
Intelligent Skin Cancer
Screening (ISCS)

- Final Project
Class: Deep Learning

Gabriela Caetano de Jesus - GitHub
Aleksandra Ristic - GitHub
Joana Villanova - GitHub

https://github.com/GabrielaCJ/Intelligent-Skin-Cancer-Screening
https://github.com/aaleksandraristic/Intelligent-Skin-Cancer-Screening-ISCS-
https://github.com/JoanaVillanova/Intelligent-Skin-Cancer-Screening-ISCS-.git


Table of contents:

Table of contents: 2
Introduction 3
Dataset 4
Methods - Models 7

● Residual Neural Network (ResNet50) 7
● Densely Connected Convolutional Networks (DenseNet121) 8
● GoogLeNet - InceptionV3 8

Model Results 10
● ResNet50 10
● DenseNet121 11
● InceptionV3 14
● Model Comparison 15

Conclusion 18
Resources 19



Introduction

Skin cancer, the most common form of cancer globally, arises from abnormal skin
cell growth. It includes basal cell carcinoma, squamous cell carcinoma, and melanoma.
Early detection through self-examination and professional screenings is crucial for
effective treatment.

If skin cancer is detected early, it can be highly treatable, but late diagnosis can
lead to more advanced stages of the disease and poorer outcomes. By developing
accurate and efficient skin cancer detection systems, we can facilitate early diagnosis
and prompt intervention.

In response to the challenges associated with skin cancer diagnosis, our project
aims to develop and evaluate the effectiveness of convolutional neural network (CNN)
models for classifying suspicious skin changes. We seek to create a reliable and
efficient method for early skin cancer detection by leveraging deep learning techniques.

The effectiveness of CNN models in accurately distinguishing between different
types of skin lesions, including benign and malignant.We seek to provide a reliable and
efficient method for early skin cancer detection.



Dataset

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T

The dataset consists of 10015 dermatoscopic images, that includes a
representative collection of all important diagnostic categories in the realm of
pigmented lesions:

● Actinic keratoses and intraepithelial carcinoma / Bowen's disease (akiec)
● Basal cell carcinoma (bcc)
● Benign keratosis-like lesions (bkl)
● Dermatofibroma (df)
● Melanoma (mel)
● Melanocytic nevi (nv)
● Vascular lesions (vasc)

Out of these 7 types of cancer, the BKL is the only benign one. We read the CSV
file and matched it with our image data to understand our dataset. The names of the
images are all listed in the CSV file and have been categorized into the specific groups
we mentioned above. One of the results that we got is the number of images per group
of folders, and this helped us to see what groups fit the best for our further analysis and
usage:

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T


Looking into this result, we decided to work with the two largest groups: “bkl” and
“mel” and normalize the folder size to 1000 images that we are going to use for our
testing and training. It is essential to ensure that our dataset is balanced, meaning that

each cancer type has a similar number of samples. So, we created a Zip file containing

only the images for bening (‘bkl’) and malign (‘mel’) so that we could run our models.

Our CSV file contains a lot of details about our dataset, as we showed in the
graphs below. We plot the graphs to show the information and better understand the
data that we are dealing with. The top left image (1) shows the number of images for
each type of cancer. Top right image (2) displays the division of hows many cancer
cases belog to which gender - male, female, unknown. On the bottom left (3) we can
see the body location where the cancer is mostly located. The last, bottom right image
(4) shows the density of cancer by age.



In the next step, we wanted to visually compare images that we are planning to
use - ‘bkl’ and ‘mel’ and it is obvious how different these two types of cancer are. The
figure below shows 5 random images from the bkl (Bening) and mel (malign) datasets.



Methods - Models

● Residual Neural Network (ResNet50)

ResNet50 is a deep convolutional neural network architecture which is known for
its effectiveness in training very deep neural networks by addressing the vanishing
gradient problem through the use of residual connections.

Convolutional Layers: ResNet50 consists of 50 layers, primarily composed of
convolutional layers, which are the building blocks for feature extraction in convolutional
neural networks (CNNs). These layers learn to detect features at different levels of
abstraction from the input data.

Residual Blocks: The key innovation of ResNet50 lies in its use of residual
blocks. In a typical neural network, each layer is responsible for learning a
transformation of the input data. However, as the network gets deeper, it becomes
harder to optimize due to the vanishing gradient problem. Residual blocks address this
issue by introducing skip connections, which allow the network to learn residual
mappings instead of directly learning the desired underlying mapping. This helps in
mitigating the degradation problem, allowing for the training of very deep networks.

Global Average Pooling and Fully Connected Layers: Towards the end of the
network, global average pooling is applied to reduce the spatial dimensions of the
feature maps to a vector. This vector is then fed into fully connected layers, followed by
a softmax layer for classification.

Using ResNet50 for skin abnormality classification involves collecting a diverse
dataset of skin abnormality images labeled with malignant or benign cancer,
preprocessing the images by resizing and normalizing them, and then leveraging
transfer learning by fine-tuning the pre-trained ResNet50 model on the dataset. This
entails freezing the initial layers and retraining the later ones. Subsequently, the model
is trained on the dataset to learn to extract relevant features and classify images
accurately. After evaluation on a separate dataset to measure performance metrics,
such as accuracy and loss, the model can be deployed in real-world applications for
automatic classification of skin abnormalities based on their likelihood of being
malignant or benign cancer.



● Densely Connected Convolutional Networks (DenseNet121)

Is a flexible architecture applicable to a variety of computer vision applications
including picture classification, object identification, and semantic
segmentation.DenseNet introduces a novel connectivity pattern between layers, where
each layer is connected to every other layer in a feed-forward fashion. The architecture
is characterized by dense connectivity between layers, where feature maps from all
preceding layers are concatenated and passed as input to subsequent layers.

The densenet121 function is a convenience function that creates a
DenseNet-121 network. It takes two arguments: num_class and pre-trained. The
num_class argument specifies the number of output classes, and the pre-trained
argument specifies whether to use a pre-trained network version. If pre-trained is set to
None, the function returns a new instance of the DenseNet-121 network. If pre-trained is
set to a path to a pre-trained model file, the function loads the pre-trained model weights
and returns the model.

Dense Blocks and Transition Layers: A dense block consists of multiple
bottleneck layers connected to each other in a feedforward fashion. Each bottleneck
layer takes the output of the previous layer as input and produces a fixed number of
output feature maps. A transition layer consists of a batch normalization layer, a 1x1
convolutional layer, and a 2x2 average pooling layer.

Offers a compelling combination of improved accuracy, parameter efficiency,
gradient flow, and interpretability, making it a popular choice for various computer vision
tasks where deep learning models are deployed.

● GoogLeNet - InceptionV3

Inception (GoogLeNet) is a groundbreaking deep convolutional neural network
introduced by Google researchers in 2014. It is primarily used for large-scale visual recognition
tasks like ImageNet. Its architecture revolutionized deep learning with its efficient design and
pioneering concepts.

Inception (GoogLeNet) is a testament to innovation in deep learning architecture,
showcasing the power of parallel convolutional pathways and efficient feature
extraction.

At the heart of Inception lies its distinctive architecture, characterized by inception
modules. These modules are pivotal components employing parallel convolutional pathways to
extract features across various scales concurrently. This approach enables the network to
capture intricate details while maintaining computational efficiency.



Below are the key components of Inception:

1. Inception Modules: These are the building blocks of the Inception network, integrating
parallel convolutional layers to capture features at multiple resolutions. This design
choice facilitates the network's ability to extract diverse and rich feature representations.

2. 1x1 Convolutions: Utilized within the inception modules, 1x1 convolutions play a crucial
role in dimensionality reduction and introducing non-linearity. This process enhances
computational efficiency by reducing the computational burden while preserving
essential features.

3. Pooling Operations: Inception incorporates max-pooling operations for downsampling,
effectively reducing spatial dimensions while retaining significant features. This step is
vital for managing computational complexity and improving the network's scalability.

4. Auxiliary Classifiers: Inception integrates auxiliary classifiers at intermediate layers to
combat the vanishing gradient problem and aid in regularization. These auxiliary
classifiers provide additional supervision during training, thereby promoting better
gradient flow and enhancing the network's generalization ability.

5. Global Average Pooling: In place of traditional fully connected layers, Inception adopts
global average pooling, which computes the average of each feature map. This
approach significantly reduces overfitting and parameter count while preserving spatial
information, leading to more robust and efficient models.



Model Results

● ResNet50

Looking at the results of the ResNet50 model below, it's evident that there is
fluctuation in both training and validation accuracy and loss throughout the epochs.
Initially, the model achieves moderate accuracy on both training and validation sets, but
as training progresses, validation accuracy tends to stagnate or even decrease slightly.
This suggests potential overfitting, where the model is memorizing the training data
rather than generalizing well to unseen data. However, towards the later epochs, both
training and validation accuracy start to improve again, indicating that the model might
be learning more robust features. Overall, while the model achieves relatively high
accuracy on the validation set towards the end of training, further investigation into
regularization techniques or adjustments to the model architecture may be warranted to
address overfitting and improve generalization performance.



● DenseNet121

We use the DenseNet model for a deep learning task, such as image
classification, validation loss, and accuracy metrics, which provide insights into how
well the model performs on unseen data (validation set). Here's a brief interpretation of
my results:

In this case, we use some techniques to improve:

Dropout: Randomly drop a proportion of neurons during training to prevent
co-adaptation of feature detectors and reduce overfitting.

Early Stopping: Monitor validation loss during training and stop training when
validation loss stops improving or starts to degrade to prevent overfitting.

Data Augmentation: Apply transformations to the training data, such as rotation,
scaling, flipping, and cropping, to increase the diversity of the training dataset and



improve generalization.

We assume the validation loss measures how well the model's predictions match
the true labels on the validation set. A lower validation loss indicates that the model's
predictions are closer to the true labels, while a higher loss suggests the opposite. The
graphic below shows the results of training accuracy and validation. The training on the
blue line shows very good accuracy, a little higher than validation accuracy, which
means the training in this model is working. Still, the performance on validation
accuracy needs selecting the best model or tuning hyperparameters to improve
performance.

The validation accuracy measures the proportion of correctly predicted labels
from all validation samples. A higher validation accuracy indicates better model
performance on the validation set. With a validation accuracy of 0.68, the model
correctly predicts around 68% of the labels in the validation set. This means it performs
reasonably well, but there is still room for improvement, as the accuracy could be higher.

The validation loss of 0.59 indicates that, on average, the model's predictions are
somewhat close to the true labels. The training loss was close to 0.55, which means
models are given good results. However, there is still room for improvement, as the loss
could be lower.

In summary, training accuracy provides insight into how well the model is
learning from the training data. Still, it should be interpreted alongside validation
accuracy and loss to assess the model's generalization ability and avoid overfitting.





● InceptionV3

We achieved promising results after training and testing our skin cancer
classification model using the InceptionV3 architecture. The model exhibited an overall
accuracy of approximately 78.84% on the validation dataset, demonstrating its
effectiveness in distinguishing between benign and malignant skin lesions.

Throughout the 30 epochs of training, we observed a steady improvement in
accuracy, with the model achieving a peak validation accuracy of 72.34% at the final
epoch. These results indicate the model's capability to generalize well to unseen data
and its potential utility in clinical settings for assisting dermatologists in early skin cancer
detection, which were our objectives when we started this project.



● Model Comparison

These are the results for the models mentioned above:

InceptionV3:
Validation Loss: 0.5729

Validation Accuracy: 0.7234

ResNet50:
Validation Loss: 0.6894

Validation Accuracy: 0.6621

DenseNet121:
Validation Loss: 0.5937

Validation Accuracy: 0.6803

InceptionV3 outperforms ResNet50 and DenseNet121 regarding both validation
accuracy and loss for skin image recognition. With a validation accuracy of
approximately 72.34% and a validation loss of about 0.5729, InceptionV3 demonstrates
superior performance compared to ResNet50 and DenseNet121. This suggests that
InceptionV3's architecture, which utilizes a more complex and efficient deep learning



network, is better suited for capturing the intricate features present in skin images,
leading to more accurate classification results. Additionally, the relatively lower
validation loss indicates that InceptionV3 achieves better generalization on unseen
data, further solidifying its effectiveness for skin image recognition tasks. Therefore,
based on these findings, InceptionV3 emerges as the preferred model for skin image
recognition among the three models evaluated. However, it's worth noting that model
selection should also consider other factors such as computational resources,
deployment requirements, and specific characteristics of the dataset. Graphs below
show the comparison of both training and validation accuracy as well as training and
validation between these three models:





Conclusion

In this project, we explored the effectiveness of three popular deep learning
models, ResNet50, InceptionV3, and DenseNet121, for skin image recognition. The
objective was to classify skin images into malignant or benign cancer categories, aiding
in early detection and diagnosis. Each model underwent training and evaluation using a
dataset of skin images, with performance metrics including validation accuracy and loss
tracked across multiple epochs.

Upon analysis of the results, it was found that InceptionV3 emerged as the
top-performing model for skin image recognition. Its architecture, which incorporates
sophisticated convolutional neural networks, proved effective in capturing intricate
features present in skin images, leading to more accurate classification results.

While InceptionV3 showed promising performance, there are opportunities for
further improvement. Future adjustments could involve fine-tuning the model
hyperparameters, such as learning rate, batch size, and optimizer choice, to enhance
accuracy and convergence speed potentially. Additionally, data augmentation
techniques could be employed to increase the diversity and quantity of training data,
thereby improving the model's ability to generalize to unseen skin images.

In conclusion, this project underscores the importance of selecting appropriate
deep-learning models for specific image recognition tasks. While InceptionV3 emerged
as the best-performing model in this context, ongoing research and experimentation are
essential to continually refine and optimize skin image recognition systems, ultimately
contributing to advancements in medical diagnostics and patient care.



Resources
● https://www.kaggle.com/code/raniaioan/starter-skin-cancer-mnist-ham10

000-6a5a3b01-0/notebook

● https://www.kaggle.com/code/fanconic/cnn-for-skin-cancer-detection

● https://www.kaggle.com/code/maheshmani13/hmnist-28-28-rgb-cnn-skin-
cancer-detection/notebook

● https://github.com/ashishpatel26/Skin-Lesions-Detection-Deep-learning/tr
ee/main/Notebooks

https://www.kaggle.com/code/raniaioan/starter-skin-cancer-mnist-ham10000-6a5a3b01-0/notebook
https://www.kaggle.com/code/raniaioan/starter-skin-cancer-mnist-ham10000-6a5a3b01-0/notebook
https://www.kaggle.com/code/fanconic/cnn-for-skin-cancer-detection
https://www.kaggle.com/code/maheshmani13/hmnist-28-28-rgb-cnn-skin-cancer-detection/notebook
https://www.kaggle.com/code/maheshmani13/hmnist-28-28-rgb-cnn-skin-cancer-detection/notebook
https://github.com/ashishpatel26/Skin-Lesions-Detection-Deep-learning/tree/main/Notebooks
https://github.com/ashishpatel26/Skin-Lesions-Detection-Deep-learning/tree/main/Notebooks

