Voice recorder application using Python
Creating a voice recorder application using Python is an excellent way to dive into audio processing and manipulation. This guide will walk you through building a simple voice recorder application that can capture audio from a microphone and save it in various formats such as WAV, MP3, and more.
Prerequisites
Before we start, ensure you have the following:
1. Python: Make sure Python is installed on your system. You can download it from python.org.
2. pip: This is the package installer for Python. It comes with Python, but you can upgrade it using:
python -m pip install --upgrade pip
3. pyaudio: This library is used for capturing audio from the microphone.
pip install pyaudio
4. wave: This is a standard Python library for reading and writing WAV files.
5. pydub: This library is used for converting audio files to different formats.
pip install pydub
6. ffmpeg: Required for converting audio formats with pydub. You can download it from ffmpeg.org and ensure it's added to your system's PATH.
Step 1: Recording Audio
We'll start by writing a script to capture audio from the microphone and save it as a WAV file using PyAudio and the wave module.
import pyaudio
import wave

def record_audio(filename, duration, sample_rate=44100, channels=2):
 p = pyaudio.PyAudio()

 stream = p.open(format=pyaudio.paInt16,
 channels=channels,
 rate=sample_rate,
 input=True,
 frames_per_buffer=1024)

 print("Recording...")
 frames = []

 for _ in range(0, int(sample_rate / 1024 * duration)):
 data = stream.read(1024)
 frames.append(data)

 print("Finished recording.")

 stream.stop_stream()
 stream.close()
 p.terminate()

 wf = wave.open(filename, 'wb')
 wf.setnchannels(channels)
 wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
 wf.setframerate(sample_rate)
 wf.writeframes(b''.join(frames))
 wf.close()

record_audio('output.wav', 10) # Record for 10 seconds
Step 2: Converting Audio Formats
To convert the recorded WAV file to other formats like MP3, we'll use the pydub library.
from pydub import AudioSegment

def convert_audio(input_file, output_file):
 audio = AudioSegment.from_wav(input_file)
 audio.export(output_file, format=output_file.split('.')[-1])

convert_audio('output.wav', 'output.mp3') # Convert WAV to MP3
Full Voice Recorder Application
Here’s how you can combine the recording and conversion functionality into a single application:
import pyaudio
import wave
from pydub import AudioSegment

def record_audio(filename, duration, sample_rate=44100, channels=2):
 p = pyaudio.PyAudio()

 stream = p.open(format=pyaudio.paInt16,
 channels=channels,
 rate=sample_rate,
 input=True,
 frames_per_buffer=1024)

 print("Recording...")
 frames = []

 for _ in range(0, int(sample_rate / 1024 * duration)):
 data = stream.read(1024)
 frames.append(data)

 print("Finished recording.")

 stream.stop_stream()
 stream.close()
 p.terminate()

 wf = wave.open(filename, 'wb')
 wf.setnchannels(channels)
 wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
 wf.setframerate(sample_rate)
 wf.writeframes(b''.join(frames))
 wf.close()

def convert_audio(input_file, output_file):
 audio = AudioSegment.from_wav(input_file)
 audio.export(output_file, format=output_file.split('.')[-1])

def main():
 wav_filename = 'output.wav'
 mp3_filename = 'output.mp3'

 duration = int(input("Enter the duration of the recording in seconds: "))

 record_audio(wav_filename, duration)
 convert_audio(wav_filename, mp3_filename)

 print(f"Audio saved as {wav_filename} and converted to {mp3_filename}")

if __name__ == "__main__":
 main()
Conclusion
In this tutorial, we've created a simple voice recorder application using Python. We used the PyAudio library to capture audio and the wave module to save it in WAV format. Additionally, we utilized the pydub library and ffmpeg to convert the WAV file to MP3. This application can be further enhanced with a graphical user interface (GUI) using libraries like Tkinter or PyQt, and additional features like pause/resume recording, adjusting sample rates, and more.

