
Contents

1 Modern Android code 2
1.1 From Java to Kotlin . 2
1.2 From Android Views to Jetpack Compose . 3
1.3 Dependency Injection with Hilt . 5
1.4 From SharedPreferences to Protobuf-backed DataStore 5
1.5 The Gradle build system . 6
1.6 Speech To Text button . 7

Bibliography 8

1

1 Modern Android code1

This chapter illustrates the various steps that we took to migrate the Dicio Android application to2

new and modern technologies. The original codebase dated back to 2019 and did not respect good3

Android app design standards even from back then. The migration took just ≈80 hours to complete.4

We made these changes: we converted the codebase from Java to Kotlin (section 1.1), we migrated5

the UI from the imperative Android Views to the declarative Jetpack Compose and picked up the6

MVVM architecture (section 1.2), we introduced dependency injection to better separate components7

and provide state to composables (section 1.3), we ditched SharedPreferences in favour of DataStore8

(section 1.4), we applied a few build system overhauls (section 1.5). The last section, 1.6, explains the9

implementation of a particularly complicated component: the Speech To Text button.10

1.1 From Java to Kotlin11

The only programming language available for Android development was Java up until 2017, when12

Google announced plans to also support Kotlin 1. Kotlin really took off within the developer commu-13

nity only after 2019, when Google adopted a Kotlin-first approach 2.14

Since the first commit to the Dicio codebase dates back to 2019, and Kotlin was not widespread15

yet, back then we naturally chose Java as the programming language for the project. In more recent16

years, though, the advantages of Kotlin over Java have become apparent 3:17

• Kotlin avoids NullPointerExceptions since nullable types are embedded into the type system.18

For example Type? can take values of type Type, or the value null. To turn a Type? into a19

Type the programmer needs to explicitly assert non-nullity (e.g. obj!!) or use a safe call (e.g.20

obj?.doSomething(), which calls doSomething() only if obj != null). Instead Java has no21

built-in null safety, which often leads to crashes, although @Nullable and @NonNull annotations22

can help.23

• Kotlin has a more powerful function system than Java, with inline lambdas, propereties (which24

automaitcally create getters and setters), operator overloading, extension functions.25

• Kotlin also has various shortands for creating singleton classes, data classes, union types.26

• Kotlin compiles to JVM bytecode just like Java, and an effort was made to make Java and Kotlin27

almost fully interoperable, allowing to migrate apps one file at a time.28

• Kotlin does not have checked exceptions, which is kind of a disadvantage, but speeds up devel-29

opment.30

Therefore the first step in migrating Dicio to modern techologies was to convert all of the code31

from Java to Kotlin. Fortunately this could be done mostly automatically thanks to the tools provided32

by Android Studio, leaving only a few errors and broken references to solve.33

Furthermore, the old Dicio codebase used a Reactive Programming framework named RxJava334

[6] to achieve concurrency. This was needed, for example, to analyze the user input and perform35

network requests without blocking the UI thread. During the migration phase it made sense to switch36

to Kotlin coroutines [5] instead, which are built into the language itself. Coroutines implement the37

async/await paradigm at the language level, making them more flexible and easy to reason about.38

1Celebrating 5 years of Kotlin on Android, https://android-developers.googleblog.com/2022/08/celebrating-5-years-
of-kotlin-on-android.html

2Android’s Kotlin-first approach, https://developer.android.com/kotlin/first
3Kotlin comparison to Java, https://kotlinlang.org/docs/comparison-to-java.html

2

https://android-developers.googleblog.com/2022/08/celebrating-5-years-of-kotlin-on-android.html
https://android-developers.googleblog.com/2022/08/celebrating-5-years-of-kotlin-on-android.html
https://developer.android.com/kotlin/first
https://kotlinlang.org/docs/comparison-to-java.html

For example, here is some Java code which uses RxJava3. Its purpose is to run skill.process-39

Input() in the background, and after it has finished call either generateOutput() or onError() on40

the main thread.41

Single.fromCallable(() -> {

skill.processInput();

return skill;

})

.subscribeOn(Schedulers.io())

.observeOn(AndroidSchedulers.mainThread())

.subscribe(this::generateOutput, this::onError);

Here is the equivalent Kotlin code that uses coroutines. It uses standard coding structures (e.g.42

try-catch), and makes it more explicit what is running on the UI thread.43

val scope = CoroutineScope(Dispatchers.IO)

/* ... */

scope.launch {

try {

skill.processInput()

activity.runOnUiThread { generateOutput(skill) }

} catch (throwable: Throwable) {

activity.runOnUiThread { onError(throwable) }

}

}

1.2 From Android Views to Jetpack Compose44

The traditional Android development employed an imperative approach to UI. The initial view tree45

to show on the screen was instantiated based on the structure stored in an XML file, and this tree46

was mutated throughout the app lifecycle via Java code. For example, to obtain a reference to a view47

on the screen, the Java function would have been findViewById(), in a similar fashion to document48

.findElementById() in HTML+JS. This setup, however, had many problems: it required developers49

to always work on multiple files, it made it difficult to reuse code, it was open to programmers using50

wrong view IDs causing crashes at runtime, and most importantly it required to keep the view tree in51

sync with the application state manually.52

Therefore in 2019 Google introduced Jetpack Compose [3], a declarative toolkit for UI inspired53

by ReactJS and Flutter, and made it stable in 2021. In the declarative approach, the UI is a pure54

function of the application state (a so-called @Composable function), making the application state the55

single source of truth. Whenever the state changes, the function is called to obtain the new UI, i.e.56

a recomposition happens. While this process may seem really slow and wasteful, frameworks employ57

heavy optimizations to only recompose the parts of the UI corresponding to what changed in the state,58

making the performance on par with the imperative approach. @Composable functions are written59

entirely in Kotlin and within their body they just call other @Composable functions to build the UI as60

desired, allowing to easily split the code in many reusable components. The most basic components,61

like buttons or text areas, are usually provided by libraries, for example the Material Design 3 library.62

Here is an example app with a counter that can be increased by pressing on a button (no styling63

is included to keep the code short):64

<!-- This code would be inside res/layout/main_activity.xml -->

<LinearLayout>

<Button

android:id="@+id/button_id"

android:text="Click here" />

<TextView

android:id="@+id/text_id" />

</LinearLayout>

3

// This code would be inside MainActivity's onCreate

setContent(R.layout.main_activity)

Button button = findViewById<Button>(R.id.button_id)

TextView text = findViewById<TextView>(R.id.text_id)

button.setOnClickListener(v -> {

// assume counter is a field of the MainActivity class

counter += 1;

text.setText("Counter is: " + counter);

});

text.setText("Counter is: " + counter);

The equivalent Jetpack Compose code is much shorter and lies in only one file. Moreover, there is65

no manual call to text.setText() every time the counter changes, which the developer might forget66

to include.67

@Composable

fun MainScreenWithState() {

var counter by rememberSaveable { mutableIntStateOf(0) }

MainScreen(counter, { counter += 1 })

}

@Composable

fun MainScreen(counter: Int, increaseCounter: () -> Unit) {

Column {

Button(onClick = increaseCounter) {

Text("Click here")

}

Text("Counter is: " + counter)

}

}

The Dicio app was originally written using the legacy Android Views and so had to be migrated to68

Jetpack Compose. This migration step was the one which took the longest, since it required rethinking69

how to handle state throughout the whole app, as the previous code had no separation between UI70

and business logic. For the rewritten code, however, we picked the MVVM (Model-View-Viewmodel)71

architecture, encouraged by Jetpack Compose’s good ViewModel support.72

Here is an example of the same MainScreen, but controlled by a ViewModel.73

class MainScreenViewModel : ViewModel() {

private val _counterState = MutableStateFlow(0)

val counterState: StateFlow<Int> = _counterState.asStateFlow()

fun increaseCounter() {

_counterState.update { counter ->

return@update counter + 1

}

}

}

@Composable

fun MainScreenWithState() {

val viewModel: MainScreenViewModel = viewModel()

val counter by viewModel.counterState.collectAsState()

MainScreen(counter, viewModel::increaseCounter) // see above

}

This design separates the logic that increases the counter from the UI, and makes future changes74

much easier (some examples of future changes may be to allow resetting the counter, to control the75

counter via a notification, . . .). One notable thing is the use of MutableStateFlow, which makes it76

possible for the UI layer to listen to changes (via the collectAsState()), and also handles atomic77

update operations. Moreover, Kotlin flows support mapping, filtering and other operations on their78

items via coroutines, which would make it easy to e.g. create a second screen that only shows even79

counter values, while making sure that recompositions only happen when the even number changes.80

4

1.3 Dependency Injection with Hilt81

Dependency Injection (DI) is a design pattern used in object-oriented programming that allows an82

object to receive its dependencies from an external source rather than creating them itself. This83

promotes more modular code, eliminates boilerplate factory classes, and allows replacing real instances84

of services with fake ones at test time.85

Dicio extensively uses the Hilt library [8] for dependency injection. Injectable classes are declared86

by adding the @Inject annotation to their constructor. Each injectable class (and a few other compo-87

nents, e.g. ViewModels, activities and fragments) can in turn have some injectable fields that will be88

automatically built and provided by Hilt upon instantiation. It is possible to make an injectable class89

a singleton with the @Singleton annotation, which is often useful for app-wide services that need to90

be accessed from multiple places.91

For example, the home screen uses a Hilt view model, which depends on SkillHandler and92

SkillEvaluator, which in turn uses SkillHandler too. Moreover SkillEvaluator is also used in93

MainActivity. And the graph of dependencies can get even worse than this, as the codebase grows,94

but Hilt keeps things tidy, as the following code shows:95

@AndroidEntryPoint // <- Hilt needs an entry point to be able to fulfill @Injects

class MainActivity : BaseActivity() {

// automatically obtains the singleton SkillEvaluator when MainActivity is setup

@Inject lateinit var skillEvaluator: SkillEvaluator

}

@Composable

fun HomeScreen() {

// automatically obtains a Hilt view model for use in a @Composable

val viewModel: HomeScreenViewModel = hiltViewModel()

}

@HiltViewModel // <- makes sure the lifecycle of the view model is handled correctly

class HomeScreenViewModel @Inject constructor(

val skillHandler: SkillHandler,

val skillEvaluator: SkillEvaluator,

) { /* ... */ }

@Singleton // <- this is a singleton, so Hilt will instantiate this class only once

class SkillEvaluator @Inject constructor(

private val skillHandler: SkillHandler,

) { /* ... */ }

@Singleton

class SkillHandler @Inject constructor() { /* ... */ }

1.4 From SharedPreferences to Protobuf-backed DataStore96

SharedPreferences were the standard way to store user settings in Android apps up until recently,97

when Google started suggesting DataStore [2] instead.98

SharedPreferences were basically just an XML file on disk with key-value pairs, where the keys99

were strings, and the values could be any Java built-in type plus string sets. The Android ecosystem100

provided ways to easily read and write those values, but there were a few shortcomings, such as101

blocking I/O, contrived setup to listen to changes, hardcoded string keys, and no built-in way to102

encode enum values.103

DataStore solves these problems by providing an API based on Kotlin coroutines, that allows104

getting values asynchronously and makes it simple to listen to changes. In order to make the stored105

values type-safe, and eliminate the need for hardcoded string keys, DataStore allows storing the data106

on disk as a .pb Protobuf-encoded file. Each Protobuf-encoded file corresponds to a .proto file107

processed at compilation time, which contains type and enum definintions and describes the binary108

representation of data on disk.109

For example, this might be a .proto file for user settings in an app like Dicio:110

5

message UserSettings {

Theme theme = 1;

bool show_speech_to_text_button = 2;

map<string, bool> enabled_skills = 3;

}

enum Theme { THEME_LIGHT = 0; THEME_DARK = 1; /* ... */ }

Then, in the app code, the settings can be read by just accessing the .data field of a DataStore111

object. Listening to changes, e.g. inside a @Composable, boils down to manipulating the Kotlin flow:112

val dataStore: DataStore<UserSettings> = DataStoreFactory.create(/* ... */)

@Composable

fun SttButtonIfEnabledInSettings() {

val showSttButton = dataStore.data // this is a Kotlin flow

.map { settings -> settings.showSpeechToTextButton }

.collectAsState(initial = true) // value to use while settings are being loaded

if (showSttButton) {

Button(onClick = /* ... */) {

Text("Speech to text button")

}

}

}

1.5 The Gradle build system113

Android apps are setup and built using Gradle [4], a build system based on the JVM. Keeping Gradle114

build files up-to-date requires some maintenance, since very often there are new features that need to115

be adopted and old functionalities become deprecated.116

For example, the recently introduced Version Catalogs provide a way to keep the versions of all117

dependencies in a single .toml file, which helps avoid version clashes and forgetting library updates.118

Therefore the dependencies of Dicio are now listed in a Version Catalog, for example:119

in gradle/libs.versions.toml

[versions]

datastore = "1.1.1"

[libraries]

androidx-datastore = { module = "androidx.datastore:datastore", version.ref = "datastore" }

// in app/build.gradle.kts

dependencies {

implementation(libs.androidx.datastore)

}

A major overhaul of Gradle happened when the suggested language of build files changed from120

Groovy DSL to Kotlin DSL (where DSL stands for “Domain Specific Language”). Groovy DSL is a121

dynamically typed language with a rather lenient syntax, making build scripts easy to read but hard122

to maintain: for example, variables can be assigned without =, and functions can be called without123

(...), making assignments and function calls easy to confuse. Kotlin DSL, on the other hand, is124

statically typed and uses the concise but strict Kotlin syntax rules. Therefore all Dicio build files were125

migrated from Groovy DSL (.gradle files) to Kotlin DSL (.gradle.kts files). For example, these126

snippets perform the same actions, but the first is in Groovy DSL and the second in Kotlin DSL:127

minifyEnabled false

proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'

isMinifyEnabled = false

proguardFiles(getDefaultProguardFile("proguard-android-optimize.txt"), "proguard-rules.pro")

In order to understand what the user says, Dicio has a list of possible sentences in various lan-128

guages, as described in ?? TODO ADD REF. This list needs to be directly accessible from Kotlin129

6

code for maximum performance, but it would be cumbersome for community translators to trans-130

late Kotlin files directly. Therefore the Kotlin lists are generated at compile-time based on some131

.yaml files stored under app/src/main/sentences. This is done by a Gradle plugin we created,132

sentences-compiler-plugin, that properly handles build task dependencies and only triggers re-133

compilation when something changes. The plugin uses the KotlinPoet library [7] to generate correct134

Kotlin code.135

1.6 Speech To Text button136

One of the most complicated components of the Dicio app is the Speech To Text (STT) button at137

the bottom of the home screen. It needs to handle various operations: downloading, unzipping and138

loading the STT model while showing progress to the user; listening to the user speech and providing139

that information to other app components; handling language changes; acquiring the microphone140

permission; reporting errors. The button icon and label need to reflect the current state of the STT141

input device, so the user knows what is going on and what to expect when clicking on the button.142

Clicks on the button need to be perform different actions based on the current state, e.g. initiating143

the model download or starting to listen.144

To perform STT we chose Vosk [1], a project that provides small STT models that can be run145

locally with good results, along with the libraries needed to actually run the models. Vosk models146

need to be downloaded, unzipped and loaded before they can perform STT.147

In order to handle the STT button complexity correctly, we designed the state machine shown in148

fig. 1.1, which we implemented for the Vosk STT input device 4. Bold arrows indicate user clicks on149

the button, while normal arrows indicate automatic processes (e.g. the download finishes or the STT150

input device detects silence and stops listening). Error states are greyed out so that they create less151

confusion. The NoMicrophonePermission state is handled separately in the UI layer, and is thus not152

included here.153

Not
available

Not
initialized

Not
downloaded

Downloading

Error
downloading

Downloaded

Unzipping

Error
unzipping

Not
loaded

Loading
(listen)

Loading

Error
loading

Listening Loaded

Figure 1.1: Vosk Speech To Text input device state machine

A few notes about the non-obvious state transitions:154

• When the app is started, the STT input device is created with NotInitialized as the initial state.155

As soon as the app language is known, the state is set to:156

– NotAvailable if the STT input device does not support the current language157

4app/src/main/kotlin/org/stypox/dicio/io/input/vosk/VoskInputDevice.kt

7

https://github.com/Stypox/dicio-android/blob/master/app/src/main/kotlin/org/stypox/dicio/io/input/vosk/VoskInputDevice.kt

– NotDownloaded if the previously downloaded model was not in the current language158

– Downloaded if a .zip is found on disk159

– NotLoaded or Loading if the model is found on disk (the actual state and the value of160

Loading.thenStartListening are chosen depending on the way the app was started and161

on user settings)162

– NotDownloaded otherwise163

• The Downloading and Unzipping states hold information about the progress of the operation.164

When downloading finishes, unzipping starts directly without manual intervention.165

• Loading comes in two possible states: with thenStartListening either true or false. When it is166

true (Loading (listen)), after loading has finished, the STT input device will immediately start167

listening. If the user clicks on the STT button while in the Loading state, thenStartListening168

will alternate between true and false.169

• Loaded and Listening states own the loaded STT model themselves, so that even if the state170

changes in an unexpected way, the STT model is garbage collected along with the state object171

and does not create memory leaks.172

• While in the Listening state, the STT input device reports user utterances and other events to173

a callback provided by the last caller of the onClick method (i.e. the method that the UI layer174

must call whenever the button is clicked). This is to allow using the STT input device from175

multiple places in the app at the same time, i.e. in the main screen as an input to the assistant,176

and in the Speech To Text service pop-up window.177

Figure 1.2 shows what the button looks like for all of the states. On the first row: NoMicro-178

phonePermission, NotInitialized, NotAvailable, NotDownloaded. On the second row: Downloading,179

ErrorDownloading, Downloaded, Unzipping. On the third row: ErrorUnzipping, NotLoaded, Loading180

with thenStartListening set to true, Loading with thenStartListening set to false, ErrorLoading,181

Loaded, Listening,182

Figure 1.2: Speech To Text button previews

8

Bibliography

[1] Alphacephei. Vosk speech recognition toolkit. https://alphacephei.com/vosk/, 2019. Accessed:
2024-06-19.

[2] Google. DataStore. https://developer.android.com/topic/libraries/architecture/

datastore, 2012. Accessed: 2024-06-18.

[3] Google. Jetpack compose. https://developer.android.com/develop/ui/compose, 2019. Ac-
cessed: 2024-06-14.

[4] Gradle Inc. Gradle build tool. https://gradle.org/, 2008. Accessed: 2024-06-19.

[5] JetBrains. Kotlin coroutines. https://kotlinlang.org/docs/coroutines-overview.html,
2017. Accessed: 2024-06-14.

[6] Microsoft. ReactiveX RxJava: Reactive Extensions for the JVM. https://github.com/

ReactiveX/RxJava, 2011. Accessed: 2024-06-14.

[7] Square. KotlinPoet. https://square.github.io/kotlinpoet/, 2012. Accessed: 2024-06-19.

[8] Square and Google. Dagger hilt. https://dagger.dev/hilt/, 2012. Accessed: 2024-06-18.

9

https://alphacephei.com/vosk/
https://developer.android.com/topic/libraries/architecture/datastore
https://developer.android.com/topic/libraries/architecture/datastore
https://developer.android.com/develop/ui/compose
https://gradle.org/
https://kotlinlang.org/docs/coroutines-overview.html
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://square.github.io/kotlinpoet/
https://dagger.dev/hilt/

	Modern Android code
	From Java to Kotlin
	From Android Views to Jetpack Compose
	Dependency Injection with Hilt
	From SharedPreferences to Protobuf-backed DataStore
	The Gradle build system
	Speech To Text button

	Bibliography

