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in complete agreement with Problem 1.11 of Chapter 1 if we realize that a phase common
to both the upper and lower components is devoid of physical significance.

3.3 SO(3), SU(2), and Euler Rotations

3.3.1 Orthogonal Group

We will now study a little more systematically the group properties of the operations with
which we have been concerned in the previous two sections.

The most elementary approach to rotations is based on specifying the axis of rotation and
the angle of rotation. It is clear that we need three real numbers to characterize a general
rotation: the polar and the azimuthal angles of the unit vector n̂ taken in the direction of
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the rotation axis and the rotation angle φ itself. Equivalently, the same rotation can be
specified by the three Cartesian components of the vector n̂φ. However, these ways of
characterizing rotation are not so convenient from the point of view of studying the group
properties of rotations. For one thing, unless φ is infinitesimal or n̂ is always in the same
direction, we cannot add vectors of the form n̂φ to characterize a succession of rotations.
It is much easier to work with a 3 × 3 orthogonal matrix R because the effect of successive
rotations can be obtained just by multiplying the appropriate orthogonal matrices.

How many independent parameters are there in a 3 × 3 orthogonal matrix? A real 3 × 3
matrix has 9 entries, but we have the orthogonality constraint

RRT = 1 (3.71)

which corresponds to 6 independent equations because the product RRT, being the same as
RTR, is a symmetrical matrix with 6 independent entries. As a result, there are 3 (that is,
9–6) independent numbers in R, the same number previously obtained by a more
elementary method.

The set of all multiplication operations with orthogonal matrices forms a group. By this
we mean that the following four requirements are satisfied.

1. The product of any two orthogonal matrices is another orthogonal matrix, which is
satisfied because

(R1R2)(R1R2)
T = R1R2RT

2RT
1 = 1. (3.72)

2. The associative law holds:

R1(R2R3) = (R1R2)R3. (3.73)

3. The identity matrix 1, physically corresponding to no rotation, defined by

R1 = 1R = R (3.74)

is a member of the class of all orthogonal matrices.
4. The inverse matrix R−1, physically corresponding to rotation in the opposite sense,

defined by

RR−1 = R−1R = 1 (3.75)

is also a member.

This group has the name SO(3), where S stands for special, O stands for orthogonal, 3
for three dimensions. Note only rotational operations are considered here, hence we have
SO(3) rather than O(3) (which can include the inversion operation of Chapter 4 later).

3.3.2 Unitary Unimodular Group

In the previous section we learned yet another way to characterize an arbitrary rotation,
that is, to look at the 2 × 2 matrix (3.63) that acts on the two-component spinor χ. Clearly,
(3.63) is unitary. As a result, for the c+ and c−, defined in (3.46),

|c+|2 + |c−|2 = 1 (3.76)
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is left invariant. Furthermore, matrix (3.63) is unimodular; that is, its determinant is 1, as
will be shown explicitly below.

We can write the most general unitary unimodular matrix as

U(a,b) =
�

a b
−b∗ a∗

�
, (3.77)

where a and b are complex numbers satisfying the unimodular condition

|a|2 + |b|2 = 1. (3.78)

We can easily establish the unitary property of (3.77) as follows:
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We can readily see that the 2× 2 matrix (3.63) that characterizes a rotation of a spin 1
2

system can be written as U(a,b). Comparing (3.63) with (3.77), we identify
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from which the unimodular property of (3.78) is immediate. Conversely, it is clear that the
most general unitary unimodular matrix of form (3.77) can be interpreted as representing
a rotation.

The two complex numbers a and b are known as Cayley–Klein parameters. Histori-
cally the connection between a unitary unimodular matrix and a rotation was known long
before the birth of quantum mechanics. In fact, the Cayley–Klein parameters were used to
characterize complicated motions of gyroscopes in rigid-body kinematics.

Without appealing to the interpretations of unitary unimodular matrices in terms of
rotations, we can directly check the group properties of multiplication operations with
unitary unimodular matrices. Note in particular that

U(a1,b1)U(a2,b2) = U(a1a2 −b1b∗2,a1b2 +a∗2b1), (3.81)

where the unimodular condition for the product matrix is

|a1a2 −b1b∗2|2 + |a1b2 +a∗2b1|2 = 1. (3.82)

For the inverse of U we have

U−1(a,b) = U(a∗,−b). (3.83)

This group is known as SU(2), where S stands for special, U for unitary, and 2 for
dimensionality 2. In contrast, the group defined by multiplication operations with general
2× 2 unitary matrices (not necessarily constrained to be unimodular) is known as U(2).
The most general unitary matrix in two dimensions has four independent parameters and
can be written as eiγ (with γ real) times a unitary unimodular matrix:

U = eiγ
�

a b
−b∗ a∗

�
, |a|2 + |b|2 = 1, γ∗ = γ. (3.84)

SU(2) is called a subgroup of U(2).
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Because we can characterize rotations using both the SO(3) language and the SU(2)
language, we may be tempted to conclude that the groups SO(3) and SU(2) are isomorphic,
that is, that there is a one-to-one correspondence between an element of SO(3) and an
element of SU(2). This inference is not correct. Consider a rotation by 2π and another one
by 4π. In the SO(3) language, the matrices representing a 2π rotation and a 4π rotation are
both 3× 3 identity matrices; however, in the SU(2) language the corresponding matrices
are −1 times the 2× 2 identity matrix and the identity matrix itself, respectively. More
generally, U(a, b) and U(−a,−b) both correspond to a single 3× 3 matrix in the SO(3)
language. The correspondence therefore is two-to-one; for a given R, the corresponding U
is double valued. One can say, however, that the two groups are locally isomorphic.

3.3.3 Euler Rotations

From classical mechanics the reader may be familiar with the fact that an arbitrary rotation
of a rigid body can be accomplished in three steps, known as Euler rotations. The Euler
rotation language, specified by three Euler angles, provides yet another way to characterize
the most general rotation in three dimensions.

The three steps of Euler rotations are as follows. First, rotate the rigid body counter-
clockwise (as seen from the positive z-side) about the z-axis by angle α. Imagine now that
there is a body y-axis embedded, so to speak, in the rigid body such that before the z-axis
rotation is carried out, the body y-axis coincides with the usual y-axis, referred to as the
space-fixed y-axis. Obviously, after the rotation about the z-axis, the body y-axis no longer
coincides with the space-fixed y-axis; let us call the former the y�-axis. To see how all this
may appear for a thin disk, refer to Figure 3.4a. We now perform a second rotation, this
time about the y�-axis by angle β. As a result, the body z-axis no longer points in the space-
fixed z-axis direction. We call the body-fixed z-axis after the second rotation the z�-axis; see
Figure 3.4b. The third and final rotation is about the z�-axis by angle γ. The body y-axis
now becomes the y��-axis of Figure 3.4c. In terms of 3×3 orthogonal matrices the product
of the three operations can be written as

R(α,β,γ)≡ Rz�(γ)Ry�(β)Rz(α). (3.85)

A cautionary remark is in order here. Most textbooks in classical mechanics prefer to
perform the second rotation (the middle rotation) about the body x-axis rather than about
the body y-axis (see, for example, Goldstein et al. (2002)). This convention is to be avoided
in quantum mechanics for a reason that will become apparent in a moment.

In (3.85) there appear Ry� and Rz� , which are matrices for rotations about body axes.
This approach to Euler rotations is rather inconvenient in quantum mechanics because we
earlier obtained simple expressions for the space-fixed (unprimed) axis components of the
S operator, but not for the body-axis components. It is therefore desirable to express the
body-axis rotations we considered in terms of space-fixed axis rotations. Fortunately there
is a very simple relation, namely,

Ry�(β) = Rz(α)Ry(β)R−1
z (α). (3.86)
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Fig. 3.4 Euler rotations.

The meaning of the right-hand side is as follows. First, bring the body y-axis of Figure 3.4a
(that is, the y�-axis) back to the original fixed-space y-direction by rotating clockwise
(as seen from the positive z-side) about the z-axis by angle α then rotate about the y-axis
by angle β. Finally, return the body y-axis to the direction of the y�-axis by rotating about
the fixed-space z-axis (not about the z�-axis!) by angle α. Equation (3.86) tells us that the
net effect of these rotations is a single rotation about the y�-axis by angle β.

To prove this assertion, let us look more closely at the effect of both sides of (3.86) on
the circular disk of Figure 3.4a. Clearly, the orientation of the body y-axis is unchanged in
both cases, namely, in the y�-direction. Furthermore, the orientation of the final body z-axis
is the same whether we apply Ry�(β) or Rz(α)Ry(β)R−1

z (α). In both cases the final body
z-axis makes a polar angle β with the fixed z-axis (the same as the initial z-axis), and its
azimuthal angle, as measured in the fixed-coordinate system, is just α. In other words, the
final body z-axis is the same as the z�-axis of Figure 3.4b. Similarly, we can prove

Rz�(γ) = Ry�(β)Rz(γ)R−1
y� (β). (3.87)
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Using (3.86) and (3.87), we can now rewrite (3.85). We obtain

Rz�(γ)Ry�(β)Rz(α) = Ry�(β)Rz(γ)R−1
y� (β)Ry�(β)Rz(α)

= Rz(α)Ry(β)R−1
z (α)Rz(γ)Rz(α)

= Rz(α)Ry(β)Rz(γ), (3.88)

where in the final step we used the fact that Rz(γ) and Rz(α) commute. To summarize,

R(α,β,γ) = Rz(α)Ry(β)Rz(γ), (3.89)

where all three matrices on the right-hand side refer to fixed-axis rotations.
Now let us apply this set of operations to spin 1

2 systems in quantum mechanics.
Corresponding to the product of orthogonal matrices in (3.89) there exists a product of
rotation operators in the ket space of the spin 1

2 system under consideration:

D(α,β,γ) = Dz(α)Dy(β)Dz(γ). (3.90)

The 2×2 matrix representation of this product is
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�
, (3.91)

where (3.62) was used. This matrix is clearly of the unitary unimodular form. Conversely,
the most general 2×2 unitary unimodular matrix can be written in this Euler angle
form.

Notice that the matrix elements of the second (middle) rotation exp(−iσyφ/2) are purely
real. This would not have been the case had we chosen to rotate about the x-axis rather
than the y-axis, as done in most textbooks in classical mechanics. In quantum mechanics
it pays to stick to our convention because we prefer the matrix elements of the second
rotation, which is the only rotation matrix containing off-diagonal elements, to be purely
real.4

The 2× 2 matrix in (3.91) is called the j = 1
2 irreducible representation of the rotation

operator D(α,β,γ). Its matrix elements are denoted by D
(1/2)
m�m (α,β,γ). In terms of the

angular-momentum operators we have
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(3.92)

In Section 3.5 we will extensively study higher j-analogues of (3.91).

4 This, of course, depends on our convention that the matrix elements of Sy (or, more generally, Jy) are taken to
be purely imaginary.


