⇐ ⇒

Re = Rejection number

use single sampling plan above (or alternatively use code letter M)

= acceptance not permitted at this sample size

#

ISO 2859-1:1999(E)



Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)

22,5 24,2

19,8 21,4 24,5 10

16,1 17,5 20,4

14,2 15,6 18,3 6,5

12,3

9,42

7,42

5,34 6,20 8,04 1,5

4,26

3,11

1,84 2,40

21,9 23,3 26,0

19,3 20,6 23,2 10

15,7

13,9

12,1

10,2 11,3 13,4

9.24 10,3 12,3

7,29 8,23 10,2 2,5

5,27 6,09 7,81 1,5

4,20 4,95

3,08

1,83 2,37 3,62

10,0 5,0

3,74

17,0

19,4

15,1 17,5

13,2 15,5

6,55

5,19 0,65

1.0

0,15

6,5

27,5

13,6 16,1

10.4 11.5 13,9

> 10,5 12,8

8,41 10,5

> 6,72 1,0

5,04

3,80 5,31 4,0

2,5

0,65

3,68 0,15

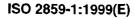



Table 10-K-2 — Sampling plans for sample size code letter K

Ac Re 10 5 ¢ 4 ⇐ ۸ ٨ 22 16 ð 25 Ве 27 4 27 თ 9 Å = 5 26 N β 20 26  $\sim$ 9 å 4 24 2 1 23 24 œ Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items) Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) 9 Å 18 23 16 ÷ ສ თ ø 15 19 19 å ~ 2 5 17 6,5 Ac 4 18 œ ₽ ~ ÷---4 ω 13 Ве 16 15 16 9 φ თ 2 6,5 Ac 2 15 5 0 Ξ ഗ e ~ F 13 13 P æ တ 2 ഗ ω 4,0 Å 2 Ч <u>∩</u> ŝ 0 c ø σ Ξ Ве σ  $\sim$ 4 ~ 6 F F 4,0 Å ω 0 9 4 0 N 4 ω <u>0</u> æ ω ø ø 2 4 œ ი 2,5 Ac e თ 0 ო S თ Ac Re g ю ~ 4 s g ~ ~ 1,5 2.5 ŝ N g # -N 4 g В 4 ო ŝ ო e 4 ഗ ഗ 0, -ທ Ş Э 4 0 # -2 4 Ве e 4 ო N c e 0,65 c 4 0, F Ac N 0 ო # 0 0 თ Re N N 0,40 N ŝ ŝ N S N N 0,65 Å 0 -# 0 0 0 -В 0,25 code 0,40 letter esn _ å æ code 0,25 letter use Σ Å 0,15 Ве code letter use ~ Å Ac Re 0,10 0,15 * * 0 < 0,10 Ac Re < 0,15 ⇒ ⇒ ⇒ sample lative Cumu size 125 00 128 160 80 96 32 64 Multiple Type of Double Single sampplan ling

= use next preceding sample size code letter for which acceptance and rejection numbers are available

¢

⇒

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

Re = Rejection number

- use single sampling plan above (or alternatively use code letter N)
- # = acceptance not permitted at this sample size

Κ

art - Operating citatecters to curves to single sampling practicable) Curves for double and multiple sampling are matched as closely as practicable)							\$°		10,0 11,0 12,0 13,0 14,0 15,0 16,0		abulated values for operating characteristic curves for single sampling plans	Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0.25 0,40 0,65 1,0 1,5 X 2,5 X 4,0 X 6,5	p (in nonconformities per 100 items)	0,074 0,218 0,412 0,893 1,45 1,75 2,39 3,05 3,74 5,17 6,29	0,409 0,683 1,31 1,99 2.35 3,08 3,84 4,62	0,551 0,872 1,58 2,33 2,72 3,51 4,32 5,15 6,84	0,864 1,27 2,11 2,98 3,42 4,31 5,21 6,12 7,95	1.34         1.84         2.84         3.83         4.33         5.33         6.33         7.33         9.33	1,96 2,55 3,71 4,84 5,40 6,51 7,61 8,70 10,9	4,64 5,89 6,50 7,70 8,89 10,1 12,4	8,48 9,72 10,9 13,3	3,32 4,20 5,02 6,55 8,00 8,70 10,1 11,4 12,7 15,3 17,2
		7							8,0 9,0	s per 100 iterns on.	rating characteristi	ction (in percent nonconfor	6,5 0,065 0		5,28 6,43 0,00503 0,	0,0256	8,22 0,0527	9,40 0,144	10,8 0,347	12,4 0,693	13,8 1,15	14,8 1.50	14,8 16,6 2,30 3
						2	5.		6,0 7,0	Quality of submitted product in percent nonconforming or in nonconformities per 100 items Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.	ted values for ope	Quality Limit, normal inspe	2,5 X 4,0	ming)	2,42 3,10 3,80	3,89 4,68	4,36 5,20	5,23	6,32	7,55	8,76	8,33 9,54 10,7	9,82 11,1 12,4
									4,0 5,0	percent nonconform ce Quality Limits (A(	Table 10-L-1 — Tabula	Acceptance Quality	1,0 1,5	p (in percent nonconforming)	0,900 1,47 1,77	2,01	2,34	2,99	3,83	4,81	5,82		6,42 7,82 8,50
	Z						N 20 005		2,0 3,0	mitted product in ves are Acceptar	Table		0,40 0,65		0.219 0.414	0,410 0,686	0,552 0,875	0,864 1,27	1,33 1,83	2,54	3,31	3,83	4,14 4,93
accepted (/- ")							00.10	7	1,0 2,	laity of subr lues on cun			0,065 0,25		0,00503 0,074					+			2,28 3,27

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Acceptance Quality Limit, tightened inspection (in percent nonconforming and noncontormities per 100 items)

ISO 2859-1:1999(E)

Copyright by the International Organization For Standardization Thu Oct 07 17:28:38 2004 Table 10-L-2 — Sampling plans for sample size code letter

Ве > 6,5 6,5 ⇐= ⇐ 4 Å ۸ 19 22 16 35 å 27 4 27 თ 6,5 Å ÷ 26 2 13 20 26 5 ~ 6 4 24 1 22 24 2 Вe ω Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items) Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) 6,5 Å 8 16 33 F 33 σ ဖ 19 15 19 17 Ве 0 <u></u> F ~ 40 Å 4 8 8 42 ~ ----4 ω 3 16 <u>∾</u> 15 16 9 ဖ Ве 6 4,0 Å 5 2 <u>ъ</u> F 0 ო ω  $\sim$ Ŧ 5 5 6 2 Re თ ŝ α 2.5 Ac <u>0</u> R ≥ ŝ 0 c φ თ æ თ Ξ 4 თ Ŧ ~ ~ Ξ ດ ຈີ Å 2 9 ω 4 0 N 4 ശ Be ω G 2 4 φ ω თ 9 1,5 Å ~ Э ი 0 **.**... c ഗ 6 å ω ഗ  $\sim$ 4 ഗ φ ~ ~ 1,0 Å ю N 9 # -N 4 9 æ 4 e ŝ c თ 4 G G 0,65 0 Ac ო 4 # 0 ŝ 4 -Не 0,40  $\sim$ ŝ ŝ 4 ŝ ო 4 ŝ 0.65 å N ო 0 0 ო 0 # В ŝ ŝ ŝ N ŝ 2 2 N 0,25 6 Ac ō 0 * 0 --0 0 -0,15 Re code letter 0,25 asn Σ Ac Be code 0,15 letter use z Å 0,10 Ве code letter use ¥ Å 0,065 Ве 0,10 . × Åc 0 < 0,065 < 0,10 å ⇒ ⇒ ⇒ Å sample lative Cumusize 200 250 150 200 250 125 8 50 Type of Double Multiple Single sampling plan

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

Ac = Acceptance number

¢

⇒

Re = Rejection number

* *

use single sampling plan above (or alternatively use code letter P)

= acceptance not permitted at this sample size

Copyright by the International Organization For Standardization Thu Oct 07 17:28:39 2004

Percent of lots expected to be accepted (P_a)	(Curves for double	(Curves for double and multiple sampling are matched as closely as practicable)	or double and multiple sampling are matched as closely as practicable)	practicable)		
					07	

plans
ling
amp
gles
sing
for
rves
no o
istic
icter
hara
ting c
srati
ope
s for
Ilues
Tabulated values for
ulate
Tabu
Ì
10-M-1
Table 1

						Acci	eptance	Quality I	Limit, noi	mal insp	pection (i	in percei	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	forming	and nonc	onformi	lies per	100 item:	s)					
<i>ч</i> в	0,040	0,15	0,25	0,40	0,65	1,0	X	1.5	X	2,5	$\square$	4,0	0,040	0,15	0,25	0,40	0,65	1,0	$\mathbb{X}$	1,5	$\mathbb{X}$	2,5	$\left  \right\rangle$	4,0
				4	, (in pe	p (in percent nonconforming)	nconfo	rming)								n) d	noncor	<i>p</i> (in nonconformities per 100 items)	is per 1	00 item	s)			
99,0	0,00319	0,047	0,139	0,262	0,570	0,929	1,12	1,53	1,95	2,40	3,33	4.05	0,00319	0.047	0,138	0,261	0,567	0,923	1,11	1,51	1,94	2,37	3,28	3,99
95,0	0,0163	0,113	0,260	0,435	0,833	1,27	1,50	1,97	2,46	2,96	3,99	4,78	0,0163	0,113	0,260	0,434	0,830	1,26	1,49	1,96	2,44	2,94	3,95	4,73
90,0	0,0334	0.169	0,350	0,555	1,00	1,48	1,73	2,24	2,76	3,29	4,37	5,20	0,0334	0,169	0,350	0,554	1,00	1,48	1,72	2,23	2,74	3,27	4,34	5,16
76,0	0,0913	0,305	0,549	0,805	1,34	1,89	2,17	2,74	3,32	3,90	5.07	5,95	0,0913	0,305	0,548	0,805	1,34	1,89	2,17	2,74	3,31	3,89	5,05	5,93
50,0	0,220	0,532	0,848	1,16	1,80	2,43	2,75	3,38	4,02	4,65	5,92	6,87	0,220	0.533	0,849	1.17	1,80	2,43	2,75	3,39	4,02	4,66	5,93	6,88
25,0	0,439	0,853	1,24	1,62	2,35	3,06	3,41	4,11	4,81	5,49	6,86	7,87	0,440	0,855	1,24	1,62	2.36	3,07	3,43	4,13	4,83	5,52	6,90	7,92
10,0	0,728	1,23	1,68	2,11	2,92	3,71	4,09	4.85	5,59	6.33	7.77	8,84	0,731	1,23	1,69	2,12	2,94	3,74	4,13	4,89	5,64	6,39	7,86	8,95
5,0	0,947	1,50	1,99	2,44	3,31	4,13	4,54	5,33	6,10	6,86	8,36	9,46	0,951	1,51	2,00	2,46	3,34	4,17	4,58	5,38	6,17	6,95	8,47	9,60
1,0	1,45	2,09	2,64	3,15	4,11	5,01	5,44	6,29	7,12	7.93	9,51	10,7	1,46	2,11	2,67	3,19	4,16	5,08	5,52	6,40	7,24	8,08	9,71	10,9
	0,065	0,25	0,40	0,65	1,0	X	1,5	X	2,5	X	4,0	X	0,065	0,25	0,40	0,65	<u>;</u>	X	1.5	X	2,5	X	4,0	X
						Accep	otance C	Juality Li	mit, tight	ened ins	pection	(in perce	ptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	nforming	and non	conform	ities per	100 iten	ls)					Γ
																								]

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

70

Copyright by the International Organization For Standardization Thu Oct 07 17:28:39 2004 Table 10-M-2 — Sampling plans for sample size code letter M

Type of	Cumu-			Accept	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities nor 100 iteras)	ality Lim	it, nor	mal	nspe	ction (	(in pe	licen		Confo				- for	- imac				1			
ling	sample	< 0,040	0,040			0.10	0.15	2	0.25		040	0.65	- -		4			Ĺ	$ \rangle$			₽  / 8				
plan	size	Ac Re	Ac He	-	AC Re			-			2 6		-		-4		-		$\langle  $			<u>\</u>	$\langle   \rangle$		9,4 0,1	< 4,0
					_					_	P	ACHE		AC He	-	AC HB	Ac He	e Y	ACH	He	Ac Re		Ac Re		Ac Re	Ac Re
Single	315	⇒	•				-	2	23	3	4	ഹ		7 8	80	<u>Б</u>	10	Ξ	12 1	13 14	4 15	5 18	3 19	21	22	ų
Double	200	⇒.	*	nse	nse	asn	0	5	е 0		ო	~	به س	3 6	4	7	S.	6	6	10 7	=		<b>4</b>		16	=
	400			code	code	- code	-	<del>.</del>	ы 4	4	сл С	9	6	010		11	12	5							77	
				letter	letter	letter																			i	- •
	80	⇒	*		۵.	z	#	** (V)	∾ *	*	υ	#	4	4	0	4	0	2 2	0	6 1	-	-	8	N	5	
	160						0		ю 0	0	e	-	5	9 _	N	7	ო	Ø	თ ო	9 4	10	9	12	~	4	
Multiple	240						0	<u>م</u>	е 0	-	4	N	9 9	8	4	6	ç	<u>.</u>	7 1:	12 8	13		17	13	6	
	320						0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 7	2	сı	4	7 5	б (	9	÷	ດ	12	1	15 12	2 17	16	22	20	25	
	400						-	3	4	4	S	G	7 9	10	9	1	5	13	15 1	16 18	3 19	53	24	26	27	
		< 0,065	0,065	X	0,10	0,15	0,25		0,40	0,65	35	1,0	+	$ \rangle$		1,5	Ň	-	2,5		X	- 4	4,0	$ $ $\wedge$		> 4,0
			-	Acceptar		ice Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)	tighte	ned	inspe	ction	(in pe	arcen	it non	iconfe	ormin	ig an	d nor	Con	ormit	les p	er 1(	00 ite	(sm:			
4	= USe n	= use next preceding sample size	ding sar	mple size	code let	code letter for which accentance and rejection numbers on and televis	hicha			pue c																]

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number Be Ac

⇒

= Rejection number

- use single sampling plan above (or alternatively use code letter Q) *
- = acceptance not permitted at this sample size #

Copyright by the International Organization For Standardization Thu Oct 07 17:28:40 2004

M

plans
sampling
or single s
curves fo
aracteristic
perating ch
alues for o
Tabulated v
0-N-1
Table 1

----

ГТ			-	80	آي	4	<del>ب</del>	م ا	4	ۍ و	5	$\langle 7$	
	2.5		2,51	2,98	3,25	3,74	4,33	4,99	5,64	6,05	6,87	Å	
	X		2,07	2,49	2,73	3,18	3,73	4,35	4,95	5,34	6,12	2,5	
	1,5		1,50	1,85	2.06	2,45	2,93	3,48	4,03	4,38	5,09	X	
	X	ls)	1,22	1,54	1,73	2,08	2,53	3,04	3,56	3,89	4,56	1,5	
	0.1	100 items)	0,954	1,23	1,40	1,72	2,13	2,60	3,08	3,39	4,03	Х	
s)	X		0,701	0,939	1,09	1,37	1.73	2,16	2,60	2,89	3,48	1,0	ms)
100 item	0,65	formiti	0,581	0,796	0,931	1,19	1,53	1,94	2,35	2,63	3,20	X	r 100 ite
ties per	0,40	p (in nonconformities per	0.357	0,523	0,630	0,844	1.13	1,48	1,85	2,10	2,62	0,65	nities pe
conformi	0,25	n) (	0,165	0,273	0,349	0,507	0,734	1,02	1,34	1,55	2,01	0,40	nconforn
and none	0,15		0,087	0,164	0,220	0,345	0,535	0,784	1,06	1,26	1.68	0,25	and not
orming a	0,10		0,03	0,071	0,106	0,192	0,336	0,539	0,778	0,949	1,33	0,15	nforming
ptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	0,025		0,00201	0,0103	0,0211	0,0575	0,139	0.277	0,461	0,599	0,921	0,040	Acceptance Quality Limit, tightened inspection (in percent nenconforming and nonconformities per 100 items)
n percer	2,5		2,54	3,00	3,26	3,75	4,33	4.97	5,60	5,99	6,78	X	(in perce
ection (i	X		2,09	2,50	2,75	3,19	3,73	4,33	4,92	5,29	6,04	2,5	spection
mal insp	1,5		1,51	1,86	2,07	2,45	2,93	3.47	4,00	4,34	5,03	X	tened ins
imit, nor	X		1,23	1,54	1.74	2,09	2,53	3,03	3,54	3,86	4,51	1,5	mit, tighi
Duality L	1,0	(buim	0,959	1,24	1,41	1,73	2,13	2,60	3.06	3,37	3,99	X	luality Li
ptance (	X	nconforming	0,705	0,942	1,09	1,37	1,73	2,15	2,59	2,87	3,45	0. -	tance O
Acce	0,65	cent noi	0,584	0,799	0,933	1,19	1,53	1,93	2,34	2,61	3,17	X	Accep
	0,40	p (in percent noi	0,358	0,524	0,632	0,845	1,13	1,48	1,85	2,09	2,60	0,65	
	0,25		0,165	0,274	0,349	0.507	0,734	1,02	1,33	1,54	1,99	0,40	1
	0,15		0,087	0,164	0,221	0.346	0,534	0,783	1,06	1,25	1,67	0,25	
	0,10		0,03	0,071	0,106	0,192	0,335	0,538	0,776	0,945	1,32	0.15	
	0,025		0,00201	0,0103		0.0575	0,139	0,277	0,459	0,597	0,917	0,040	
	ď	<u>ر</u>	0'66	95,0	0'06	75,0	50,0	25,0	10,0	5,0	1,0		•

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Copyright by the International Organization For Standardization Thu Oct 07 17:28:40 2004

72

Table 10-N-2 --- Sampling plans for sample size code letter

Z

Ac Re 2,5 > 2,5 Ē ¢ ¢ ۸ 23 16 6 25 Ве 27 σ 4 27 2,5 Å Ţ 26 3 26 20 3 N ~ 19 24 4 23 4 <u>₽</u> 24 æ æ tightened inspection (in percent nonconforming and nonconformities per 100 items) 2,5 Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) Åc <u>8</u> g 16 33 თ +--ဖ Be 15 19 17 19 F ~ 9 Ϋ́ 1,5 Å 4 8 ₽ 8 ~ 4 ω 13 16 15 9 ę <u>∩</u> В ω თ 1.5 Å 5 2 2 7 0 Ć ω ~ 13 13 Ве F 0 σ S ω 12 <u>,</u> Å 2 2 2 ĥ 0 ო ø o F 7 4 Ξ В σ ~ σ ÷. Ac 2 2 œ 4 0 N 4 φ Ве 2 ω σ 9 α ø 4 G 0,65 Ac ო 0 ო ŝ ~ თ σ S Ве ø ŝ ~ 4 ഗ ~ ~ 0,65 40 Å Ö ß N G # N 4 ω -Ве 4 Э ŝ ო e 4 ŝ ŵ 0,25 0.40 Åc e 4 # 0 2 4 -Ве 2 ო ო ო ო 4 4 e 0,25 42 õ Å 2 ო # 0 0 С 0 -N Be CI N N N ŝ N N 2 0.15 ō Ac 0 # 0 0 0 Acceptance Quality Limit, Ве 0,065 0.10 code letter use ۵. Å 0.065 Re code letter use σ Ac 0.040 æ code letter use Σ Å 0.025 æ 0,040 * * Å 0 < 0,040 < 0,025 Ве  $\Rightarrow$ ⇒ ⇒ Ac sample lative Cumu-315 size 625 500 630 125 250 375 500 Multiple Type of Double Single sampplan ling

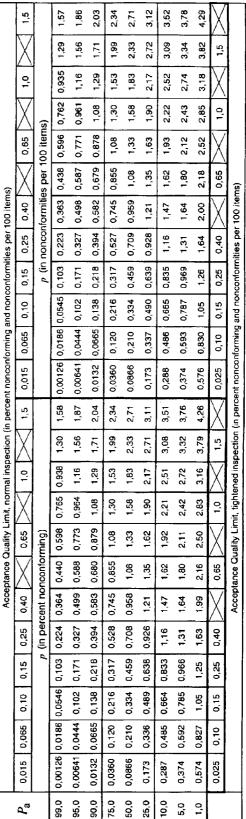
= use next preceding sample size code letter for which acceptance and rejection numbers are available

= use next subsequent sample size code letter for which acceptance and rejection numbers are available

= Acceptance number

Å

⇒


⇐

Re = Rejection number

- use single sampling plan above (or alternatively use code letter R)
- = acceptance not permitted at this sample size

#

esepted (P_a) accepted (P_a)	Percent of lots	Chart P Operating characteristic curves for single sampling plans
$P_{a} = \frac{1}{2} \left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$	expected to accepted (/	
05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05       05 <td< td=""><td></td><td></td></td<>		
$P_{a} = \frac{1}{\rho} \left( \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{\rho} + \frac{1}{$	NN.	
$P_{a} = \frac{1}{p_{a}} \left( \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{p_{a}} + \frac{1}{$		
$P_{a} = \frac{1}{p_{a}} \left( \begin{array}{ccccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		
Pa       0.15       2.0       2.5       3.0       3.5         Cuality of submitted product in percent nonconforming or in nonconforming set 100 items       2.0       2.5       3.0       3.5         NOTE       Values on curves are Acceptance Quality Limits (AQLs) for nomal inspection.       2.5       3.0       3.5       3.0       3.5         Pa       0.15       0.25       0.015       0.015       0.025       0.40       0.15       0.015       0.05       1.0       0.15       0.05       1.0       0.15       0.10       0.15       0.10       0.15       0.25       0.40       0.15       0.10       0.15       0.25       0.40       0.10       0.15       0.25       0.40       0.10       0.15       0.25       0.40       0.10       0.15       0.25       0.40       0.10       0.15       0.25       0.40       0.10       0.15       0.10       0.15       0.10       0.15       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10       0.10 <td< td=""><td></td><td></td></td<>		
$P_{a} = \frac{1}{\rho_{a}} \left\{ \begin{array}{ccccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		
$P_{a} = \frac{1}{p_{a}} \left( \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$		
$P_{a} = \frac{1}{p (in percent noncontorming of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local of a local o$		
$P_{a} = \frac{1}{2} \left\{ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$P_{a} = \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05} + \frac{100}{0.05$		
Note       1.0       1.5       2.0       2.5       3.0       3.5         0.5       1.0       1.5       2.0       2.5       3.0       3.5         NOTE       Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       3.0       3.5       3.0       3.5         NOTE       Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       2.0       2.5       3.0       3.5         Pa       Table 10-P-1 — Tabulated values for operating characteristic curves for single sampling plans       Acceptance Quality Limit, normal inspection (in percent nonconformities per 100 items)       0.015       0.25       0.40       0.65       1.0       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15       0.65       0.10       0.15 <td></td> <td>Va. V2'/2 V2'S V2's V2's V0'S</td>		Va. V2'/2 V2'S V2's V2's V0'S
0.5       1.0       1.5       2.0       2.5       3.0       3.5         OUBLIKY of submitted product in percent nonconforming or in nonconformities per 100 items       2.0       2.5       3.0       3.5         NOTE       Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       2.0       2.5       3.0       3.5         NOTE       Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       3.0       3.5       3.0       3.5         NOTE       Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       2.0       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015       0.015		
0.5       1.0       1.5       2.0       2.5       3.0       3.5         Quality of submitted product in percent nonconforming or in nonconformities per 100 items       2.0       2.5       3.0       3.5         NOTE       Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       3.0       3.5       3.0       3.5         NOTE       Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.       Acceptance Quality Limits (AQLs) for normal inspection.       3.0       3.5       3.0       3.5         Pa       Table 10-P-1 — Tabulated values for operating characteristic curves for single sampling plans       Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)       9.015       0.055       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40       0.65       0.40		
Quality of submitted product in percent nonconforming or in nonconformities per 100 items         Values on curves are Acceptance Quality Limits (AQLs) for normal inspection.         Table 10-P-1 — Tabulated values for operating characteristic curves for single sampling plans         Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformintes per 100 items)         0,015       0,055       0,10       0,15       0,25       0,65       1,0       0,15       0,65       1,0       0,15       0,65       1,0       0,15       0,65       1,0       0,15       0,65       0,10       0,15       0,65       0,10       0,15       0,65       1,0       0,15       0,65       1,0       0,15       0,65       0,10       0,15       0,65       0,10       0,15       0,65       0,10       0,15       0,65       0,10       0,15       0,65       0,10       0,65       0,10       0,15       0,65       0,10       0,65       0,10       0,65       0,10       0,15       0,65       0,10       0,65       0,10       0,65       0,10       0,65       0,10       0,65       0,10       0,65       0,10       0,65       0,10       0,65       0,10       0,65       0,10       0,65       0,10       0,65       0,10       0,65       <		2,5 3,0
Table 10-P-1 — Tabulated values for operating characteristic curves for single sampling plans         Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)         0,015       0.065       0.10       0,15       0.65       0,10       0,15       0.65       1,0         p (in percent nonconforming)       p (in nonconformities per 100 items)       p (in nonconformities per 100 items)		ality of submitted product in percent nonconforming or in nonconformities per 100 items ues on curves are Acceptance Quality Limits (AQLs) for normal inspection.
<t< td=""><td></td><td>Table 10-P-1 — Tabulated values for operating characteristic curves for single sampling plans</td></t<>		Table 10-P-1 — Tabulated values for operating characteristic curves for single sampling plans
0,015     0,065     0,10     0,15     0,40     0,65     1,0     1,5     0,065     0,10     0,15     0,40     0,65     1,0       p     (in percent nonconforming)     p     (in nonconformities per 100 items)		Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)
	ط _ه	0.065 0.10 0.15 0.25 0.40 X 0.65 X 1.0 X 1.5 0.015 0.065 0.10 0.15 0.25 0.40 X 0.65 X 1.0 X





© ISO

	> 1,5	Ac Re	<b>~</b>				⇐	<u></u>				> 1,5	
	$\vdash$	+	52	16	27		ი	4	19	25	27	$\frac{1}{\sqrt{2}}$	
1	1,5	Ac Re	51 2	1	26 2		2	7 1	13	20 2	26 2	X	
	k7	ł	19 2	14	24 2		8	12	17 1	22 2	24 2	$\frac{1}{1}$	6
ems	X	Ac Re	18	6	23 2			6 1	7	16 2	23 2	1,5	item
00 it	$\vdash$	4	15 1	1	19 2		2	10	13 1	17	19	$\overline{\mathbf{k}}$	8
er 1	0.	Ac Re	14		18		-	4	8	12 1	18	X	per
ies p	5		13	<u>0</u>	16		9		12	15	16		ities
ormit	IX	Ac Re	12	9	- 15		0	ო	7	=	- - -	1,0	lorm
confo	<u>ر ر</u>	Re		<u>Б</u>	ش		5	8	9	12	٠ ۴		ICON
non	0,65	Ac Re	10	2	12		0	ო	ب	Б	4	X	non
and	$\overline{\nabla}$	e.	6	~	:		4	2	6	11	=	5	and
ling	ľÅ	Ac Re	œ	4	10		0	2	4	9	10	0,65	ming
form	ġ	Ве	80	9	10		4	e e	80	ი	10	$\mathbf{N}$	nfor
ncor	0,40	Ac Re	~	ო	ი		0	-	ю	ى	თ	Ň	Donc
at no	25	Re	9	5	2		4	S	Q	2	~	Q	u tu
srcer	0,25	Ac Re	S	12	9		#	-	ŝ	4	9	0,40	erce
in pe	0,15	Ac Re	4	3	ŝ		б	ო	4	S	S	55	d li)
ion (	ō	Ac	ო	+	4		#	0	-	2	4	0,25	tion
pect	0,10	Ac Re	З	ю	4		2	n	n	n	4	0,15	spec
l ins	°,	Å	N	0	ო		*	0	0		ო	ó	i ji
orme	0,065	Ac Re	N	N	2		2	ŝ	2	2	ŝ	0,10	itene
it, n	J		-	0	-		#	0	¢	0	-	ó	tigh
ality Lim	0,040	Ac Re		asn	code	letter	Ø					0,065	ity Limit
Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	X	Ac Re		nse	code	letter	α		,			0,040	ice Qual
Accepta	0,025	Ac Re		esn	code	letter	z					X	Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)
	0,015	Ac Re	0 1	*			*					0,025	
	0,010	Ac Re	⇒	⇒			⇒					< 0,025	
Cumu- lative	sample	size	800	500	1 000		200	400	600	800	1 000		
Type of samp-	ling	plan	Single	Double					Multiple				

Table 10-P-2 — Sampling plans for sample size code letter

۵.

- = use next preceding sample size code letter for which acceptance and rejection numbers are available
- = use next subsequent sample size code letter for which acceptance and rejection numbers are available
  - = Acceptance number Ac Ве

⇐

⇒

- = Rejection number
- use single sampling plan above ٠
- acceptance not permitted at this sample size H #

Р

	»	[ <b>-</b> ]	1.0	1,01	1, 19	1.30	1,49
	┢ <del>╺┝┥┥╎┥┥╎╎╎┊╡┥┥┥┥┥┥┥╸╸╸</del> ╪╊ ┝ <del>╶╶╸┥┥┥┥┥┥┥┥┥┥┥┥┥┥┥</del>		-				
	<b>4</b>		$\Delta$	8 0,828	· -	4	9 1,27
			0,65	8 0,598	5 0.740	2 0.824	0,834 0,979
	52		) Se	2 0,488		2 0,692	0.83
		sue	0,40 100 item	0,382	0,376 0,494	5 0,562	0,694
~		jd pi		0,281		0,372 0,435	0,338 0,476 0,547 0,690
lans	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00 item	0,25 formitie	0,232	0,318		0,476
ual p plans		gle sa	0.10 0,15 0,25 0,40 0 <i>p</i> (in nonconformities per 100 (tems)	0,0659 0,143	0,209	0,252	
divid pling		or sinç	0,10 <i>p</i> (in r	0,0659	0,109	0,140	0,203
Q (In e sam		ves fo	0,065	0,0349	0,0654	0,0882	0,138
etter single as clos		tic cur ming an	0,040	0,0119	0,0284 0,0654	0,0425	0,0769
10-Q — Tables for sample size code letter Q (Individual plans) Chart Q Operating characteristic curves for single sampling plans (Curves for double and multiple sampling are matched as closely as practicable)		Noncontrorming or in noncontormites per 100 items by Limits (AQLs) for normal inspection. — Tabulated values for operating characteristic curves for single sampling plans Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformites per 100 items)	0,010	0,0008	0,00410	0,00843 0,0425 0,0882	0,0230
size tic cu		g cha	1'0	1,01		1,30	1,50
mple cteris e samp		es per ion. eratin	X	0,830	0,998	1,10	1,27
or sa chara ^{multipi}		inspect or op	0,65	0,600		0,825	0,980
<b>les f</b> ( ating		normal Iues f	X	0,489	0,616	0,693 0,825	0,834
· Tab Oper or dout		g or in s) for r ed va	0,40 ling)	0,383	0,494	0.562	0.690
ا م د ف بر		tormin to AQL bulat	onform	0,281	0,376	0,435	0,547
· · · · · · · · · · · · · · · · · · ·		Toncor Ity Limit Accept	0,25 nt nonc	0,233		0,373	0,477
Table		e Cual 0-0-1	0 0,15 0,25 0,4( <i>p</i> (in percent nonconforming)	0,143		0,252	0,338
		Quality of submitted product in percent nonconforming or in nonconformities per 100 items Values on curves are Acceptance Quality Limits (AQLs) for normal inspection. Table 10-Q-1 — Tabulated values for operating chara Acceptance Quality Limit, normal inspection (in percent in	0,10 <i>p</i> (ii	0,0659	_	0,140	0,203
		inted pro	0,065	0,0349	0,0654	0,0882	0,138
		or subm on curve	0,040	0,0119		0,0426 0,0882	0,0769
filots to be (P_a)		Values	0,010	0,0008	0,0041	0,00843	0,0230
Percent of lots expected to be accepted $\left\{ P_{a} \right\}$		NOTE	<i>d</i> ."	0'66	95,0	0'06	75,0
Q	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						

Binomial distribution used for entries corresponding to inspection for nonconforming items, Poisson for inspection for number of nonconformities. NOTE

Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)

76 Copyright by the International Organization For Standardization Thu Oct 07 17:28:42 2004

ISO 2859-1:1999(E)

2,8 2,25 2,42 2,75

> 2,14 2,45

1,75

1,42 1,56 1.83

1,23 1,36

0,942 1,05

0,534 0,620

0,426

0,311 0,380

1,98 2,13 2,43

0,940 0,774

1,05 1,28

0,619

0,503 0,671

0,379

0,530

0,311 0,215

0,841 1.05

0,504 0,672

2,04

1,61

1,28

0,804 0,15

0,531

0,25

0,10

0,065

0,015

<u>0</u>

0,65

0,40 1,39

0,15 0,801

0,10

0,065

0,015

2,03 1,75

1,82 1,55

0

0,65

1,73

1.49 1,74 86'1

1,17 1,39 1,61

1,01

0,853

0.694 0,864 1,04 1,15 1,39 0,40

0,614

0,454

0,294 0,409

0,214

0,134 0.215

0,0555

1,73 66.1 2,25 2,41 2,73

1,49 1.74

1.17 66. 6

1,01 2 1,42

0,853 1.04 1,23 1,35 1,61

0,693 0.863 1,04 1,15

0,613

0,453 0.593 0,741 0,839 1,05 0,25

0,294 0,408 0,534

0.214 0,313 0,425

0,134

0,0554

50,0 25,0 10,0 5,0 ç

0,111 0,184 0,239 0,368

ส

1.04

0,775

0,594 0,742

0.314

0,111 0,184 0,240 0,368 Table 10-Q-2 — Sampling plans for sample size code letter

Q

1,0 å 1.0 4 ⇐ **¢**.... Å 16 19 25 2 27 4 27 В σ 0 å <u>6</u> Ξ 26 20 26 5 2 ~ 9 1 22 å 4 24 ω ₽ 24 0.1 Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items) Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) å 8 8 Ξ 16 23 ð ø 5 9 17 6 Ве Ξ 2 Ω ~ 0,65 Å 4 β 42 3  $\sim$ **T** 4 ø 10 15 33 2 <u>c</u>u 16 Ве 9 თ 0,65 å ⊵ ß <u>0</u> 0 e Ξ ഗ ~ β å ÷ 5 ഹ 2 12 σ 80 0,40 Å 5 ഗ 2 0 ო 6 42 ø Ŧ Ξ В ი  $\sim$ 4 ~ ი Ξ 0,40 Å 0 2 œ 4 0 2 4 ဖ 2 9 æ 4 o œ G ശ œ 0.25 Å  $\sim$ e თ 0 ---ო ß თ Ве ശ ഗ ~ 4 ഹ 9  $\sim$ ~ ŝ 0,25 õ Åc ŝ N ဖ ---4 ω # 2 0,10 Re 4 ო S က ო 4 ŝ ŝ 0,15 Ac ო 4 # 0 C) t ო 0,065 В ტ ო 4 N თ ო 4 <u>0</u> ò Å ŝ 0 ო * 0 0 თ 0,065 0,040 æ 2 2 N 2 2 2 2 2 Ac -0 **T** # 0 0 0 -0,025 0,040 Ъе code letter nse œ Ac Ве 0,025 code letter use S Å Ве 0,015 code letter use ٩ Ac 0.010 0,015 Ве -* Ac 0 0,010 В code letter use œ Å sample 575 Cumulative size 1250 600 260 315 945 800 630 Type of Multiple Single Double sampplan ling

= use next preceding sample size code letter for which acceptance and rejection numbers are available

= Acceptance number

Re Ac

⇐==

= Rejection number

= use single sampling plan above

= acceptance not permitted at this sample size

ISO 2859-1:1999(E)

	1.2 1.3 1.4	0,25 0,40 0,0
eletter R (Individual plans) or single sampling plans ed as closely as practicable)	0.9 1.0 1.1 0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	
Table 10-R       Tables for sample size code letter R (Individual plans)         Chart R       Operating characteristic curves for single sampling plans         (Curves for double and multiple sampling are matched as closely as practicable)	Table 10-R-1 - Tabulated values for operating characteristic curves for single sampling plans	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) 0.065 0,10 0,15 $\longrightarrow$ 0.25 $\longrightarrow$ 0.40 $\bigcirc$ 0,40 $\bigcirc$ 0,65 0,025 0,040 $\bigcirc$ 0,065 0,10 0.15 $\bigcirc$ $p$ (in nonconformities present nonconformities present normalities present normalities present nonconforming)
Percent of lots expected to be accepted (P)	NOTE Values on curve	P _a 0,025 0,040
R	<u>8</u> 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	

	1				Acceptan	ce Qualit	y Limit, n	ormal ins	pection (	in percen	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)	orming au	nd nonco	informitie.	s per 100	) items)	ľ		ľ	ŀ	Τ
	0,040	0,065	0,10	0,15	X	0,25	X	0,40	X	0,65	0,025	0,040	0,065	0,10	0,15	X	0,25	X	0,40	X	0,65
			l) d	in perce		ntorming	(E							p (in no	ncontor	mities p	er 100 it	ems)			
3	0,0218	0,0412	0,0893	0,145	0,176	0,239	0,305	0,374	0,518	0,630	0,00743	0,0218	0,0412	0,0893	0,145	0,175	0,239	0,305	0,374		0,629
	0,0409	0,0683	0,131	0,199	0,235	0,309	0,385	0,463	0,623	0,746	0,0178	0,0409	0,0683	0,131	0,199	0,235	0,308	0,384	0,462	0,622	0,745
99	0,0551	0,0873	0,158	0,233	0,272	0,351	0,433	0.515	0,684	0,813	0,0266	0,0551	0,0872	0,158	0,233	0,272	0,351	0,432	0,515	0,684	0,812
5	0,0864	0,127	0,211	0,298	0,342	0.431	0,521	0,612	0,796	0,935	0,0481	0,0864	0,127	0,211	0,298	0,342	0.431	0,521	0,612	0.795	0,934
39	0,134	0,184	0,283	0,383	0,433	0,533	0,633	0,733	0,933	1.08	0,0839	0,134	0,184	0,284	0,383	0,433	0,533	0,633	0,733	0,933	1,08
35	0,196	0,255	0,371	0,484	0,540	0,650	0,760	0,869	1,09	1,25	0,135	0,196	0,255	0,371	0,484	0,540	0,651	0,761	0,870	1,09	1,25
2	0,266	0,334	0,463	0,588	0,649	0.769	0,888	1,00	1,24	1,41	0,194	0,266	0,334	0,464	0.589	0,650	0,770	0,889	1,01	1,24	1,41
37	0,314	0,387	0,525	0,656	0,721	0,847	0,970	1,09	1,33	1,51	0,237	0,315	0,388	0,526	0,657	0,722	0,848	0,972	1,09	1,33	1,51
31	0,420	0,501	0,654	0,798	0,868	1,00	1,14	1,27	1,52	1,71	0,332	0,420	0,502	0,655	0,800	0,870	1,01	1,14	1,27	1,53	1,72
4	0.065	0,10	0,15	X	0,25	X	0,40	X	0,65	X	0,040	0,065	0,10	0,15	X	0,25	X	0,40	X	0,65	X
				۷	cceptanc	e Quality	Limit, tig	htened in	spection	(in perce	ant noncor	forming	and nonc	onformiti	es per 10	00 items)					
	0,025 0,00743 0,0178 0,0266 0,0481 0,135 0,135 0,135 0,135 0,135 0,134 0,135 0,134 0,134	0,025 0,040 (00743 0,0218 0,0178 0,0409 0,0266 0,0551 0,0481 0,0864 0,0339 0,134 0,135 0,136 0,134 0,266 0,231 0,266 0,231 0,266	0,040 0,0218 0,0408 0,0864 0,134 0,136 0,136 0,136 0,136 0,314 0,314 0,314 0,316	0,040         0,055         0,           0,0218         0,0412         0,0           0,0218         0,0403         0,1           0,0409         0,0683         0,1           0,0351         0,0873         0,1           0,0364         0,127         0,2           0,134         0,184         0,2           0,136         0,334         0,4           0,134         0,337         0,6           0,134         0,3334         0,6           0,314         0,337         0,6           0,314         0,337         0,6           0,314         0,337         0,6           0,314         0,337         0,6           0,314         0,337         0,6           0,314         0,337         0,6           0,420         0,501         0,6           0,065         0,10         0,6	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,16         0,15           n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n	0,040         0,065         0,15         0,15         0,25         0,40         0,655         0,040         0,065         0,040         0,065         0           n         n         n         n         n         0,15         0,15         0,235         0,040         0,065         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412         0,0412	0,040         0,065         0,10         0,15         0,25         0,365         0,040         0,065         0,040         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<402         0,0883         0,145         0,176         0,235         0,305         0,385         0,365         0,515         0,653         0,0748         0,0412         0,0412         0           0,0561         0,0883         0,131         0,199         0,235         0,305         0,365         0,365         0,365         0,0401         0,0683         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<	0,040         0,065         0,10         0,15         0,25         0,365         0,040         0,065         0,040         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<402         0,0883         0,145         0,176         0,235         0,305         0,385         0,365         0,515         0,653         0,0748         0,0412         0,0412         0           0,0561         0,0883         0,131         0,199         0,235         0,305         0,365         0,365         0,365         0,0401         0,0683         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<	0,040         0,065         0,10         0,15         0,25         0,365         0,040         0,065         0,040         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<40         0,065         0         0<402         0,0883         0,145         0,176         0,235         0,305         0,385         0,365         0,515         0,653         0,0748         0,0412         0,0412         0           0,0561         0,0883         0,131         0,199         0,235         0,305         0,365         0,365         0,365         0,0401         0,0683         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<	0,040         0,055         0,10         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,15         0,155         0,155         0,155         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,156         0,235         0,336           0,05651         0,0873         0,158         0,233         0,133         0,515         0,526         0,0481         0,156         0,235         0,336         0,335         0,335         0,335         0,335         0,336         0,335         0,335         0,335         0,335         0,335         0,335         0,335         0,335         0,335         0,335         0,355         0,431	0,040         0.065         0,10         0,15         0,25         0,40         0,065         0,10         0,15         0,25         0,40         0,46         0,40         0,065         0,10         0,15         0,25         0,40         0,46         0,40         0,40         0,065         0,10         0,15         0,25         0,36         0,374         0,40         0,615         0,0412         0,0493         0,145         0,176         0,235         0,364         0,462         0,40         0,6651         0,0673         0,145         0,175         0,235         0,336         0,374         0,431         0,521         0,361         0,462         0,412         0,4093         0,145         0,176         0,326         0,361         0,462         0,314         0,176         0,325         0,326         0,324         0,432         0,462         0,412         0,463         0,175         0,127         0,321         0,432         0,432         0,432         0,432         0,432         0,432         0,432         0,432         0,432         0,521         0,432         0,521         0,432         0,521         0,432         0,521         0,432         0,521         0,432         0,521         0,432         0,521	0,040         0.065         0,1         0,15         0,40         0,45         0,041         0,055         0,15         0,25         0,40         0,45         0,15         0,45         0,46         0,45         0,15         0,25         0,40         0,45         0,15         0,15         0,40         0,45         0,15         0,15         0,25         0,46         0,51         0,0412         0,0412         0,176         0,235         0,305         0,314         0,51         0,432         0,515         0,633         0,734         0,515         0,431         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,516         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526         0,526

ISO 2859-1:1999(E)

ŝ

© ISO

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items, Paisson for inspection for number of nonconformities.

Sampling plans for sample size code letter Table 10-R-2 —

œ

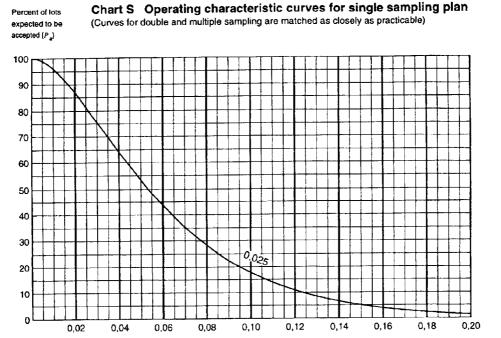
æ > 0,65 > 0,65 0 ¢... Ac Ве 6 22 16 თ 25 27 4 23 65 ó Å Ξ 26 3 20 26 5 ຸ ~ Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items) Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items) å 19 ω 4 23 24 ₽ 24 4 0,65 8 Ac 23 ÷ 9 23 თ ø Re 15 19 19 1 6 3 Ξ 4 Ö 4 18 Å 2 8 ~ ----4 ω щ 3 16 ဖ თ 40 9 2 2 0,40 Å ≌ 15 ŝ Ξ ဖ 0 ო ~ Be 13 ß 5 Ţ თ ω 2 ₽ P 0,25 Å ₽ 12 <u>∩</u> ഹ 0 ო ø σ Re တ ~ Ξ 4 ~ σ ÷ Ξ 0,25 Å 2 9 œ 4 0 ശ N 4 Re 00 ω 5 4 Ś œ 6 0 ŝ Ó Ŷ σ 0 σ ო ഗ თ В φ ഹ  $\sim$ 4 S ø  $\sim$  $\sim$ 6 0,15 õ Ş ß 2 9 4 ø # -2 Re 0,065 4 c S c ო 4 ŝ S 0,10 å ო -4 # 0 ----N 4 Re 0,040 ო 0,065 e 4 N m m m đ Å 2 0 0 Ć # 0 ო He 025 N  $\sim$ 2 2 2 2 N N 0,040 õ Ş 0 -# 0 0 0 -Acceptance Quality å 0,025 code letter use S Ac В 0,015 code letter use ۵ Å В 0,010 0,015 code letter use σ Ş Ве 0,010 . Å 0 sample lative 2 000 1 250 Cumu-2 500 500 2 000 500 80 size 500 ² -Type of Multiple Single Double samp plan ling

use next preceding sample size code letter for which acceptance and rejection numbers are available II

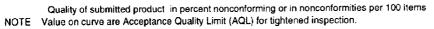
Acceptance number н Ac å

⇐

Rejection number ŧ


use single sampling plan above R

×


R

acceptance not permitted at this sample size 11 #

79



### Table 10-S — Tables for sample size code letter S (Individual plans)



#### Table 10-S-1 — Tabulated values for operating characteristic curve for single sampling plan

	percent nonconform	y Limit, normal inspection (in ning and nonconformities per 100 items)
	$\langle \rangle$	$\sum$
Pa	<i>p</i> (in percent nonconforming)	p (in nonconformities per 100 items)
99,0	0,00472	0,00472
95,0	0,0113	0,0113
90,0	0,0169	0,0169
75,0	0,0305	0,0305
50,0	0,0533	0,0533
25,0	0,0855	0,0855
10,0	0,123	0,123
5,0	0,151	0,151
1,0	0,211	0,211
	0,025	0,025
	percent nonconform	Limit, tightened inspection (in ning and nonconformities per 100 items)

#### Table 10-S-2 — Sampling plans for sample size code letter S

Type of sampling plan	Cumulative sample size	Acceptance Quality Limit, normal inspection (in percent nonconforming and nonconformities per 100 items)
	_	
		Ac Re
Single	3 150	1 2
Double	2 000	0 2
	4 000	1 2
	800	# 2
Multiple	1 600	0 2
	2 400	0 2
	3 200	0 2
	4000	1 2
		0,025
		Acceptance Quality Limit, tightened inspection (in percent nonconforming and nonconformities per 100 items)

S

Ac = Acceptance number

Re = Rejection number

# = acceptance not permitted at this sample size

NOTE Binomial distribution used for entries corresponding to inspection for nonconforming items. Poisson for inspection for number of nonconformities.

Table 11-A — Single sampling plans for normal inspection (Auxiliary master table)

Ac Rel 45 1 000 5  $\Diamond$ g 44 45 Ac Re 22 31 650 C 8 5 4 Ac Re 12 22 5 45 **§** ¢ 4 2 8 4 Ac Re 11 15 22 45 5 250  $\langle$ 9 4 8 4 21 F 15 23 Ве 8 31 150  $\langle$ AQL, in percent nonconforming items and nonconformities per 100 items (normal inspection) Å 9 4 8 ~ 2 ม 5 B. Ð 11 ω 5  $\zeta$ 4 Å 얻 ŝ 5 ~ 1 ŝ 3 å 4 G α F 65  $\langle$ Å 2 4 m ŝ ~ 2 Ξ 15 å e 4 ø ø 2 4 ራ 5 14 Å Q ო ഗ 21 1 e 4 Q 80 Ξ 15 23 Re 2  $\triangleleft$ 53 Å 9 4 ო s ~ 5 N ស 7 5 Re 4 9 8 N m ŝ 2 Å 9 14 e ~ 2 2 ŝ 15 Ξ 22 4 å N ო ø œ 2 읃 2 G Å ₽ 4 2 ო ß 0 2 5 Ac Re Ξ 22 * N c 4 ø œ 6,5 ₽ 12  $\langle$ 4 엳 5 0 N e ŝ ~ 5 Ac Re Ξ 22 ω ----N ო 4 ø 40 ⇔ 23 12  $\langle \cdot \rangle$ 5 4 2 0 N ŝ ഗ ~ 15 8 H 22 Ac Re 4 9 -N e 2.5 5 13 1/2  $\langle$ 4 2 3 0 -S Ċ ı۵ ~ 1 5 3 Ac Re 4 ю cu e Θ ♦ ŝ 1/3 1/2  $\langle$ 4 ₽ 0 N e in N Ň Ŧ ŝ Ac Re ង -2 e 4 ģ æ  $\diamond$ ₽ ⇒ 13 2 <u></u> 4 0 5 Ω. m ю 22 Ac Re 0 e 4 9 80 -2 0,65 ⊅ 13 1/2 ₽ 4 5 0 N 3 ŝ ~ ÷ Ac Re N ო 4 g œ Ξ 0,40 13 2 2 4 0 n. ო Ś n 11 Ac Re -2 ო 4 ω æ Acceptance quality limit, 0,25 ₹ 12 2 o 2 e ഹ ~ 0,15 Ac Re ŝ e ø æ 2 2 0 2 ო G ~ Ac Re N ო 4 9 0,10 ---2 2 0 2 ო ĥ Ac Re ŝ e 4 0.065 -23 12 0 ო ŝ -Ac Re 2 e 0.040 ÷ 4 ŝ 2 0 N -Ac Re 0,025 ณ 1 33 2 0 -Ac Re 0,015 1 -2 2 1 0 0,010 Ac Re ≎ 2 0 Sample 2 000 Si20 315 250 800 ស g 50 ę 8 32 50 8 2 e. ഗ 00 ➪ Sample size code letter œ Т Σ z ۵. σ < ΩÓ. o ۵ ш LL. G ~ ¥ _

 $\mathbf{Q} = \mathsf{Use}$  the first sampling plan above the arrow.

Ac = Acceptance number

Re = Rejection number

⁼ Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

tab
master
(Auxiliary
ghtened inspection
r tightened
ling plans for
le sampling
— Sing
Table 11-B

	<b></b>	1 000	Ac Re	58	41 42	4	Ţ			<u> </u>			<u> </u>						<u> </u>	]
				19 27	28 41	4							   							
		650	Ac Re	18	27	4	4			   			1			1				ļ
		400	Ac Re	12 13	18 19	27 28	41 42	4		<u> </u> 			t i			 			<u></u>	]
		250	Ac Re	67 89	12 13	18 19	27 28	41 42	<⊢	1 1 1 1			<u>.</u>			   				
	ion)	150	Ac Re	ø	<b>6</b>	13	6	27 28 41 42	¢				1							1
(i)	spect	ş	r B	4	9	9 12	13 18	18 19 2		• • 1						<u> </u>			¦ 	{
tablo	ned ir	┣—-	Je Ac	3 9	4 5	9	9 12	13 18			<u> </u>					1				-
ster	tighte	65	e Ac Re	~	0	ۍ ۱	80	12	3 18 19				1			 	_			
mas	) sma	4	AcRe	~ -	3 N	60 44	5 2	6 8	12 13	18 19	<		1			<u> </u>			<u></u>	
iary	100 ji	55	Ac Re	12	1	2	6 4	5	6 8	12 13	18 19	⇐	<u>i</u>			<u>i</u>			÷	ction.
uxil	s per	15	Ac Re	1/3	1/2	N T	2 2	9 7	5 6	8	12 13	18 19	<			r 			i	uspei
n (A	ormitie	10	Ac Re A	-	1/3	1/2	2		4	G	<del>г</del> б	13	-10	~		L. !				0%
ctio	confo	ļ		<u>ر</u>	-		-	5	3 3	4 5	6 8	9 12	13 18	10		 			1	19 15
edsi	ion br	6,5	e Ac Re	�	0	1 1/3	1/2	-	N N	6 6	4 0	8 9	9 12	13 18	<u>~</u>				' {	arry c
ed in	ems ai	4.0	a Ac Re		⇒	0	1/3	1/2	-	~	en	Ś	-	12	8 19					ize, c
len	ning ite	5'2 5	Ac Re			⇒	0	1/3	1/2	1 2	5 5	60 44	5 6	6 8	12 13	18 19	4			lots
r tigł	onform	1,5	Ac Re	—			⇒	0	1/3	1/2	5	3 5	а 4	56	ත හ	12 13	18 19	<=		eeds
s foi	nonce	0.1	Ac He					⇒	-	1/3	1/2	5	ю 2	9 4	5 6	ത	12 13	18 19	\$	or exo
plan	srcent	0,65	Ac Re				l		>	-	1/3	1/2	~	n	4	ω	თ	13	6	ials, c
ing	in pe	0,40	Ac Re A								•	1/3	1/2 1	5	33	4 10	6	9 12	13 18	e equ
sampling plans for tightened inspection (Auxiliary master table)	limit, AQL, in percent nonconforming items and nonconformities per 100 items (tightened inspection)	<b> </b>									•	+		-	5	е е	4 v	9 8	9 12	le siz
le s:		0,25	e Ac Re				<b> </b>				=>	0	1/3	1/2	-	5	е Э	4	8 9	samp
Single	Acceptance quality	0,15	Ac Re									⇒	¢	1/3	1/2		N	ო	ۍ ۲	Ň. IF
	otance	0,10	Ac Re										₩	•	1/3	1/2	7 7	5 5	3 4	e arro
11-E	Accep	0,065	Ac Re	=			<u> </u>						[	⇒	-	1/3	1/2	4	2 3	ow th
Table 11-B		0,040	Ac Re												=>	-	1/3	1/2	~	n bek
Ta		0,025 0,	Ac Re A												-	<u> </u>	-	1/3	1/2 1	ig pla
											·						<u> </u>	1 1/		mplin
		0 0,015	ta Ac Re			I							 			1	⇒	0	1/3	rst sa
		0,010	Ac Re										 					Ŷ	0	the fir
		Sample size		~	69	5	8	13	50	35	23	80	125	500	315	200	800	1 250	2 000	C = Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.
	Sample	size code	letter	¥	89	ა	0	ш	F	IJ	I	7	×		M	z	٩	٥	н	\$

= Use the first sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.  $\mathbf{\Phi}$  = Use the first sampling plan above the arrow.

Ac = Acceptance number

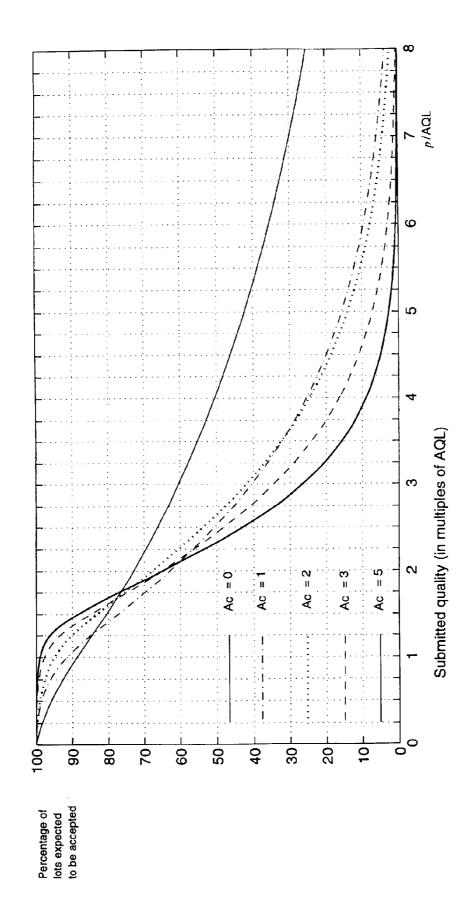
Re = Rejection number

Table 11-C — Single sampling plans for reduced inspection (Auxiliary master table)

									,			,											}	2						
Sample						Ă	cept	ance c	quality	limit, ,	AQL, İ	n perc	ent no	nconfo	rming	Acceptance quality limit, AQL, in percent nonconforming items and nonconformities per 100 items (reduced inspection)	ou pue	nconfe	ormitie	s per	100 ite	ms (re	duced	l inspe	ction)					
size code	Sample size	0,010	0,015	5 0,025	5 0,040	0,065		0,10	0,15	0,25	0,40	0,65	1,0	1,5	2.5	5 4,0	0 6,5	—	 ₽	15	25	40	65	100	150	250	40 4	650	1 000	8
latter		Ac Re	Ac Re	B Ac Re	e Ac Re	te Ac	Ac Re A	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	a Ac Re	e Ac Re	te Ac He	F Ac F	Ac Re Ac Re	Re Ac	Ac Re A	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	e Ac Re	r 2
۲	~	<b></b>	<b></b>		<b>C</b>				<u> </u>			<b>C</b>				⇒	0	-	1/3	1/2	~ +	2 3	3 4	5 6	7 8	10 11	14 15	3	22 30	5
Ð	~														=>	0	1 1/5		1/3	12	~	3	9 4	56	7 8	10 11	14 15	5	22 30 31	31
υ	2													⇒	0	1 1/5	1/3		1/2 1	2	3	ب م	4 0	67	6 8	10 11	14 15	21 22	<	٨
٥	ę													0	1 1/5	5 1/3	3 1/2	- ~	2 2	33	4	4 v	6 7	8 9	10 11	14 15	21 22	4	<del> </del>	;
ш	ŝ											⇒	0	1/5	1/3	3 1/2	-	(N (N	3	4	5	67	ං ග	10 11	10 11 14 15	21 22	4			
Ŀ	8										⇒	- 0	1/5	1/3	1/2	-	5	ო ო	4	ور م	7	68	10 11	¢	¢	4				
G	13		_							╞	- 0	1/5	1/3	12		5	33	4	2 2	7 8	0	10 11	⇐	i			1			i .
T	50								⇒	0	1/5	1/3	1/2	-	5	 ო	4	5	7 8	ი	10 11	¢								
٦ ا	32						<i>v</i>		- 0	1/5	1/3	1/2	~ +	~	е е	4	5	7 8	9-10	10 11	~=									
×	50		! !	ι Γ	1     		°	-	1/5	1/3	1/2	-	5 5		4	5	7 8	9 10	10 11		<u> </u>		T	i i	1	<u>i</u> 1	1 i	1		
L	80		<u> </u>		⇒	0	- -	1/5	1/3	1/2	1 2	3	с. 4	4	9 2	7	9 10 11		¢				_							
W	125			⇒	<u> </u>	1 1/5		1/3	1/2	N 	5 5	9 4	44 CU	9	8	9 10 11														
z	200		╞	0	1/5	1/3		1/2	~	2 3	3 4	4 5	6 7	8	9 10 11			1	<u> </u>		<u> </u>	<u> </u>		i i	1		ı İ	: ;	-	
۵.	315	⇒	•	1/5	1/3	1/2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N	67 54	9 7	4	6 7	6 8	10 11	- I−															
σ	500	0 1	1/5	1/3	1/2	1	2 2	ъ	6 4	4 v	67	8	10 11	<																
œ	800	1/5	1/3	1/2	1	2 2	3 3	4	ഹ	67	8	10 11	\$	<b>├</b>				J    ]	 	<u> </u>	Ļ									;
\$	= Use the first sampling plan below the arrow. If	he firs	t sam	pling	plan t	elow.	the <i>i</i>	arrow.		mple	size e	quals	, or e;	ceed	s, lot s	sample size equals, or exceeds, lot size, carry out 100 % inspection.	arry o	nt 100	) % ir	spect							]		1	٦

= Use the tirst sampling plan below the arrow. If sample size equals, or exceeds, lot size, carry out 100 % inspection.

= Use the first sampling plan above the arrow. 4

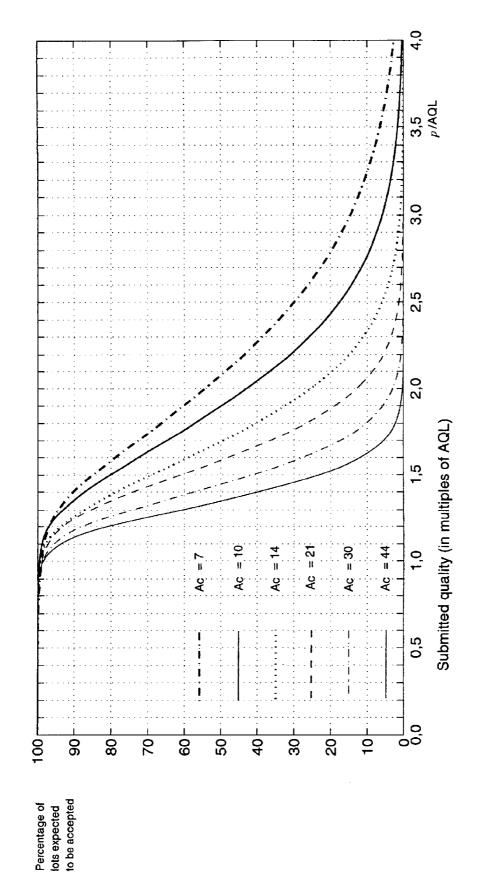

Ac = Acceptance number

Re = Rejection number

Copyright by the International Organization For Standardization Thu Oct 07 17:28:45 2004

ISO 2859-1:1999(E)

Table 12 — Scheme OC curves (Normalized)




NOTE Ac at each curve denotes the acceptance number for normal inspection.

84

Copyright by the International Organization For Standardization Thu Oct 07 17:28:45 2004 © ISO

Table 12 — Scheme OC curves (Normalized) (concluded)





85

#### Annex A

#### (informative)

## Example for non-constant sampling plan

Lot number	Lot size N	Sample size code letter	Sample size n	Given Ac	Acceptance score (before inspection)	Applic- able Ac	Noncon- forming items d	Accept- ability	Acceptance score (after inspection)	Switching score	Future action
1	180	G	32	1/2	5	0	0	А	5	2	Continue normal
2	200	G	32	1/2	10	1	1	A	0	4	Continue normal
3	250	G	32	1/2	5	O	1	R	o	0	Continue normal
4	450	н	50	1	7	1	1	А	o	2	Continue normal
5	300	н	50	1	7	1	1	А	0	4	Continue normal
6	80	E	13	0	0	0	1	R	0	O	Switch to tightened
7	800	J	80	1	7	1	1	Α	O	_	Continue tightened
8	300	н	50	1/2	5	0	0	A	5	-	Continue tightened
9	100	F	20	0	5	0	٥	A	5	-	Continue tightened
10	600	J	80	1	12	1	0	А	12	_	Continue tightened
11	200	G	32	1/3	15	1	1	А	0*	—	Restore normal
12	250	G	32	1/2	5	0	o	A	5	2	Continue normal
13	600	J	80	2	12	2	1	A	o	5	Continue normal
14	80	E	13	0	0	0	o	A	o	7	Continue normal
15	200	G	32	1/2	5	0	0	A	5	9	Continue normal
16	500	н	50	1	12	1	o	A	12	11	Continue normal
17	100	F	20	1/3	15	1	0	A	15	13	Continue normal
18	120	F	20	1/3	18	1	0	A	18	15	Continue normal
19	85	E	13	0	18	0	0	A	18	17	Continue normal
20	300	н	50	1	25	1	1	A	0	19	Continue normal
21	500	н	50	1	7	1	0	A	7	21	Continue normal
22	700	L	80	2	14	2	1	A	0	24	Continue normal
23	600	J	80	2	7	2	0	A	7	27	Continue normal
24	550	J	80	2	14	2	0	A	0*	30	Switch to reduced
25	400	н	20	1/2	5	0	0	A	5		Continue reduced
			ot acceptab ce score aft		g						

# **Bibliography**

- [1] ISO 2859-0:1995, Sampling procedures for inspection by attributes Part 0: Introduction to the ISO 2859 attribute sampling system.
- [2] ISO 2859-2:1985, Sampling procedures for inspection by attributes Part 2: Sampling plans indexed by limiting quality (LQ) for isolated lot inspection.
- [3] ISO 3951, Sampling procedures and charts for inspection by variables for percent nonconforming.
- [4] ISO 8402, Quality management and quality assurance Vocabulary.

ISO 2859-1:1999(E)

. _ . _ .__

© ISO

_

#### ICS 03.120.30

Price based on 87 pages