
Give me please a Popularity list (or table) of programming languages between 1960 and 2020.

ChatGPT

Creating a popularity list of programming languages from 1960 to 2020 involves understanding the 
historical context and evolution of programming languages over six decades. The list below 
summarizes some of the most popular programming languages for each decade, highlighting their 
rise in popularity and significance during those periods.

1960s:

1. FORTRAN (1957) - Dominant in scientific and engineering applications.
2. COBOL (1959) - Widely used in business, finance, and administrative systems.
3. Lisp (1958) - Important in academic research, particularly in artificial intelligence.

1970s:

1. C (1972) - Became extremely popular due to its efficiency and control, leading to its use in 
system/software development.

2. Pascal (1970) - Used extensively in teaching and academia.
3. BASIC (1964) - Popular among beginners and in educational contexts.

1980s:

1. C - Continued dominance, particularly in systems programming and application 
development.

2. C++ (1985) - Gained popularity for its object-oriented features, extending C.
3. Ada (1980) - Used by the Department of Defense and in safety-critical applications.
4. Smalltalk (1980) - Pioneered object-oriented programming.
5. Perl (1987) - Gained traction for scripting and text manipulation.

1990s:

1. Java (1995) - Became widely popular for its portability across platforms (Write Once, Run 
Anywhere).

2. Python (1991) - Started to gain popularity for its simplicity and readability.
3. JavaScript (1995) - Essential for web development.
4. PHP (1995) - Popular for server-side web development.
5. Visual Basic (1991) - Used for rapid application development in Windows environments.

2000s:

1. Java - Continued strong presence in enterprise environments.
2. C# (2000) - Emerged as a powerful language for Windows development with the .NET 

framework.
3. Python - Gained significant popularity in web development, data science, and scripting.
4. JavaScript - Became crucial with the rise of dynamic web applications.
5. Ruby (1995) - Gained attention with the Ruby on Rails framework for web development.



2010s:

1. JavaScript - Dominated due to the rise of frameworks and libraries like React, Angular, and 
Node.js.

2. Python - Exploded in popularity for data science, machine learning, and general scripting.
3. Java - Maintained strong presence, particularly in Android development.
4. C# - Continued to be significant in enterprise environments and game development (with 

Unity).
5. Swift (2014) - Became popular for iOS and macOS app development.
6. Go (2009) - Gained traction for its efficiency and simplicity in backend development.
7. Rust (2010) - Recognized for its safety and performance, particularly in systems 

programming.

2020:

1. Python - Recognized as the most popular language due to its versatility in various domains.
2. JavaScript - Continued to be indispensable for web development.
3. Java - Remained crucial for enterprise applications.
4. C# - Continued relevance in enterprise and game development.
5. Go - Gaining further adoption for cloud and backend services.
6. Rust - Increasingly recognized for systems programming and safety features.

Popularity Trends

• 1960s-1970s: Dominance of languages like FORTRAN, COBOL, and C.
• 1980s: Rise of C, C++, and specialized languages like Ada and Perl.
• 1990s: Shift towards web development with Java, JavaScript, PHP, and Visual Basic.
• 2000s: Consolidation of Java, C#, and the emergence of Python and JavaScript as key 

players.
• 2010s: Explosion of JavaScript and Python due to their roles in web development and data 

science, with newer languages like Swift, Go, and Rust making significant impacts.

These trends reflect the evolving needs and advancements in technology, from early scientific 
computing to modern web development, data science, and systems programming.

Give me please the development time duration list (or table) of individual programming 
languages between 1960 and 2020.

ChatGPT

Here is a list of some prominent programming languages developed between 1960 and 2020, along 
with their initial development and release years. This table includes the approximate time duration 
for their development based on available historical records.

Programming Language Initial Development Year Release Year Duration
FORTRAN 1954 1957 3 years
Lisp 1956 1958 2 years
COBOL 1959 1960 1 year
ALGOL 60 1958 1960 2 years
BASIC 1963 1964 1 year



Programming Language Initial Development Year Release Year Duration
PL/I 1964 1966 2 years
Pascal 1968 1970 2 years
C 1969 1972 3 years
Prolog 1972 1972 ~0 years
ML 1973 1973 ~0 years
Ada 1977 1980 3 years
Smalltalk 1972 1980 8 years
C++ 1979 1985 6 years
Objective-C Early 1980s 1984 ~4 years
Perl 1987 1987 ~0 years
Python 1989 1991 2 years
Haskell 1987 1990 3 years
Visual Basic 1990 1991 1 year
Ruby 1993 1995 2 years
Java 1991 1995 4 years
PHP 1994 1995 1 year
JavaScript 1995 1995 ~0 years
Lua 1993 1994 1 year
Delphi 1993 1995 2 years
R 1992 1995 3 years
C# 1999 2000 1 year
Scala 2001 2003 2 years
F# 2002 2005 3 years
Go 2007 2009 2 years
Rust 2006 2010 4 years
Kotlin 2010 2011 1 year
Swift 2010 2014 4 years
Julia 2009 2012 3 years

Notes:

• The initial development year marks when the language was first conceptualized or when 
serious development began.

• The release year indicates when the language was publicly released or reached a stable 
version.

• Duration is the time between the initial development and the public release.

These durations reflect the complexity and scope of the languages, as well as the resources available 
to their developers. Some languages were developed rapidly to meet specific needs, while others 
underwent extensive design and iteration before release.

Thanks. Now I would like to have the definition of "Duration" the lifetime of language 
between first and last public release.

ChatGPT



To define the "duration" of a programming language as the lifetime between its first and last public 
release, we need to consider the span of time from the initial release of the language to its latest 
stable or significant release version. Here's a list of some prominent programming languages 
developed between 1960 and 2020, along with their first release year, last significant release year 
(up to 2020), and their duration.

Duration of Programming Languages (First to Last Public Release):

Programming 
Language

First Release 
Year

Last Significant Release 
Year

Duration (Years)

FORTRAN 1957 2020 63
Lisp 1958 2020 62
COBOL 1960 2020 60
ALGOL 60 1960 1973 13
BASIC 1964 2020 (various dialects) 56
PL/I 1966 2020 (IBM Enterprise PL/I) 54
Pascal 1970 2020 (Free Pascal) 50
C 1972 2018 (C18 standard) 46
Prolog 1972 2020 48

ML 1973
2005 (Standard ML 1997 
revised)

32

Ada 1980 2012 (Ada 2012 standard) 32
Smalltalk 1980 2020 40
C++ 1985 2020 (C++20 standard) 35
Objective-C 1984 2016 (Last major updates) 32
Perl 1987 2020 (Perl 5/6) 33
Python 1991 2020 (Python 3.9) 29
Haskell 1990 2020 30

Visual Basic 1991
2008 (VB 6) / 2020 
(VB .NET)

29 (VB 6) / 29 
(VB .NET)

Ruby 1995 2020 (Ruby 2.7) 25
Java 1995 2020 (Java 15) 25
PHP 1995 2020 (PHP 7.4) 25
JavaScript 1995 2020 (ECMAScript 2020) 25
Lua 1994 2020 (Lua 5.4) 26
Delphi 1995 2020 (Delphi 10.4 Sydney) 25
R 1995 2020 (R 4.0.3) 25
C# 2000 2020 (C# 9.0) 20
Scala 2003 2020 (Scala 2.13) 17
F# 2005 2020 (F# 4.7) 15
Go 2009 2020 (Go 1.15) 11
Rust 2010 2020 (Rust 1.47) 10
Kotlin 2011 2020 (Kotlin 1.4) 9
Swift 2014 2020 (Swift 5.3) 6
Julia 2012 2020 (Julia 1.5) 8



Notes:

• The first release year marks when the language was first publicly available.
• The last significant release year indicates the most recent stable release or significant 

update up to 2020.
• Duration is the number of years between the first and last significant release.

This table provides a snapshot of the longevity and sustained development of various programming 
languages over time.

Can you extend the same table with a column that marks by whom the language was 
standardized, like: "None" / "de facto standard" / "formal standard" (by whom)

ChatGPT

Certainly! Below is the extended table including a column indicating whether the language was 
standardized, and if so, by whom.

Duration and Standardization of Programming Languages

Programming 
Language

First 
Release 

Year

Last Significant 
Release Year

Duration 
(Years)

Standardization

FORTRAN 1957 2020 63
Formal standard 
(ANSI, ISO)

Lisp 1958 2020 62 None

COBOL 1960 2020 60
Formal standard 
(ANSI, ISO)

ALGOL 60 1960 1973 13 Formal standard (ISO)

BASIC 1964
2020 (various 
dialects)

56
None / De facto 
standard

PL/I 1966
2020 (IBM Enterprise 
PL/I)

54
Formal standard 
(ANSI)

Pascal 1970 2020 (Free Pascal) 50 Formal standard (ISO)

C 1972 2018 (C18 standard) 46
Formal standard 
(ANSI, ISO)

Prolog 1972 2020 48 Formal standard (ISO)

ML 1973
2005 (Standard ML 
1997 revised)

32 De facto standard

Ada 1980
2012 (Ada 2012 
standard)

32 Formal standard (ISO)

Smalltalk 1980 2020 40 None

C++ 1985
2020 (C++20 
standard)

35 Formal standard (ISO)

Objective-C 1984
2016 (Last major 
updates)

32 None

Perl 1987 2020 (Perl 5/6) 33 None
Python 1991 2020 (Python 3.9) 29 De facto standard
Haskell 1990 2020 30 De facto standard
Visual Basic 1991 2008 (VB 6) / 2020 29 (VB 6) / 29 None / De facto 



Programming 
Language

First 
Release 

Year

Last Significant 
Release Year

Duration 
(Years)

Standardization

(VB .NET) (VB .NET) standard
Ruby 1995 2020 (Ruby 2.7) 25 De facto standard

Java 1995 2020 (Java 15) 25
Formal standard (ISO, 
ECMA)

PHP 1995 2020 (PHP 7.4) 25 De facto standard

JavaScript 1995
2020 (ECMAScript 
2020)

25
Formal standard 
(ECMA)

Lua 1994 2020 (Lua 5.4) 26 De facto standard

Delphi 1995
2020 (Delphi 10.4 
Sydney)

25 None

R 1995 2020 (R 4.0.3) 25 De facto standard

C# 2000 2020 (C# 9.0) 20
Formal standard 
(ECMA, ISO)

Scala 2003 2020 (Scala 2.13) 17 De facto standard
F# 2005 2020 (F# 4.7) 15 De facto standard
Go 2009 2020 (Go 1.15) 11 De facto standard
Rust 2010 2020 (Rust 1.47) 10 De facto standard
Kotlin 2011 2020 (Kotlin 1.4) 9 De facto standard
Swift 2014 2020 (Swift 5.3) 6 None
Julia 2012 2020 (Julia 1.5) 8 De facto standard

Notes:

• Formal standard indicates the language has an official standard maintained by recognized 
bodies such as ANSI, ISO, ECMA, etc.

• De facto standard indicates that the language has widely accepted conventions and 
standards, but no official standardization body.

• None indicates that the language does not have an official or widely recognized standard.

4o

What are the reasons if a programming language is getting a standardization status "none", 
"Formal standard", "de facto Standard"

ChatGPT

The status of a programming language's standardization—whether "none," "formal standard," or "de 
facto standard"—depends on various factors, including the language's history, development process, 
community adoption, and use cases. Here are some reasons for each standardization status:

None

1. Niche or Specialized Use:

• Some languages are designed for very specific tasks or niches and do not gain wide 
enough adoption to warrant formal standardization.

2. Proprietary Development:



• Languages developed and controlled by a single company or organization (e.g., 
Objective-C by Apple) may not seek or achieve formal standardization.

3. Rapid Evolution:

• Languages that evolve rapidly or have frequent changes may not settle into a 
standardized form (e.g., Swift).

4. Experimental Nature:

• Some languages are experimental or research-oriented, focusing more on exploring 
new concepts rather than widespread industry adoption.

Formal Standard

1. Wide Adoption and Industry Demand:

• Languages that become widely adopted across different industries often seek formal 
standardization to ensure consistency and interoperability (e.g., C, C++).

2. Longevity and Stability:

• Mature languages that have been in use for a long time are more likely to be 
standardized formally (e.g., COBOL, FORTRAN).

3. Diverse Implementations:

• Languages that have multiple implementations benefit from a formal standard to 
ensure compatibility and avoid fragmentation (e.g., SQL, Ada).

4. Regulatory or Government Use:

• Languages used in regulated environments, such as government or safety-critical 
systems, often require formal standardization (e.g., Ada).

5. Organizational Backing:

• Standardization bodies (ANSI, ISO, ECMA) and industry consortiums may back the 
standardization process, providing resources and formal procedures (e.g., Java by 
ISO and ECMA).

De Facto Standard

1. Widespread Community Adoption:

• Some languages become de facto standards due to their widespread use and 
community-driven development, even without formal standardization (e.g., Python, 
JavaScript).

2. Dominant Implementation:

• When a single implementation of a language is so dominant that it sets the standard 
for others, it can become a de facto standard (e.g., Perl, Ruby).

3. Open Source Ecosystem:

• Open source languages often rely on community consensus rather than formal 
standardization, leading to de facto standards (e.g., Go, Rust).

4. Flexibility and Evolution:



• De facto standards can evolve more flexibly and quickly than formally standardized 
languages, adapting to new needs and technologies.

5. Vendor Neutrality:

• Languages that are developed and maintained by open communities rather than 
single vendors often become de facto standards due to their neutral, inclusive 
development process.

Summary

• None: Often niche, proprietary, rapidly evolving, or experimental languages without broad 
adoption or multiple implementations.

• Formal Standard: Widely adopted, stable, mature languages often used in regulated or 
critical systems, backed by formal standardization bodies.

• De Facto Standard: Languages widely adopted by communities and industry, usually open 
source or driven by a dominant implementation, with flexible and rapid evolution.

Each standardization status reflects the language's development history, community, and usage 
context, balancing the need for consistency with the benefits of flexibility.


	1960s:
	1970s:
	1980s:
	1990s:
	2000s:
	2010s:
	2020:
	Popularity Trends
	Notes:
	Duration of Programming Languages (First to Last Public Release):
	Notes:
	Duration and Standardization of Programming Languages
	Notes:
	None
	Formal Standard
	De Facto Standard
	Summary

