
Consistent Linearization for Compressible Stokes System with Plastic

Dilation

Yimin Jin

June 24, 2024

1 The Compressible Stokes System

The compressible Stokes system (without thermal expansion) is given by

−∇ · τ +∇p = f , (1)

−∇ · u = βṗ, (2)

where τ is the deviatoric stress tensor, p is pressure, β := 1
ρ
∂ρ
∂p characterizes the compressiblity of the material,

and f represents a body force. Approximating the time derivative of p with a backward Euler scheme, we can
rewrite Eq. (2) as

∇ · u+
βp

∆t
=
βp0

∆t
, (3)

where ∆t is the time step length, and p0 denotes the pressure in the previous time step.
We derive the weak for of the momentum conservative equation by integrating the inner product of Eq. (1)

and a virtual velocity v across the computational domain Ω, which yields after integrating by part∫
Ω

ε(v) : τdΩ−
∫
Ω

∇ · vpdΩ =

∫
Ω

v · fdΩ, (4)

where ε(·) := 1
2 [∇(·)+∇T (·)]− 1

3∇ · (·) is the deviatoric symmetric gradient operator. Similarly, the weak form
of mass conservative equation is obtained by multiplying Eq. (3) by a virtual pressure q and integrating across
Ω, which gives ∫

Ω

q∇ · udΩ +

∫
Ω

q
βp

∆t
dΩ =

∫
Ω

q
βp0

∆t
dΩ. (5)

2 Constitutive Relation

Here we consider a Maxwell-type viscoelastic plastic model, which is based on the additive decomposition of
the deviatoric strain rate ε:

ε = εv + εe + εp. (6)

The constitutive relationship between τ and ε can then be expressed as

ε =
τ

2η
+

τ̊

2G
+ γ

∂Ψ

∂τ
, (7)
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where η = η(u, p) is the viscosity, G is the shear modulus, γ is the plastic multiplyer, Ψ is the plastic potential,
and τ̊ denotes the co-rotational derivative of τ . We assume that the plastic flow is governed by the Drucker-
Prager model:

Φ =τII − ξp− ζ, (8)

Ψ =τII − ξ̂p, (9)

where τII :=
»

1
2τ : τ stands for the second invariant of τ , ξ, ξ̂ and ζ are material parameters related with

frictional angle ϕ, dilatancy angle ψ and cohesion c. Integrating the stress rate with a first-order difference
scheme, i.e. τ = τ 0 + τ̊∆t, we can rewrite Eq. (7) as

τ = 2ηve
Å
εtr − γ

∂Ψ

∂τ

ã
, (10)

where ηve and εtr are defined as

ηve :=

Å
1

η(u, p)
+

1

G∆t

ã−1

, εtr := ε+
τ 0

2G∆t
. (11)

The volumetric constitutive relation is based on an additive decomposition of the divergence of velocity
(notice the negative sign for the plastic component)

∇ · u = −β(p− p0)

∆t
− γ

∂Ψ

∂p
. (12)

Similar to the deviatoric part, we can also define the trial pressure as

ptr := p0 − ∆t

β
∇ · u, (13)

then from Eq. (12) and Eq. (9) we get

p = ptr − γ∆t

β

∂Ψ

∂p
= ptr +

γξ̂∆t

β
. (14)

3 Newton Linearization

Replacing the independent variables (u, p) in Eq. (4) and Eq. (5) by (utr, ptr), we obtain the following nonlinear
system (assuming that the volumetric parts of u and utr are identical):

Fu :=

∫
Ω

ε(v) : τdΩ−
∫
Ω

∇ · vptrdΩ−
∫
Ω

v · fdΩ−
∫
Ω

∇ · v γξ̂∆t
β

dΩ = 0, (15)

Fp :=−
∫
Ω

q∇ · utrdΩ−
∫
Ω

qβptr

∆t
dΩ +

∫
Ω

q

Å
βp0

∆t
− γξ̂

ã
dΩ = 0. (16)

If we apply the Newton-Raphson method to solve Eqs. (15) and (16), then in each iteration we need to solve a
linearized system

∂Fu

∂εtr
: dεtr +

∂Fu

∂ptr
: dptr = −Fu, (17)

∂Fp

∂εtr
: dεtr +

∂Fp

∂ptr
: dptr = −Fp. (18)
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The differentiations of Fu and Fp are given by

∂Fu

∂εtr
: dεtr =

∫
Ω

ε(v) :
∂τ

∂εtr
: dεtrdΩ−

∫
Ω

∇ · v∆t
β

∂(γξ̂)

∂εtr
: dεtrdΩ, (19)

∂Fu

∂ptr
dptr =

∫
Ω

ε(v) :
∂τ

∂ptr
dptrdΩ−

∫
Ω

∇ · vdptrdΩ−
∫
Ω

∇ · v∆t
β

∂(γξ̂)

∂ptr
dptrdΩ, (20)

∂Fp

∂εtr
: dεtr =−

∫
Ω

q∇ · dutrdΩ−
∫
Ω

q
∂(γξ̂)

∂εtr
: dεtrdΩ, (21)

∂Fp

∂ptr
dptr =−

∫
Ω

qβdptr

∆t
dΩ−

∫
Ω

q
∂(γξ̂)

∂ptr
dptrdΩ. (22)

Comparing to the linearized system of incompressible Stokes equations, the additional terms related with plastic
dilation are (terms with β and/or ξ̂):

top left: −
∫
Ω

∇ · v∆t
β

∂(γξ̂)

∂εtr
: dεtrdΩ, (23)

top right: −
∫
Ω

∇ · v∆t
β

∂(γξ̂)

∂ptr
dptrdΩ, (24)

bottom left: −
∫
Ω

q
∂(γξ̂)

∂εtr
: dεtrdΩ, (25)

bottom right: −
∫
Ω

qβ

∆t
dΩ−

∫
Ω

q
∂(γξ̂)

∂ptr
dptrdΩ. (26)

To calculate the additional terms, we need to know the differentiation of ϑ := γξ̂. As for the differentiation of
viscosity, we use a finite difference approximation to calculate dϑ:

∂ϑ

∂εtr

∣∣∣∣
(εtr,ptr)

≈ ϑ(εtr + δεtr, ptr)− ϑ(εtr, ptr)

δεtr
,

∂ϑ

∂ptr

∣∣∣∣
(εtr,ptr)

≈ ϑ(εtr, ptr + δptr)− ϑ(εtr, ptr)

δptr
.

(27)

The expression of ξ̂(εtr) depends on the strain weakening model; the expression of γ(εtr, ptr) can be derived
from Eq. (10):

γ =

Å
εtr − τ

2ηve

ã
:

Å
∂Ψ

∂τ

ã−1

=

Å
εtr − τ

2ηve

ã
:
2τII
τ

=

Å
1

ηeff
− 1

ηve

ã
τII

=2

Ç
1− ηeff

ηve

å
εtrII.

(28)
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