Models of Computation for Homomorphic Encryption.
TFHE - Chimera

Nicolas Gama and Mariya Georgieva Belorgey

sanpBox:c” inpher

Based on joint work with: C. Boura, |. Chillotti, M. lzabachene, D. Jetchev

Introduction

Little history of FHE S sanbsoxaa"@inpher

Constant-time Privacy-preserving computations
o FHE programs behave essentially like circuits.
@ 2009: Bootstrapping (evaluate one homomorphic NAND)

o The overhead between plaintext circuit and FHE is O(1) in time and memory

Introduction

Little history of FHE S sanosoxaa"®inpher

Constant-time Privacy-preserving computations
o FHE programs behave essentially like circuits.
@ 2009: Bootstrapping (evaluate one homomorphic NAND)

o The overhead between plaintext circuit and FHE is O(1) in time and memory

42: That's it!! CQFD?

@ 2009: First bootstrapping = hours of computations

@ 2009-now: Just wait for scientific progress... and brace for impact!!

Introduction

Bootstrapping: the beginnings S sanosoxaa"®inpher

A
lhour
1s
10ms
lus
Lns 1 cpu cycle
1 nano second)

2009 2016 2022 2023 2024

Introduction

Bootstrapping: the beginnings S sanbeoxaa@inpher

lhour lhour

ib
Sllngle-core CPU-time to bootstrap 1-bit AND

Is DM] TFHE
¢ 13ms
10ms
lus
1ns

i 1 cpu cycle
1 nano second)

v

2009 2016 2022 2023 2024

Introduction

Bootstrapping: the beginnings S sanbeoxaa@inpher

lhour lhour

ib
Sllngle-core CPU-time to bootstrap 1-bit AND

Is DM] TFHE
¢ 13ms
10ms
lus
1ns

i 1 cpu cycle
1 nano second)

v

2009 2016 2022 2023 2024

Introduction

Properties of a gate-bootstrapping ciphertext S sanpeoxac@inpher

Properties of a gate-bootstrapping ciphertext

@ a message = one bit

Composition rules: gates

@ constant gates (0,1)

@ unary gates (copy, not)
@ binary gates (and, or, nand, nor, ...)

@ selector gate (mux)

A_®_
B - s

Ci

— co
|/

Introduction

Little history: are we there yet? S sanbsoxaa"@inpher

lhour lhour

ib
Sllngle-core CPU-time to bootstrap 1-bit AND

Is DM] TFHE
¢ 13ms
10ms
lus
1ns

i 1 cpu cycle
1 nano second)

v

2009 2016 2022 2023 2024

Introduction

Little history: are we there yet? S sanbsoxaa"@inpher

lhour lhour

ib
Sllngle-core CPU-time to bootstrap 1-bit AND

Is DM] TFHE
¢ 13ms
10ms
lus
1ns

i 1 cpu cycle
1 nano second)

v

2009 2016 2022 2023 2024

Introduction

Little history: are we there yet? S sanbsoxaa"@inpher

lhour lhour

ib
Sllngle-core CPU-time to bootstrap 1-bit AND

1s
9ms (laptop) - 18ms (cloud-vm)
10ms

lus

1ns :
i 1 cpu cycle
1 nano second)

v

2009 2016 2022 2023 2024

Introduction

Little history: are we there yet? S sanbsoxaa"@inpher

lhour

1s

10ms

lus

1ns

ib
Sllngle-core CPU-time to bootstrap 1-bit AND

9ms (laptop) - 18ms (cloud-vm)

TFHE-rs - 8ms-13ms
—~ [BCGGJ23]: 6ms-11ms

i 1 cpu cycle
1 nano second)

v

2009 2016 2022 2023 2024

Introduction

Gate bootstrapping: pros/cons S SANDBOXAQ™ ﬂ ﬂph er

Pros of gate bootstrapping

@ circuits are standard and easy to generate

o asymptotically O(1) optimal w.r.t. plaintext circuit
v

Cons of gate bootstrapping

@ the O(1) theoretical overhead factor is huge in practice
e timing 10ms vs. 1 nanosec per cycle (vs. 1 picosec physical),
o size 20kB ciphertext per bit.
o parallelization 100 gates in parallel vs. billion gates in parallel.

A,

6 /46

Introduction

Gate bootstrapping: pros/cons S SANDBOXAQ™ ﬁ ﬂ[ph er

Pros of gate bootstrapping

@ circuits are standard and easy to generate

o asymptotically O(1) optimal w.r.t. plaintext circuit

v

Cons of gate bootstrapping

@ the O(1) theoretical overhead factor is huge in practice

e timing 10ms vs. 1 nanosec per cycle (vs. 1 picosec physical),
o size 20kB ciphertext per bit.
o parallelization 100 gates in parallel vs. billion gates in parallel.

The reality: 2023

@ Only use-cases that take a fraction of second in plaintext are feasible
via only Gate Bootstrapping.

@ Practical FHE requires a plan B!

A\

Introduction

S sanoeoxae"@inpher

Plan B: LHE to the rescue of FHE

FHE Fully Homomorphic Encryption (O(1) from optimal)

3 crypto params s.t. V circuit C, we can evaluate C' homomorphically.

LHE Leveled Homomorphic Encryption (not O(1) from optimal)

V circuit C', 3 crypto params s.t. we can evaluate C' homomorphically.

Chimera: Using FHE to boost LHE
o FHE and LHE are not mutually exclusive, they should be used together!
@ Some LHE schemes are much faster for massive low multiplication-depth arithmetic
in practice (integer (BFV) or FP (CKKS)).
o Other LHE schemes are quite good for evaluating automata (RGSW, TFHE).
@ Bootstrapping is quite good at evaluating LUTs and univariate non-linear functions,

like conversions.

~

Introduction

Compilation S sanbsoxaa"@inpher

Nice to have
Let the user write the desired program as a high-level pseudocode.

def myfunction(x, y, z, bigvector, bigmatrix)
i a:=2*x+3*y*zmod15
c:=30*cos(a/8.)
return c * bigmatrix * bigvector

8/46

Introduction

Compilation S sanbsoxaa"@inpher

Nice to have
Let the user write the desired program as a high-level pseudocode.

c:= 30 * cos(a/ 8.)
return c * bigmatri

Linear combinations

Modular arithmetic 1 valued functions

121eziAing jrotl SIMD operations

8/46

Introduction

Chimera World Map S sanbsoxaa"@inpher

BFV SIMD slots CKKS SIMD slots

(eval Real poly))

(el Pl o) (eval Taylor Series)

Coeffs2Slots
Slots2Coeffs

_ BFV: ideal lattices

o g
D -
ACVRLTIR
()
e ’ .
7 TFHE: non-linear logic
G
o
Boolean /;utom}?ta/
Circuits ranciig

Programs

Introduction

Properties of a leveled ciphertext S sanpeoxac@inpher

Properties of a leveled HE ciphertext

@ a message (encoded in a polynomial)
o one bit? one integer?
o a vector of integers mod p?
o a vector of floats?
@ a homomorphic budget: 3 equivalent definitions
e noise rate: 0 < a < 1
o homomorphic budget: —logy(a) > 0 points
o homomorphic level: 1 level =~ 30 points

Introduction

Homomorphic budget (a.k.a. level, noise-rate) S sanosoxaa-@inpher

Noise rate and homomorphic budget

A noise rate a < 1 corresponds to a Homomorphic budget of —log,(a) > 0 points, and
quantifies the number of homomorphic operations that can be carried out on a FHE
ciphertext.

efficiency HE operations
—log,(a) = 0 small ciphertext, small key, fast operations exhausted
—log, () =~ 30 native 32-bit arithmetic 1 multiplications
—log, (@) = 60 native 64-bit arithmetic 2 multiplications
—log, (o) =~ 300 slow 300-bit arithmetic 10 multiplications

Rule of thumb

@ more points = more homomorphic power. But bigger ciphertexts, larger keys, larger
arithmetic, slower operations.

@ decreasing the homomorphic budget points is easy ("modulus switching/rescaling")

@ increasing it is much harder ("bootstrapping").

N

11/46

Introduction

Operations and composition rules S sanoeoxae"@inpher

Arithmetic circuit model of computation

A graph of polynomial arithmetic operations. Each operation impact the noise (so the
homomorphic budget):

Operation ciphertext type | homomorphic budget impact

slot-wise product: RLWE —30 points

sum RLWE —1 point

public rotation: RLWE —0 point

linear combinations 3 e;c;: RLWE —log(1 + |le|l1) points

substitution with X*: RLWE —1 point

Introduction

Operations and composition rules S sanoeoxae"@inpher

my € R%
33 points

= R64
32 points

€ R%
31 points

mg € R64
32 points

€ R%
1 points

= R64'
0 points

Introduction

Bootstrapping rules SSANDBOXAQ"{%ﬁﬂph@F

Arithmetic Circuit: bootstrapping
o Input: a ciphertext with (nearly) depleted budget

@ Output: a ciphertext of the same message with much larger budget
o Restrictions/Rules:

o Message space, maximal FP precision, modulus.
o Minimum input level /points, output level/points
o Running time

14 /46

Introduction

Bootstrapping: example in the litterature N

my € R1024 R1024

3 points

my €

500 points

20-bit FP
0 — 500

Bootstrapping is per type of message space: real, mod, binary.

1 Bootstrapping proposes a fixed input/output level

Smin.

BFV boots
mod p = 1272
180 — 600

ma € (Z/pZ)%

my € (Z/pZ)5%
200 points i

600 points

Bootstrapping may use all the slots, or just a fewer number.

Bootstrapping may also require a minimum input level > 0

mz € B
1 point

Introduction

Arithmetic circuits: Pros and Cons SSANDBOXAQ"@”ﬂph[@F

Arithmetic circuits: Pros

o the "assembly language" of LWE: no loss, no overhead

@ good for executing SIMD arithmetic use-cases

o Newest bootstrapping have usually a fast amortized time per slot.

4

Arithmetic circuits: Cons

@ General use-cases are hard to convert to polynomial arithmetic circuits. (think CPU
vs. GPU)

@ The rare use-cases that work are already described "in assembly"

\

16 / 46

Introduction

RGSW-based private selector circuits S sanbsoxaa"@inpher

RGSW only

ce{0,1}
p+ 30 points

RLWE or RGSW

1 €M
p points

same type
o T €M

same budget p points

same t}'p(‘,

9 €M
p points

data Input and output have the same homomorphic budget!

17 /46

Introduction

LUT evaluation S sanbsoxaa"@inpher

LookUp Tables (LUT) to evaluate arbitrary functions:
f:B* — T*
z = (20,...,%a—1) — f(x) = (fo(2),..., fs-1(x))

Introduction

LUT evaluation S sanosoxaa"®inpher

LookUp Tables (LUT) to evaluate arbitrary functions:
f:B* — T*
z = (xoy...,24-1) — f(z) = (fo(z),..., fs—1(x))
Example with d =3 and s =2

fo [
0.5 03
0.25 0.7
0.1 0.61
0.83 0.9
0.23 047
0.67 0.42
0.78 0.12
0.35 0.95

8
o
8
Ny
&
o

O, OF,OFO
= === 000

== OO~ OO

Introduction

LUT evaluation S sanosoxaa"®inpher

LookUp Tables (LUT) to evaluate arbitrary functions:
f:B* — T*
z = (xoy...,24-1) — f(z) = (fo(z),..., fs—1(x))
Example with d =3 and s =2

fo f Evaluation via MUX tree
0.5 0.3 ¢
0.25 0.7
0.1 0.61
0.83 0.9 do
0.23 047
0.67 0.42 d
0.78 0.12
0.35 0.95

8
o
8
Ny
&
o

c?dy : dy

O, OFOFO
== =0 000

== OO~ OO

Introduction

LUT evaluation S sanosoxaa"®inpher

How to evaluate it?

To .- Td—1 fo N fj zo 1 e Tg1
| | |
| |
0 0 00,0 -e. 0s5-1,0 0j0 —|0 I I
|
1 0 0ol --- Os—1,1 oj1 |t T |
0 0 70,2 cee Os—1,2 05,2 7J 1 :
|
1 0 00,3 - Os—13 05,3 — I

Og2d—g ---0s_12d_4| Oj2d_4—|0

0p2d_3 -+-0g_12d_3| Ojod_3— 1 T
00,242 -+ 0g_12d_2 Uj,2d72—J !
1

O0pp2d—1 -+ 0s5_1,2d_1| Tj2d_17

= o = O
S Yy

19 /46

Introduction

DFA versus det-WFA S sanbsoxaa"@inpher

TFHE 2016: DFA (deterministic finite automata)

@ Decisional: returns accepted (1) or rejected (0)

TFHE 2017: det-WFA (deterministic weighted finite automata)

o Computational: returns a weight in Tx[X]

Weights act like a "memory" that stores the result all along the evaluation

Introduction

DFA versus WFA S sanbsoxaa"@inpher
Deterministic Finite Automata (DFA) Deterministic Weighted Finite Automata (det-WFA)
(+0,40)
]
‘ 1
0
_/
(+1,41)
Acceptance ‘Weight Computation
700101” — False 7001017 — (2,0)
7101117 — True 7101117 — (4,1)

21/46

Introduction

DFA computational models S sanpeoxac@inpher

mirror(L)
rev. det. autom.

22 /46

Introduction

DFA computational models S sanosoxaa@inpher

mirror(L)
rev. det. autom.
)
©)
©)

22 /46

Introduction

DFA computational models S sanpeoxac@inpher

mirror(L)
rev. det. autom.

22 /46

Introduction

DFA computational models S sanpeoxac@inpher

mirror(L)
rev. det. autom.

22 /46

DFA computational models S sanpeoxac@inpher

mirror(L)
rev. det. autom.

22 /46

Introduction

Computation of the maximum S sanpeoxac@inpher

Example: evaluation of m = M AX(x,y)
Let = (1,...,2n) and y = (Y1,. .-, Yn)-
We want to compute m = (ma,...,mn) = MAX(x,y) .
o DFA: evaluate n DFA, one per output bit
o Det-WFA: evaluate 1 det-WFA, the result given in a single path

Introduction

i N ainnhe
Arbitrary long Composition of automata? O SANDBOXAQ™ & [Fuphuwgf‘

Introduction

TFHE in Circuit Bootstrap mode S sanpsoxaa®inpher

Circuit bootstrapping CGGI2017
@ Take advantage that the message space is binary
@ And that input/output levels are very low (0 — 60 points)

@ Reconstruct a TRGSW encryption directly from its internal structure [CGGI17]

rather than as the output of larger homomorphic operations (see [GSW13], [AP14]
constructions).

meB meB
0 point [60 points
(Any) TRGSW

Accepted inputs:

A TLWE ciphertext on binary message space {0, %}
One coefficient of a TRLWE ciphertext over {0, 3}V

One coefficient of a TRGSW ciphertext over {0, 1}V

25 /46

Introduction

Circuit mode versus Gate Bootstrap mode S sanpeoxac@inpher

Gate bootstrapping mode

versus (or together with?)

Circuit bootstrapping mode

WFA-Ex-Ivll [+ | WRA-Ex-Ivll [+ | WFA-ExIvll [

Introduction

In Summary: The Chimera VM S sanbsoxaa"@inpher

Logical unit

o Digital circuits
@ Lookup Tables
o Deterministic Automata (finite and weighted)

V.

Heavy arithmetic unit

o SIMD fixed-point and modular unit

o Support also convolution, big-integers

N

Composability, Compilation
@ A rich VM capturing all the capabilities of RLWE-based FHE.

@ Immediate link to the lattice geometry and its security.

@ Is it feasible to compile for this programming model?

Anatomy of a ciphertext

Introduction

S SANDBOXAQ™ €

WHAT ARE LEGO BRICKS MADE OF?

LEGO BRICKS

.

Up until 1963, cellulose acetate was used
to make Lego bricks and parts. Lego
bricks are now made from acrylonitrile
butadiene styrene (ABS). ABS is less

subject to warping and colour fading.

S
I_i_l

F

™ SN

HOW LEGO IS MADE

i

ABS GRANULES ADDED

Macrolex dyes are added
t0 ABS to colour it

ﬂ 'GRANULES HEATED TO 230°C (450°F)

MELTED PLASTIC FED INTO MOLDS

In 2014 more than 60 billion
Lego pieces were made.

OTHER LEGO PARTS

&.¢

ABS is opaque, so a polycarbonate
polymer has to be used for transparent
Lego parts. For leaves, bushes and
trees, Lego has recently started using
polyethene derived from sugar cane.

L rouverion: 3

Tyres and elastic materials are made
from styrene butadiene styrene (SBS).

© Andy Brunning/Compound Interest 2018

com | Twitter: @ | FB:

This graphic is shared under a Creative Commons

tribution-NonCommercial-NoDerivatives

licence.

28 /46

Introduction

Integer/Real /Complex Polynomials S sanpeoxac@inpher

Ring of polynomials with coefficients € Z,R or C mod X~ + 1:
Zn[X]=Z[X]/ (XN +1)
Ry[X] =R[X]/(XN +1)
Cn[X] =C[X]/(XN +1)

Examples (Real): N =2

(1.242.3X)- (324 4.1X) = 3.84+12.28X +9.43X? = 12.28X — 5.59 mod (X2 +1)

(Zn[X],+, x), (RN[X],+, %) and (Cn[X],+, x) are well defined as rings
(Zn[X],+), (Rn[X],+) and (Cn[X], +) are groups
Multiplication xx is well-defined!

Introduction

Torus T and Torus Polynomials Ty [X] S sanosoxaa@inpher

T =R/Z

(T,+,-) is a Z-module (- : Z x T — T a valid external product)
It is a group x +y mod Z, and —z mod Z
It is a Z-module: 3-0.6 =0.8 mod Z is defined!
X It is not a ring: 0x0.6 is not defined!

Introduction

Torus T and Torus Polynomials T [X] S sanpeoxac@inpher

T =R/Z

(T,+,-) is a Z-module (- : Z x T — T a valid external product)
It is a group x +y mod Z, and —z mod Z
It is a Z-module: 3-0.6 =0.8 mod Z is defined!
X It is not a ring: 0x0.6 is not defined!

Tn[X] =R[X]/(XY 4+ 1) mod Z: polynomials with coeffs € R/Z mod XV +1

(Tn[X],+,-) is a Zn[X]-module
o (2X +3)-(0.4X +0.5) = (0.2X +0.7) mod X2+ 1 mod Z
o external product by integers polynomial

30/46

Introduction

TFHE Scheme S sanbsoxaa"@inpher

Consists of three encryption schemes:
o TLWE ciphertext: p € T (a,b:=pu+ {a,s) +e), a er T" , s € {0,1}"
o TRLWE ciphertext: € Ty[X]+— (a,b:=p+s-a+e), a €r Tn[X]*, s € By[X]
o TRGSW ciphertext: encrypts elements of Zy[X] with small norm

31/46

Introduction

TFHE Scheme S sanosoxaa"®inpher

Consists of three encryption schemes:
o TLWE ciphertext: p € T (a,b:=pu+ {a,s) +e), a er T" , s € {0,1}"
o TRLWE ciphertext: € Ty[X]+— (a,b:=p+s-a+e), a €r Tn[X]*, s € By[X]
o TRGSW ciphertext: encrypts elements of Zy[X] with small norm

H message \ ciphertext \ key \ lin. combin. \ product
TLWE T T ! B" X
TRIWE || Tw[X] Tn[X]FH By [X]* X

TRGSW || Zn[X] | vector of TRLWE | By[X]"

31/46

Introduction

S sanoeoxae"@inpher

TFHE Scheme

Consists of three encryption schemes:
o TLWE ciphertext: p € T (a,b:=pu+ {a,s) +e), a er T" , s € {0,1}"
o TRLWE ciphertext: € Ty[X]+— (a,b:=p+s-a+e), a €r Tn[X]*, s € By[X]
o TRGSW ciphertext: encrypts elements of Zy[X] with small norm

\ lin. combin. \ product

|

H message \ ciphertext key
TLWE T T"+! B" x
TRIWE || Tw[X] Tn[X]FH By [X]* X
TRGSW || Zn[X] | vector of TRLWE | By[X]"

Q Internal TRGSW Product : X: TRGSW x TRGSW — TRGSW

Q External product : [1: TRGSW x TRLWE — TRLWE
(1A, o) — pa - pp
(ea,ep) — [lpally - en + O(ea)

If |wallt =1 the noise propagation is linear!

Introduction

RLWE internal product ? S sanoeoxae"@inpher

Internal product requires to evaluate a polynomail in s:
1 X M2 = (bl — Sal)(bg — 80,2) = b1bs — (b1a2 1= bgal)s 1= (L1a282. J
The term s2:

o dedicated relinearization/keyswitch techniques (2011, ...)

@ but in fact, TRGSW provides the multiplication by a secret s!
The meaning of b1b2, aias, ...

o lift in Ry[X]

o additional message space restrictions are required to make such product meaningful

Introduction

Homomorphic operations hierarchy S sanpeoxac@inpher

TRLWE small integer linear combinations
T4y, z—y
a.x for public a € Zn[X]

33 /46

Introduction

Homomorphic operations hierarchy S sanooxaa @inpher

TRLWE small integer linear combinations
T4y, z—y
a.x for public a € Zn[X]

TRGSW (External product)

a.x for secret a

33 /46

Introduction

Homomorphic operations hierarchy S sanooxaa @inpher

TRLWE small integer linear combinations
Ty, T -y
a.x for public a € Zn[X]

TRGSW (External product)
a.z for secret a

a € {0,1} (cmux (selector)
blindrotate (x Xsecret V)

(automata)

33 /46

Introduction

Homomorphic operations hierarchy S sanooxaa @inpher

TRLWE small integer linear combinations
Ty, T -y
a.x for public a € Zn[X]

TRGSW (External product)
a.z for secret a

a € {0,1} (cmux (selector)
blindrotate (x Xsecret V)

(automata)

TFHE Gates API

individual bits
nand, and,
or, XOr, ...
mux

33 /46

Introduction

Homomorphic operations hierarchy S sanooxaa @inpher

TRLWE small integer linear combinations
Ty, T -y
a.x for public a € Zn[X]

TRGSW (External product)
a.z for secret a

a € {0,1} (cmux (selector) a=s polynomials in s
blindrotate (x Xsecret V) (internal products

(automata)

TFHE Gates API

individual bits
nand, and,
or, XOr, ...
mux

33 /46

Introduction

Homomorphic operations hierarchy S SANDBOXAQ"‘;WU(J her

TRLWE small integer linear combinations
Tty r—y
a.x for public a € Zn[X]

TRGSW (External product)
a.x for secret a

a € {0,1} (emux (selector) a=s polynomials in s
blindrotate (x Xsecret V) (internal products

(automata)

Sublattice Small Ball
(modular ring) (real ring)

TFHE Gates API

individual bits
nand, and,
or, XOr, ...
mux

33/46

Introduction

~minnhe
Homomorphic operations hierarchy S sanooxaa @inpher

TRLWE small integer linear combinations
Ty, T -y
a.x for public a € Zn[X]

TRGSW (External product)
a.x for secret a

a € {0,1} (emux (selector) a=s polynomials in s
blindrotate (x Xsecret V) (internal products

(automata)

Sublattice Small Ball

(modular ring) (real ring)
.
TFHE Gates API BFV API CKKS API
individual bits slots mod p fixed point slots
nand, and, slots add slots add
or, XOr, ... slots mult slots mult

mux slots rotate slots rotate

33 /46

Introduction

Different Models of Computations S sanosoxaa@inpher

1 TFHE: Binary circuit evaluation, LUTs, DFAs ...

2 B/FV: Integer arithmetic (SIMD)

decimal)
0011 ~—carries

4567
366
4933
3 CKKS: Approximated (fixed-point) computations (SIMD)

E Mg

34 /46

Introduction

Fully Homomorphic Encryption: Chimera [BGGJ20] SSANDBOXAO"‘%ﬁﬂPh@F

Chimera: Combining different FHE schemes: TFHE, B/FV and CKKS
@ Unified plaintext space over the Torus

@ Switch between ciphertext repsentations (coefficient vs slot packing)

35/46

Introduction

Coefficient and Slot packing S sanosoxaa"®inpher

Coefficient packing

with m; € C foralli=0,1,...,N —1

mo mi ma oo MmN—2 | MN-1

36 /46

Introduction

Coefficient and Slot packing S sanosoxaa"®inpher

Coefficient packing

m:Zmi-Xi ~ m = (mo, m1,...,MN—1)

with m; € C foralli=0,1,...,N —1

mo mi ma s mN—2 | MN—-1

| \

Slot packing
N-1
xNiy1= H(X—wi) ~ m = (m(wo), m(w1),..., m(wn—_1))
1=0

with w; € Cforalli=0,1,...,N —1

m(wo) m(wl) m(wg) 000 m(wN_g) m(wN_l)

36 /46

Introduction

Morphism between coefficient and slot packing S sanpeoxac@inpher

There exists morphism to switch between the coefficient and slot representation!
(Vandermonde, DFT,...)

1 N-1
1 w? w(J)V)
1 w1 wy
VDM = .
1 1
1 wy_, WN_1

o A complex polynomial mod X + 1 carries N complex slots.
o A real polynomial mod X~ + 1 carries

@ Attention, some additional constraints are needed to define slots for Zy[X].

37/46

Introduction

How we can represent all plaintexts over the Ty [X]? S sanosoxaa-@inpher

Circuits
B=(0,1)
Ciphertext Integers
(a,0) — (Z/pZ)"
Fixed point

C

Introduction

BFV scheme (encoding)

@ Zn[X] mod p: the ring of polynomials with integer mod p coefficients module

XN 41
o If XV 41 has N roots mod p, Z/pZ" is isomorphic to Zx[X] mod p
0
(Z/pZ)N ~ Zn[X] mod p~ 17x [X] mod ZJ)
p =
P

The plaintext space M is composed by exact
multiples of %. J

Plaintext addition (u1(X), p2(X))
p1(X) 4 p2(X) = pa (X) + p2(X) mod Z.

S sanbsoxaa"@inpher

Plaintext product (Montgomery) (u1(X), p2(X))
1 (X)) My p2(X) :=p- 11(X) - f2(X) mod Z, for lifts 11 and fiz in Ry[X]

39/46

Introduction

Problem of lift S sanosoxaa"®inpher

Examples: p

e Exact product: 3(11 + 3)(I2+ 2) =1+ 2 =42 mod 1, for all I1, I integers
@ Product with noise and small element: 3 *x 5.33333 x 10.66665 = 170.6662

@ Product with noise and big element:
3 % 12345678.33333 * 7654321.66665 = —.839. ..

@ We need a small representative of the plaintext to keep the result correct.
@ We should lift the ciphertext to small representative in Ry [X] (all coefficients in

° % > noise

Introduction

Homomorphic operations SSANDBOXAQ"%‘Hﬂph@F

Homomorphic addition ¢1 = (a1, b1), c2 = (az,b2)

(a,b) = (a1 + a2, b1 + b2)

Homomorphic product ¢1 = (a1,b1),c2 = (a2, b2)

u1=b1—5-a1 and,ugzbg—s-az

J251 le M2 = p(b~1 — S (fl)(b~2 — S (fg)
—(p-Bi-b2)—s- (p-di-Ba+p-da-b1)+s* - (p- i -)
——— ——
(of) C1 Cao

=(b—s-a)

The term s?: relinearization with TRGSW encryption of s!

C1 gp Co = (01700) — TRGSW(S) =] (0270)

The meaning of aiaz, bibs ...:

o small representatives in Ry[X] o

Introduction

Fixed point SSANDBOXAQ"*’{%ﬂﬂph@F

Circuits
B=(0,1)
Ciphertext Integers
(a,b) —— (Z/pZ)"
Fixed point
C

Introduction

Fixed-point and Floating-points Numbers SSANDBOXAQ"@mph@F

Floating point (float, double in C):
o z=m2", withme2 ”Zand + <|m| <1
o 7 = [logz2(z)] data dependent and not public (not FHE-friendly)

]

ex: (1.23-107%) % (7.24-107*) = (8.90 - 107%)

| \

Fixed point:

o x=m.27, withm €27 Zand 0 < |m| <1,
o
@ Risk of overflow (7 too small)

@ Risk of underflow (7 too large)
ex: (0.000123 - 10°) * (0.000724 - 10°) = (0.000000 - 10°)

v

Addition is much tricker than you think!

e Given (m1, 1), (me, 72), and 7.

@ How do you compute m.2” = m;.2™ + m2.272 with p bits of precision?

@ Addition requires right shift and roundings, which are non-linear!

Introduction

S sanbsoxaa"@inpher

m2" + e

y = lift(z)
y = Ssin(2rz)

= Domain [, 2] mod 1

Continuous approach

o x x y = Lift(x) = Lift(y) mod Z.

This approach can preserve (or reduce) the interval [— 51, 5]

Lift is a periodic function: approx by sinus (or other Fourier serie) wherever it
matters...

X ...but sinus can only be approx by a polynomial, which recursively requires a product.

44 / 46

Introduction

Fixed point: CKKS SSANDBOXAQ"’%ﬁﬂph@F

Discrete approach

@ round a,b (and thus) on exact multiples of % where g ~ 25F7,
Brings us in the ring éZN[X] mod Z
Exact Montgomery product ¢(b1 — sa1)(b2 — saz)

o The meaning of ajas, b1ba...: a;, b; are exact multiples of é

X Blows up the interval [—5%, 57] = [~ 375, 575)--
...works a leveled number of times.

45 /46

Introduction

Thank you for your attention!

Questions?

46 / 46

Introduction

Appendix: Circuit Bootstrap mode versus Gate Bootst&ﬁwm"@mph@r

TFHE in Circuit Bootstrap mode

Bootstrap after many gates
(This work)

Input/Output

Plaintext (TLWE) — Ciphertext
(TRGSW)

Bit Overhead: 262144

o Very fast : transition in 34 us

o No so fast: circuit bootstrapped in
134 ms but after many gates

° LUT, (W)DFA

TFHE in Circuit bootstrap mode can
evaluate LUT 16 to 8 in 1 sec

46 / 46

Introduction

Appendix: Circuit Bootstrap mode versus Gate Bootst&ﬁwm"@mph@r

TFHE in Circuit Bootstrap mode

Bootstrap after many gates
(This work)

Input/Output

Plaintext (TLWE) — Ciphertext
(TRGSW)
Bit Overhead: 262144

TFHE in Gate Bootstrap mode
Bootstrap between each gate
(TFHE 2016 + optimizations)

Input/Output

Plaintext (TLWE) — Ciphertext
(TLWE)
Bit Overhead: 8000

o Very fast : transition in 34 us

o No so fast: circuit bootstrapped in
134 ms but after many gates

° LUT, (W)DFA

TFHE in Circuit bootstrap mode can
evaluate LUT 16 to 8 in 1 sec

° bootstrapped binary
gate runs in 13 ms

@ All binary gates have the same cost

o Composition: unlimited

With TFHE we can compute 76 gates
per second, for any circuit.

46 / 46

	Introduction

