Models of Computation for Homomorphic Encryption. TFHE - Chimera

Nicolas Gama and Mariya Georgieva Belorgey

Based on joint work with: C. Boura, I. Chillotti, M. Izabachene, D. Jetchev

イロト イボト イヨト

SANDBOXAQ" ⊕ inpher

Constant-time Privacy-preserving computations

- FHE programs behave essentially like circuits.
- 2009: Bootstrapping (evaluate one homomorphic NAND)
- $\bullet\,$ The overhead between plaintext circuit and FHE is O(1) in time and memory

42: That's it!! CQFD?

- 2009: First bootstrapping = hours of computations
- 2009-now: Just wait for scientific progress... and brace for impact!!

SANDBOXAQ" ⊕ inpher

Constant-time Privacy-preserving computations

- FHE programs behave essentially like circuits.
- 2009: Bootstrapping (evaluate one homomorphic NAND)
- The overhead between plaintext circuit and FHE is O(1) in time and memory

42: That's it!! CQFD?

- 2009: First bootstrapping = hours of computations
- 2009-now: Just wait for scientific progress... and brace for impact !!

<ロト < 部 ト < 言 ト < 言 ト こ の へ (や 2/46

Bootstrapping: the beginnings

1hour 1s $10 \mathrm{ms}$ $1\mu s$ 1 ns1 cpu cycle nano second) (12009 2016 2022 2023 2024 イロト 不良 ト 不良 ト 不良 ト 一度

3 / 46

Sandboxaq" \oplus inpher

Bootstrapping: the beginnings

・ロト・白 ト・モー・ モー うくぐ

Bootstrapping: the beginnings

・ロト・白 ト・モー・ モー うくぐ

Properties of a gate-bootstrapping ciphertext

SANDBOXAQ" \oplus inpher

Properties of a gate-bootstrapping ciphertext

• a message = one bit

Composition rules: gates

- constant gates (0,1)
- unary gates (copy, not)
- binary gates (and, or, nand, nor, ...)
- selector gate (mux)

Little history: are we there yet?

Sandboxaq[®] ⊕inpher

Little history: are we there yet?

Sandboxaq[®] ⊕inpher

Little history: are we there yet?

SANDBOXAQ[®] ⊕inpher

Little history: are we there yet?

SANDBOXAQ" \oplus inpher

Pros of gate bootstrapping

- circuits are standard and easy to generate
- asymptotically O(1) optimal w.r.t. plaintext circuit

Cons of gate bootstrapping

- the O(1) theoretical overhead factor is huge in practice
 - timing 10ms vs. 1 nanosec per cycle (vs. 1 picosec physical),
 - size 20kB ciphertext per bit.
 - parallelization 100 gates in parallel vs. billion gates in parallel.

The reality: 2023

- Only use-cases that take a fraction of second in plaintext are feasible via only Gate Bootstrapping.
- Practical FHE requires a plan B!

SANDBOXAQ" \oplus inpher

Pros of gate bootstrapping

- circuits are standard and easy to generate
- asymptotically O(1) optimal w.r.t. plaintext circuit

Cons of gate bootstrapping

- the O(1) theoretical overhead factor is huge in practice
 - timing 10ms vs. 1 nanosec per cycle (vs. 1 picosec physical),
 - size 20kB ciphertext per bit.
 - parallelization 100 gates in parallel vs. billion gates in parallel.

The reality: 2023

- Only use-cases that take a fraction of second in plaintext are feasible via only Gate Bootstrapping.
- Practical FHE requires a plan B!

SANDBOXAQ" \oplus inpher

FHE Fully Homomorphic Encryption (O(1) from optimal)

 \exists crypto params s.t. \forall circuit C, we can evaluate C homomorphically.

LHE Leveled Homomorphic Encryption (not O(1) from optimal)

 \forall circuit C, \exists crypto params s.t. we can evaluate C homomorphically.

Chimera: Using FHE to boost LHE

- FHE and LHE are not mutually exclusive, they should be used together!
- Some LHE schemes are much faster for massive low multiplication-depth arithmetic in practice (integer (BFV) or FP (CKKS)).
- Other LHE schemes are quite good for evaluating automata (RGSW, TFHE).
- Bootstrapping is quite good at evaluating LUTs and univariate non-linear functions, like conversions.

Compilation

SANDBOXAQ" ⊕ inpher

Nice to have

Let the user write the desired program as a high-level pseudocode.

```
def myfunction(x, y, z, bigvector, bigmatrix)
a := 2 * x + 3 * y * z mod 15
c := 30 * cos(a / 8.)
return c * bigmatrix * bigvector
```

<ロト < 部ト < 言ト < 言ト 言 のへで 8/46

Compilation

SANDBOXAQ" ⊕ inpher

Nice to have

Let the user write the desired program as a high-level pseudocode.

Chimera World Map

SANDBOXAQ" ⊕ inpher

Properties of a leveled ciphertext

SANDBOXAQ" ⊕ inpher

(日) (部) (注) (注) (注)

10/46

Properties of a leveled HE ciphertext

- a message (encoded in a polynomial)
 - one bit? one integer?
 - a vector of integers mod p?
 - a vector of floats?

• a homomorphic budget: 3 equivalent definitions

- noise rate: $0 < \alpha < 1$
- homomorphic budget: −log₂(α) ≥ 0 points
- ullet homomorphic level: 1 level pprox 30 points

Noise rate and homomorphic budget

A noise rate a < 1 corresponds to a Homomorphic budget of $-\log_2(\alpha) > 0$ points, and quantifies the number of homomorphic operations that can be carried out on a FHE ciphertext.

	efficiency	HE operations
$-\log_2(\alpha) \approx 0$	small ciphertext, small key, fast operations	exhausted
$-\log_2(\alpha) \approx 30$	native 32-bit arithmetic	1 multiplications
$-\log_2(\alpha) \approx 60$	native 64-bit arithmetic	2 multiplications
$-\log_2(\alpha) \approx 300$	slow 300-bit arithmetic	10 multiplications

Rule of thumb

- more points = more homomorphic power. But bigger ciphertexts, larger keys, larger arithmetic, slower operations.
- decreasing the homomorphic budget points is easy ("modulus switching/rescaling")
- increasing it is much harder ("bootstrapping").

SANDBOXAQ" \oplus inpher

Operations and composition rules

SANDBOXAQ" ⊕ inpher

Arithmetic circuit model of computation

A graph of polynomial arithmetic operations. Each operation impact the noise (so the homomorphic budget):

Operation	ciphertext type	homomorphic budget impact
slot-wise product:	RLWE	-30 points
sum	RLWE	-1 point
public rotation:	RLWE	-0 point
linear combinations $\sum e_i \mathbf{c}_i$:	RLWE	$-\log(1 + \ e\ _1)$ points
substitution with X^{t} :	RLWE	-1 point

Operations and composition rules

SANDBOXAQ" ⊕ inpher

SANDBOXAQ" ⊕ inpher

(日) (部) (注) (注) (注)

14 / 46

Arithmetic Circuit: bootstrapping

- Input: a ciphertext with (nearly) depleted budget
- Output: a ciphertext of the same message with much larger budget
- Restrictions/Rules:
 - Message space, maximal FP precision, modulus.
 - Minimum input level/points, output level/points
 - Running time

Bootstrapping: example in the litterature

SANDBOXAQ" \oplus inpher

Arithmetic circuits: Pros and Cons

SANDBOXAQ" \oplus inpher

Arithmetic circuits: Pros

- the "assembly language" of LWE: no loss, no overhead
- good for executing SIMD arithmetic use-cases
- Newest bootstrapping have usually a fast amortized time per slot.

Arithmetic circuits: Cons

- General use-cases are hard to convert to polynomial arithmetic circuits. (think CPU vs. GPU)
- The rare use-cases that work are already described "in assembly"

<ロト < 部ト < 差ト < 差ト 差 うへで 16/46

RGSW-based private selector circuits

SANDBOXAQ" ⊕ inpher

data Input and output have the same homomorphic budget!

<ロ > < 部 > < 書 > < 書 > 書 の Q (~ 17/46

LookUp Tables (LUT) to evaluate arbitrary functions:

$$f: \mathbb{B}^d \longrightarrow \mathbb{T}^s$$
$$x = (x_0, \dots, x_{d-1}) \longmapsto f(x) = (f_0(x), \dots, f_{s-1}(x))$$

Example with d = 3 and s = 2

				f_1
			0.5	0.3
1			0.25	0.7
	1		0.1	0.61
1	1		0.83	0.9
		1	0.23	0.47
1		1	0.67	0.42
	1	1	0.78	0.12
- 1	1	1		

Evaluation via MUX tree

LookUp Tables (LUT) to evaluate arbitrary functions:

$$f: \mathbb{B}^d \longrightarrow \mathbb{T}^s$$
$$x = (x_0, \dots, x_{d-1}) \longmapsto f(x) = (f_0(x), \dots, f_{s-1}(x))$$

Example with d = 3 and s = 2

x_0	x_1	x_2	f_0	f_1
0	0	0	0.5	0.3
1	0	0	0.25	0.7
0	1	0	0.1	0.61
1	1	0	0.83	0.9
0	0	1	0.23	0.47
1	0	1	0.67	0.42
0	1	1	0.78	0.12
1	1	1	0.35	0.95

Evaluation via MUX tree

LookUp Tables (LUT) to evaluate arbitrary functions:

$$f: \mathbb{B}^d \longrightarrow \mathbb{T}^s$$
$$x = (x_0, \dots, x_{d-1}) \longmapsto f(x) = (f_0(x), \dots, f_{s-1}(x))$$

Example with d = 3 and s = 2

x_0	x_1	x_2	f_0	f_1
0	0	0	0.5	0.3
1	0	0	0.25	0.7
0	1	0	0.1	0.61
1	1	0	0.83	0.9
0	0	1	0.23	0.47
1	0	1	0.67	0.42
0	1	1	0.78	0.12
1	1	1	0.35	0.95

Evaluation via MUX tree

LUT evaluation

How to evaluate it?

x_0	 x_{d-1}	f_0		f_{s-1}	$\left] f_j x_0 x_1 \dots x_{d-1} \right.$
0	 0	$\sigma_{0,0}$		$\sigma_{s-1,0}$	$\sigma_{j,0}$ $ 0$
1	 0	$\sigma_{0,1}$		$\sigma_{s-1,1}$	$\sigma_{j,1}$ – 1 0
0	 0	$\sigma_{0,2}$		$\sigma_{s-1,2}$	$\sigma_{j,2} = 0$
1	 0	$\sigma_{0,3}$		$\sigma_{s-1,3}$	$\sigma_{j,3}$ – 1
÷	 ÷	÷	÷	÷	\cdots $-\begin{bmatrix} 0\\1 \end{bmatrix}$ \cdots o_j
0	 1	$\sigma_{0,2^d-4}$		$\sigma_{s-1,2^d-4}$	$\sigma_{j,2^d-4}$ 0
1	 1	$\sigma_{0,2^d-3}$		$\sigma_{s-1,2^d-3}$	$\sigma_{j,2^d-3} _ \boxed{1} _ \boxed{0} _$
0	 1	$\sigma_{0,2^d-2}$		$\sigma_{s-1,2^d-2}$	$\sigma_{j,2^d-2}$
1	 1	$\sigma_{0,2^d-1}$		$\sigma_{s-1,2^d-1}$	$\sigma_{j,2^d-1}$

<ロ > < 回 > < 巨 > < 巨 > < 巨 > 三 の Q (~ 19/46)

TFHE 2016: DFA (deterministic finite automata)

• Decisional: returns accepted (1) or rejected (0)

TFHE 2017: det-WFA (deterministic weighted finite automata)

• Computational: returns a weight in $\mathbb{T}_N[X]$

Weights act like a "memory" that stores the result all along the evaluation

DFA versus WFA

Deterministic Finite Automata (DFA)

Acceptance

 $\label{eq:constraint} \begin{array}{l} "00101" \rightarrow {\rm False} \\ "10111" \rightarrow {\rm True} \end{array}$

Deterministic Weighted Finite Automata (det-WFA)

Weight Computation

 $\begin{array}{c} "00101" \rightarrow (2,0) \\ \hline \\ & \square "101111" \rightarrow (41) \\ & \square " \rightarrow (41) \\ & 21/46 \end{array}$

SANDBOXAQ" \oplus inpher

DFA computational models

イロト 不良 ト 不良 ト 不良 ト 一度

22 / 46

 $\begin{array}{l} \operatorname{mirror}(\mathcal{L}) \\ \operatorname{rev. det. autom.} \end{array}$

DFA computational models

イロト 不良 ト 不良 ト 不良 ト 一度 22 / 46

DFA computational models

DFA computational models

SANDBOXAQ" \oplus inpher

DFA computational models

SANDBOXAQ" \oplus inpher

Computation of the maximum

SANDBOXAQ" + inpher

イロト イヨト イヨト イヨト 二日

23 / 46

Example: evaluation of m = MAX(x, y)

Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$. We want to compute $m = (m_1, \ldots, m_n) = MAX(x, y)$.

- **DFA**: evaluate *n* **DFA**, one per output bit
- Det-WFA: evaluate 1 det-WFA, the result given in a single path

Arbitrary long Composition of automata?

SANDBOXAQ" \oplus in pher

24 / 46

TFHE in Circuit Bootstrap mode

SANDBOXAQ" ⊕ inpher

Circuit bootstrapping CGGI2017

- Take advantage that the message space is binary
- And that input/output levels are very low $(0 \rightarrow 60 \text{ points})$
- Reconstruct a TRGSW encryption directly from its internal structure [CGGI17] rather than as the output of larger homomorphic operations (see [GSW13], [AP14] constructions).

Accepted inputs:

- A TLWE ciphertext on binary message space $\{0,\frac{1}{2}\}$
- One coefficient of a TRLWE ciphertext over $\{0, \frac{1}{2}\}^N$

One coefficient of a TRGSW ciphertext over $\{0, 1\}^N$

< □ ト < □ ト < 臣 ト < 臣 ト < 臣 ト 三 の Q (~ 25 / 46

Circuit mode versus Gate Bootstrap mode

SANDBOXAQ" ⊕ inpher

versus (or together with?)

Circuit bootstrapping mode

In Summary: The Chimera VM

Logical unit

- Digital circuits
- Lookup Tables
- Deterministic Automata (finite and weighted)

Heavy arithmetic unit

- SIMD fixed-point and modular unit
- Support also convolution, big-integers

Composability, Compilation

- A rich VM capturing all the capabilities of RLWE-based FHE.
- Immediate link to the lattice geometry and its security.
- Is it feasible to compile for this programming model?

SANDBOXAQ" \oplus inpher

This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

28/46

イロト イボト イラト イラト 二日

Integer/Real/Complex Polynomials

Ring of polynomials with coefficients $\in \mathbb{Z}, \mathbb{R}$ or $\mathbb{C} \mod X^N + 1$: $\mathbb{Z}_N[X] = \mathbb{Z}[X]/(X^N + 1)$ $\mathbb{R}_N[X] = \mathbb{R}[X]/(X^N + 1)$ $\mathbb{C}_N[X] = \mathbb{C}[X]/(X^N + 1)$

Examples (Real): N = 2

 $(1.2 + 2.3X) \cdot (3.2 + 4.1X) = 3.84 + 12.28X + 9.43X^2 = 12.28X - 5.59 \mod (X^2 + 1)$

 $(\mathbb{Z}_N[X], +, \times)$, $(\mathbb{R}_N[X], +, \times)$ and $(\mathbb{C}_N[X], +, \times)$ are well defined as rings

✓ $(\mathbb{Z}_N[X], +)$, $(\mathbb{R}_N[X], +)$ and $(\mathbb{C}_N[X], +)$ are groups

✓ Multiplication $x \times y$ is well-defined!

SANDBOXAQ" \oplus inpher

Torus \mathbb{T} and Torus Polynomials $\mathbb{T}_N[X]$

SANDBOXAQ" \oplus inpher

イロト 不良 ト 不良 ト 不良 ト 一度

30/46

$\mathbb{T}=\mathbb{R}/\mathbb{Z}$

- $(\mathbb{T}, +, \cdot)$ is a \mathbb{Z} -module $(\cdot : \mathbb{Z} \times \mathbb{T} \to \mathbb{T}$ a valid external product)
 - ✓ It is a group $x + y \mod \mathbb{Z}$, and $-x \mod \mathbb{Z}$
 - ✓ It is a \mathbb{Z} -module: $3 \cdot 0.6 = 0.8 \mod \mathbb{Z}$ is defined!
 - ✗ It is not a ring: 0×0.6 is not defined!

$\mathbb{T}_N[X] = \mathbb{R}[X]/(X^N + 1) \mod \mathbb{Z}$: polynomials with coeffs $\in \mathbb{R}/\mathbb{Z} \mod X^N + 1$

 $(\mathbb{T}_N[X],+,\cdot)$ is a $\mathbb{Z}_N[X]$ -module

• $(2X+3) \cdot (0.4X+0.5) = (0.2X+0.7) \mod X^2 + 1 \mod \mathbb{Z}$

external product by integers polynomial

Torus \mathbb{T} and Torus Polynomials $\mathbb{T}_N[X]$

SANDBOXAQ" \oplus inpher

イロト イタト イヨト イヨト 三日

30/46

 $\mathbb{T}=\mathbb{R}/\mathbb{Z}$

- $(\mathbb{T}, +, \cdot)$ is a \mathbb{Z} -module $(\cdot : \mathbb{Z} \times \mathbb{T} \to \mathbb{T}$ a valid external product)
 - ✓ It is a group $x + y \mod \mathbb{Z}$, and $-x \mod \mathbb{Z}$
 - ✓ It is a \mathbb{Z} -module: $3 \cdot 0.6 = 0.8 \mod \mathbb{Z}$ is defined!
 - It is not a ring: 0×0.6 is not defined!

 $\mathbb{T}_N[X] = \mathbb{R}[X]/(X^N + 1) \mod \mathbb{Z}: \text{ polynomials with coeffs} \in \mathbb{R}/\mathbb{Z} \mod X^N + 1$

- $(\mathbb{T}_N[X], +, \cdot)$ is a $\mathbb{Z}_N[X]$ -module
 - $(2X+3) \cdot (0.4X+0.5) = (0.2X+0.7) \mod X^2 + 1 \mod \mathbb{Z}$
 - external product by integers polynomial

TFHE Scheme

Consists of three encryption schemes:

- TLWE ciphertext: $\mu \in \mathbb{T} \mapsto (a, b := \mu + \langle a, s \rangle + e)$, $a \in_R \mathbb{T}^n$, $s \in \{0, 1\}^n$
- TRLWE ciphertext: $\mu \in \mathbb{T}_N[X] \mapsto (a, b := \mu + s \cdot a + e), \ a \in_R \mathbb{T}_N[X]^k, \ s \in \mathbb{B}_N[X]$
- TRGSW ciphertext: encrypts elements of $\mathbb{Z}_N[X]$ with small norm

	message	ciphertext	key	product
TLWE				
TRLWE	$\mathbb{T}_N[X]$	$\mathbb{T}_N[X]^{k+1}$	$\mathbb{B}_N[X]^k$	
TRGSW	$\mathbb{Z}_N[X]$	vector of TRLWE	$\mathbb{B}_N[X]^k$	

● Internal TRGSW Product : ⊠: TRGSW × TRGSW → TRGSW ● External product : ⊡: TRGSW × TRLWE → TRLWE $(\mu_A, \mu_b) \mapsto \mu_A \cdot \mu_b$ $(e_A, e_B) \mapsto \|\mu_A\|_{H^{-1}} + O(e_B)$

If $\|\mu_A\|_1 = 1$ the noise propagation is linear!

TFHE Scheme

Consists of three encryption schemes:

- TLWE ciphertext: $\mu \in \mathbb{T} \mapsto (a,b:=\mu + \langle a,s \rangle + e)$, $a \in_R \mathbb{T}^n$, $s \in \{0,1\}^n$
- TRLWE ciphertext: $\mu \in \mathbb{T}_N[X] \mapsto (a, b := \mu + s \cdot a + e), \ a \in_R \mathbb{T}_N[X]^k, \ s \in \mathbb{B}_N[X]$
- TRGSW ciphertext: encrypts elements of $\mathbb{Z}_N[X]$ with small norm

	message	ciphertext	key	lin. combin.	product
TLWE	T	\mathbb{T}^{n+1}	\mathbb{B}^n	 ✓ 	×
TRLWE	$\mathbb{T}_N[X]$	$\mathbb{T}_N[X]^{k+1}$	$\mathbb{B}_N[X]^k$	 ✓ 	×
TRGSW	$\mathbb{Z}_N[X]$	vector of TRLWE	$\mathbb{B}_N[X]^k$	 Image: A start of the start of	 ✓

Internal TRGSW Product : ⊠: TRGSW × TRGSW → TRGSW
 External product : ⊡: TRGSW × TRLWE → TRLWE

$$(\mu_A, \mu_{\mathbf{b}}) \longmapsto \mu_A \cdot \mu_{\mathbf{b}}$$
$$(e_A, e_{\mathbf{b}}) \longmapsto \|\mu_A\|_1 \cdot e_{\mathbf{b}} + O(e_A)$$

If $\|\mu_A\|_1 = 1$ the noise propagation is linear!

TFHE Scheme

Consists of three encryption schemes:

- TLWE ciphertext: $\mu \in \mathbb{T} \mapsto (a, b := \mu + \langle a, s \rangle + e)$, $a \in_R \mathbb{T}^n$, $s \in \{0, 1\}^n$
- TRLWE ciphertext: $\mu \in \mathbb{T}_N[X] \mapsto (a, b := \mu + s \cdot a + e), \ a \in_R \mathbb{T}_N[X]^k, \ s \in \mathbb{B}_N[X]$
- TRGSW ciphertext: encrypts elements of $\mathbb{Z}_N[X]$ with small norm

	message	ciphertext	key	lin. combin.	product
TLWE	T	\mathbb{T}^{n+1}	\mathbb{B}^n	 ✓ 	×
TRLWE	$\mathbb{T}_N[X]$	$\mathbb{T}_N[X]^{k+1}$	$\mathbb{B}_N[X]^k$	 ✓ 	×
TRGSW	$\mathbb{Z}_N[X]$	vector of TRLWE	$\mathbb{B}_N[X]^k$	 ✓ 	 ✓

Internal TRGSW Product : \boxtimes : TRGSW × TRGSW \longrightarrow TRGSW

(a) External product : \bigcirc : TRGSW × TRLWE \longrightarrow TRLWE

$$(\mu_A, \mu_{\mathbf{b}}) \longmapsto \mu_A \cdot \mu_{\mathbf{b}} (e_A, e_{\mathbf{b}}) \longmapsto \|\mu_A\|_1 \cdot e_{\mathbf{b}} + O(e_A)$$

イロト イヨト イヨト イヨト 二日

31 / 46

If $\|\mu_A\|_1 = 1$ the noise propagation is linear!

SANDBOXAQ" ⊕ inpher

イロン 不良 とくほど 不良 とうほう

32 / 46

Internal product requires to evaluate a polynomail in s:

 $\mu_1 \boxtimes \mu_2 = (b_1 - sa_1)(b_2 - sa_2) = b_1b_2 - (b_1a_2 + b_2a_1)s + a_1a_2s^2.$

The term s^2 :

- dedicated relinearization/keyswitch techniques (2011, ...)
- but in fact, TRGSW provides the multiplication by a secret s!

The meaning of b_1b_2 , a_1a_2 , ...

- lift in $\mathbb{R}_N[X]$
- additional message space restrictions are required to make such product meaningful

Homomorphic operations hierarchy

SANDBOXAQ" ⊕ inpher

TRLWE

small integer linear combinations x + y, x - ya.x for public $a \in \mathbb{Z}_N[X]$

4 ロト 4 日 ト 4 王 ト 4 王 ト 王 今 9 9 9
33 / 46

Homomorphic operations hierarchy

SANDBOXAQ" ⊕ inpher

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 つへで 33 / 46

Homomorphic operations hierarchy

SANDBOXAQ" ⊕ inpher

Homomorphic operations hierarchy

SANDBOXAQ" \oplus inpher

Homomorphic operations hierarchy

📚 sandboxa@ 🕀 inpher

Homomorphic operations hierarchy

SANDBOXAQ" ⊕ inpher

Homomorphic operations hierarchy

SANDBOXAQ" \oplus inpher

Different Models of Computations

SANDBOXAQ" ⊕ inpher

34 / 46

1 TFHE: Binary circuit evaluation, LUTs, DFAs ...

2 B/FV: Integer arithmetic (SIMD)

 $\begin{array}{c} \textbf{decimal} \\ 0 \ 0 \ 1 \ 1 \ \leftarrow carries \\ 4 \ 5 \ 6 \ 7 \\ \hline & 3 \ 6 \ 6 \\ \hline & 4 \ 9 \ 3 \ 3 \end{array}$

3 CKKS: Approximated (fixed-point) computations (SIMD)

Fully Homomorphic Encryption: Chimera [BGGJ20] 💲 SANDBOXAQ® 🕀 inpher

Chimera: Combining different FHE schemes: TFHE, B/FV and CKKS

- Unified plaintext space over the Torus
- Switch between ciphertext repsentations (coefficient vs slot packing)

Coefficient and Slot packing

Coefficient packing

$$\mathbf{m} = \sum_{i=0}^{N-1} m_i \cdot X^i \qquad \sim \qquad \mathbf{m} = (m_0, m_1, \dots, m_{N-1})$$

with $m_i \in \mathbb{C}$ for all $i = 0, 1, \dots, N-1$

m_0	m_1	m_2		m_{N-2}	m_{N-1}
-------	-------	-------	--	-----------	-----------

Slot packing

$$X^{N} + 1 = \prod_{i=0}^{N-1} (X - \omega_{i}) \qquad \sim \qquad \mathbf{m} = (\mathbf{m}(\omega_{0}), \mathbf{m}(\omega_{1}), \dots, \mathbf{m}(\omega_{N-1}))$$

with $\omega_i \in \mathbb{C}$ for all $i = 0, 1, \dots, N-1$

$$\mathbf{m}(\omega_0) \qquad \mathbf{m}(\omega_1) \qquad \mathbf{m}(\omega_2) \qquad \cdots \qquad \mathbf{m}(\omega_{N-2}) \qquad \mathbf{m}(\omega_{N-1})$$

SANDBOXAQ" \oplus inpher

Coefficient and Slot packing

Coefficient packing

$$\mathbf{m} = \sum_{i=0}^{N-1} m_i \cdot X^i \qquad \sim \qquad \mathbf{m} = (m_0, m_1, \dots, m_{N-1})$$

with $m_i \in \mathbb{C}$ for all $i = 0, 1, \ldots, N-1$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	m_{N-2}	m_{N-1}	
--	-----------	-----------	--

Slot packing

$$X^{N} + 1 = \prod_{i=0}^{N-1} (X - \omega_{i}) \qquad \sim \qquad \mathbf{m} = (\mathbf{m}(\omega_{0}), \mathbf{m}(\omega_{1}), \dots, \mathbf{m}(\omega_{N-1}))$$

with $\omega_i \in \mathbb{C}$ for all $i = 0, 1, \dots, N-1$

Morphism between coefficient and slot packing

Morphism

There exists morphism to switch between the coefficient and slot representation! (Vandermonde, DFT,...)

$$VDM = \begin{bmatrix} 1 & \omega_0^1 & \cdots & \omega_0^{N-1} \\ 1 & \omega_1^1 & \cdots & \omega_1^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{N-1}^1 & \cdots & \omega_{N-1}^{N-1} \end{bmatrix}$$

- A complex polynomial $\mod X^N + 1$ carries N complex slots.
- A real polynomial $\mod X^N + 1$ carries N/2 complex slots.
- Attention, some additional constraints are needed to define slots for $\mathbb{Z}_N[X]$.

SANDBOXAQ" + inpher

How we can represent all plaintexts over the $\mathbb{T}_N[X]$? SANDBOXAQ \oplus inpher

BFV scheme (encoding)

- $\mathbb{Z}_N[X] \mod p$: the ring of polynomials with integer $\mod p$ coefficients module X^N+1
- If $X^N + 1$ has N roots mod p, $\mathbb{Z}/p\mathbb{Z}^N$ is isomorphic to $\mathbb{Z}_N[X] \mod p$

$$(\mathbb{Z}/p\mathbb{Z})^N \simeq \mathbb{Z}_N[X] \mod p \simeq \frac{1}{p}\mathbb{Z}_N[X] \mod \mathbb{Z}$$

The plaintext space \mathcal{M} is composed by exact multiples of $\frac{1}{p}$.

SANDBOXAQ" \oplus inpher

Plaintext addition $(\mu_1(X), \mu_2(X))$

 $\mu_1(X) + \mu_2(X) := \mu_1(X) + \mu_2(X) \mod \mathbb{Z}.$

Plaintext product (Montgomery) $(\mu_1(X), \mu_2(X))$

 $\mu_1(X) \boxtimes_p \mu_2(X) := p \cdot \tilde{\mu}_1(X) \cdot \tilde{\mu}_2(X) \mod \mathbb{Z}$, for lifts $\tilde{\mu}_1$ and $\tilde{\mu}_2$ in $\mathbb{R}_N[X]$

Examples: p = 3, $\mu_1 = \frac{1}{3}$ and $\mu_2 = \frac{2}{3}$

- Exact product: $3(I_1 + \frac{1}{3})(I_2 + \frac{2}{3}) = I + \frac{2}{3} = +\frac{2}{3} \mod 1$, for all I_1, I_2 integers
- Product with noise and small element: 3 * 5.33333 * 10.66665 = 170.6662
- Product with noise and big element:
 3 * 12345678.33333 * 7654321.66665 = -.839...
- We need a small representative of the plaintext to keep the result correct.
- We should lift the ciphertext to small representative in $\mathbb{R}_N[X]$ (all coefficients in [-1/2, 1/2)).
- $\frac{1}{p} \gg noise$

Homomorphic operations

SANDBOXAQ" \oplus inpher

Homomorphic addition
$$c_1=(a_1,b_1)$$
, $c_2=(a_2,b_2)$

 $(a,b) = (a_1 + a_2, b_1 + b_2)$

Homomorphic product $c_1 = (a_1, b_1), c_2 = (a_2, b_2)$

$$\mu_1 = b_1 - s \cdot a_1$$
 and $\mu_2 = b_2 - s \cdot a_2$

$$\mu_1 \boxtimes_p \mu_2 = p(\tilde{b_1} - s \cdot \tilde{a_1})(\tilde{b_2} - s \cdot \tilde{a_2})$$

$$= \underbrace{(p \cdot \tilde{b_1} \cdot \tilde{b_2})}_{C_0} - s \cdot \underbrace{(p \cdot \tilde{a_1} \cdot \tilde{b_2} + p \cdot \tilde{a_2} \cdot \tilde{b_1})}_{C_1} + s^2 \cdot \underbrace{(p \cdot \tilde{a_1} \cdot \tilde{a_2})}_{C_2}$$

$$= (b - s \cdot a)$$

The term s^2 : relinearization with TRGSW encryption of s!

 $c_1 \boxtimes_p c_2 = (C_1, C_0) - TRGSW(s) \boxdot (C_2, 0)$

The meaning of a_1a_2 , b_1b_2 ...:

• small representatives in $\mathbb{R}_N[X]$

Fixed point

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 42 / 46

Sandboxaq[®] ⊕inpher

Fixed-point and Floating-points Numbers

Floating point (float, double in C):

- $x = m.2^{\tau}$, with $m \in 2^{-\rho}.\mathbb{Z}$ and $\frac{1}{2} \leq |m| < 1$
- $\tau = \lceil log_2(x) \rceil$ data dependent and not public (not FHE-friendly)
- The exponent is always in sync with the data ex: $(1.23 \cdot 10^{-4}) * (7.24 \cdot 10^{-4}) = (8.90 \cdot 10^{-8})$

Fixed point:

- $x = m.2^{\tau}$, with $m \in 2^{-\rho}.\mathbb{Z}$ and $0 \le |m| < 1$,
- au is public, thus FHE-friendly
- Risk of overflow (τ too small)
- Risk of underflow (τ too large) ex: $(0.000123 \cdot 10^0) * (0.000724 \cdot 10^0) = (0.000000 \cdot 10^0)$

Addition is much tricker than you think!

- Given (m_1, τ_1) , (m_2, τ_2) , and τ .
- How do you compute $m.2^{\tau} = m_1.2^{\tau_1} + m_2.2^{\tau_2}$ with ρ bits of precision?
- Addition requires right shift and roundings, which are non-linear!

SANDBOXAQ" \oplus inpher

CKKS

Continuous approach

- $x \times y = \text{Lift}(x) * \text{Lift}(y) \mod \mathbb{Z}$.
- ✓ This approach can preserve (or reduce) the interval $\left[-\frac{1}{2^L}, \frac{1}{2^L}\right]$
- Lift is a periodic function: approx by sinus (or other Fourier serie) wherever it matters...
- ...but sinus can only be approx by a polynomial, which recursively requires a product.

Fixed point: CKKS

Discrete approach

- round a, b (and thus μ) on exact multiples of $\frac{1}{q}$ where $q \approx 2^{L+\rho}$.
- ✓ Brings us in the ring $\frac{1}{q}\mathbb{Z}_N[X] \mod \mathbb{Z}$
- ✓ Exact Montgomery product $q(b_1 sa_1)(b_2 sa_2)$

• The meaning of a_1a_2 , b_1b_2 ...: a_i , b_i are exact multiples of $\frac{1}{a}$

X Blows up the interval $\left[-\frac{1}{2L}, \frac{1}{2L}\right] \rightarrow \left[-\frac{1}{2L-\rho}, \frac{1}{2L-\rho}\right]$works a leveled number of times.

Thank you for your attention!

Questions?

Appendix: Circuit Bootstrap mode versus Gate Bootst🗞 🗛 🕀 🗛 🕀 🗛 🕀 🗛 🖓 🗛 🖓 🗛 🗛

TFHE in Circuit Bootstrap mode Bootstrap after many gates (This work)

Input/Output

Plaintext (TLWE) \rightarrow Ciphertext (TRGSW) Bit Overhead: 262144

- Very fast : transition in $34 \ \mu s$
- No so fast: circuit bootstrapped in 134 ms but after many gates
- Composition : LUT, (W)DFA

TFHE in Circuit bootstrap mode can evaluate LUT 16 to 8 in 1 sec

TFHE in Gate Bootstrap mode **Bootstrap between each gate** (TFHE 2016 + optimizations)

Input/Output

Plaintext (TLWE) \rightarrow Ciphertext (TLWE) Bit Overhead: 8000

- No so fast: bootstrapped binary gate runs in 13 ms
- All binary gates have the same cost
- Composition: unlimited

With TFHE we can compute 76 gates per second, for any circuit.

Appendix: Circuit Bootstrap mode versus Gate Bootst

TFHE in Circuit Bootstrap mode Bootstrap after many gates (This work)

Input/Output

Plaintext (TLWE) \rightarrow Ciphertext (TRGSW) Bit Overhead: 262144

- Very fast : transition in $34 \ \mu s$
- No so fast: circuit bootstrapped in 134 ms but after many gates
- Composition : LUT, (W)DFA

TFHE in Circuit bootstrap mode can evaluate LUT 16 to 8 in 1 sec

TFHE in Gate Bootstrap mode **Bootstrap between each gate** (TFHE 2016 + optimizations)

Input/Output

 $\begin{array}{l} \mbox{Plaintext (TLWE)} \rightarrow \mbox{Ciphertext} \\ \mbox{(TLWE)} \\ \mbox{Bit Overhead: 8000} \end{array}$

- No so fast: bootstrapped binary gate runs in 13 ms
- All binary gates have the same cost
- Composition: unlimited

With TFHE we can compute 76 gates per second, for any circuit.