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1 The Compressible Stokes System

The compressible Stokes system (without thermal expansion) is given by
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where 7 is the deviatoric stress tensor, p is pressure, [ := + g” characterizes the compressiblity of the material,

and f represents a body force. Approximating the time derivative of p with a backward Euler scheme, we can
rewrite Eq. (2) as
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where At is the time step length, and p® denotes the pressure in the previous time step.
We derive the weak for of the momentum conservative equation by integrating the inner product of Eq. (1)
and a virtual velocity v across the computational domain €2, which yields after integrating by part
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where &(-) := 3[V() + VT (-)] = £V - (-) is the deviatoric symmetric gradient operator. Similarly, the weak form
of mass conservative equation is obtained by multiplying Eq. (3) by a virtual pressure ¢ and integrating across

), which gives
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2 Constitutive Relation

Here we consider a Maxwell-type viscoelastic plastic model, which is based on the additive decomposition of
the deviatoric strain rate e:

e=¢e"+e°+¢&. (6)
The constitutive relationship between 7 and € can then be expressed as
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where 1 = n(u, p) is the viscosity, G is the shear modulus, 7 is the plastic multiplyer, ¥ is the plastic potential,
and 7 denotes the co-rotational derivative of 7. We assume that the plastic flow is governed by the Drucker-
Prager model:
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where 111 1= 4/ %’r : 7 stands for the second invariant of 7, &, f and (¢ are material parameters related with

frictional angle ¢, dilatancy angle 1 and cohesion c. Integrating the stress rate with a first-order difference
scheme, i.e. 7 =79+ 7At, we can rewrite Eq. (7) as
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where 7Y¢ and &' are defined as
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The volumetric constitutive relation is based on an additive decomposition of the divergence of velocity
(notice the negative sign for the plastic component)
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Similar to the deviatoric part, we can also define the trial pressure as
At
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then from Eq. (12) and Eq. (9) we get
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3 Newton Linearization

Replacing the independent variables (u,p) in Eq. (4) and Eq. (5) by (u'", p**), we obtain the following nonlinear
system (assuming that the volumetric parts of u and u* are identical):
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If we apply the Newton-Raphson method to solve Egs. (15) and (16), then in each iteration we need to solve a
linearized system
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The differentiations of F}, and F}, are given by

ggj s de” :/Qe(v) : % : de™dQ —/ V- v%taa(zt{) : det™dQ, (19)
g;ﬁdp" = /Q e(v) 88 I qptran — / V- wdptdQ - / v aa( ) gy, (20)
ggﬁ s de™” :—/QqV~du“dQ—/Qq Dt de™dQ, (21)
g;’;dptr:f /Q ‘Jﬁzftrdg / 8(75) dp*de. (22)

Comparing to the linearized system of incompressible Stokes equations, the additional terms related with plastic
dilation are (terms with § and/or &):

top left: - / v.vAﬁtaa(@ - de'dQ, (23)
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To calculate the additional terms, we need to know the differentiation of ¥ := ’yé. As for the differentiation of
viscosity, we use a finite difference approximation to calculate d¢:
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The expression of (') depends on the strain weakening model; the expression of (&', p'*) can be derived

from Eq. (10):
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