Ceph Improved Read
Balancer

OSD Size aware read balancer

Josh Salomon, Red Hat
Laura Flores, IBM

Motivation

Capacity balancing is a mandatory functional requirement for software defined
storage systems

This implies that larger devices handle more capacity

Which means that larger devices are more loaded

Which implies that under load they become the weakest link in the performance
chain

So larger devices make the system slower

This is just "the physics laws of distributed loaded systems"

& RedHat

Motivation

Capacity balancing is a mandatory functional requirement for software defined
storage systems

This implies that larger devices handle more capacity

Which means that larger devices are more loaded

Which implies that under load they become the weakest link in the performance
chain

So larger devices make the system slower

This is just "the physics laws of distributed loaded systems"

Or possibly not always...

& RedHat

Assumptions

Most devices bandwidth depends just on the technology and not on the capacity
m Note: Thisisincorrect for some AWS EBS types

Write load is decided based on the PG distribution (which depends on the device

capacity)

Read load depends on the primary distribution (which can be changed as of Reef)

Smaller devices have less load than larger devices, hence we can give them more

read tasks (more primaries)

» This breaks "the physics laws of distributed loaded systems", and gives better

cluster performance.

& RedHat

Assumptions

Most devices bandwidth depends just on the technology and not on the capacity
m Note: Thisisincorrect for some AWS EBS types

Write load is decided based on the PG distribution (which depends on the device

capacity)

Read load depends on the primary distribution (which can be changed as of Reef)

Smaller devices have less load than larger devices, hence we can give them more

read tasks (more primaries)

» This breaks "the physics laws of distributed loaded systems", and gives better

cluster performance.

Up to some level - this is not a magic remedy for every heterogenous OSD

configuration

& RedHat

Assumptions

So we need to assume one thing - what is the read ratio out of all the IOs per pool
Step 1: a new pool parameter was added read ratio
Usage:
m ceph osd pool set rbd read ratio 70
> Valid values - [0..100].
> 0O unsets this parameter, 1-100 are the predicted read |0s percentage
out of all IOs to this pool
m ceph osd pool get rbd read ratio
Applicable only to replicated pool.
Should not be fully accurate, but should the closer it is to the real value the better
the cluster performance will be

Note: Currently the PR does not handle PGs of different weights
& RedHat

System Load Calculation

» First step: PG load
m Theload of asingle PG =100 + (100 - read_ratio)*(pool_size - 1)
m Forevery 100 IOs on the system the primary performs 100 |IOs and the
secondaries perform only the write I0s
» Poolload = PG load * PG num
» Desired load per OSD = pool load / osd num

& RedHat

System Load Calculation

First step: PG load
m Theload of asingle PG =100 + (100 - read_ratio)*(pool_size - 1)
m Forevery 100 IOs on the system the primary performs 100 |IOs and the
secondaries perform only the write I0s
Pool load = PG load * PG num
Desired load per OSD = pool load / osd num
If we can keep OSD load even across all OSDs the system will perform optimally

(no weakest link in the chain)

& RedHat

OSD Load Calculation

» The same for PG load calculator but we take part of PG for each OSD:

m Theload on asingle OSD: nPrims * 100 + (nPGs - nPrims) * write_ratio

m We want the OSD load to be close to X (calculated before) so we need to
solve nPrims * 100 + (nPGs - nPrims) * write_ratio = X where the only variable
is nPrims: nPrims = (X - nPGs * write_ratio) / read_ratio

> When read_ratio is O there is no meaning for read balancing (and
technically it means the parameter is not set)

m Note: The load of asingle OSD is in the range between nPGs * 100 and

NPGs * write_ratio

& RedHat

>

From math to accounting

Now we need to move from theory to practice, let's look at the following

configuration

m Assume we want the small osd to be all primaries

Node 1

>
OSD1
OosD2

= _/

Node n

>
OSD1
OosD2

= _/

& RedHat

From math to accounting

» Challenges
m What happens if we have PG which maps to 2 (or 3) small OSDs
m What happens if we have a PG which is mapped only to large OSDs
m Here we need to move from math to accounting, which will give us worse
performance than the math calculation
» The code implements iterative approach
m Firstthe all-primaries OSDs
m Thenno-primaries OSDs

m Then math calculation
Node 1 Node n

o || € ’ o
OsD2 OsD2

& RedHat

Results (calculation results from unit test)

>>>>>Desired primary distribution for read ratio: 70
: 16/6.35714
: 23/3.35714

osd.
osd.
0sd.2:
0sd.3:
osd.

osd.

0sd.6
osd.

0sd.8
osd.
osd.

osd.
osd.
osd..
osd.
osd.
0sd.5:
0sd.6
osd.

.9:

16/6.35714
12/8.07143
12/8.07143
12/8.07143
16/6.35714

: 25/2.5 Load
11/8.5 Load

iO: 33/0 Load

: 16/7 Load
: 23/5 Load
16/0 Load
12/9 Load
12/7 Load
12/9 Load
16/7 Load
: 25/4 Load
11/7 Load

: 16/8 Load =
.10: 33/1 Load
Read ratio: 70 High load before: 1620 High load after:

Load
Load

Load =

Load
Load
Load
Load

current/desired
current/desired
current/desired
current/desired
current/desired
current/desired
current/desired

900/925
1320/925
480/925
780/925
780/925
710/925
1110/925

= current/desired 1030/925

= current/desired 680/925

9: 16/6.35714 Load = current/desired 830/925
= current/desired 1620/990
<<<<<PGs distribution:

970

1040
= 480

990
850
990
970

1030

820

1040

= 1060

1060

OSD weights

Osd.0 - 50
Osd.1-70
Osd.2 - 50
Osd.3-35
Osd.4 - 35
Osd.5 - 35
Osd.6 - 50
Osd.7-75
Osd.8 - 35
Osd.9 - 50
Osd.10 -100

& RedHat

Risks

This feature is totally opt in, usage via osdmaptool
No code on a critical path, minor changes for code on existing read balancer non
critical path
Based on ceph osd pg-upmap-primary which existsin Reef andis now in
production

m Thiscommand has a minor impact on the 10 path, but it was Tech Preview in

Reef and is part of Squid.

Can be easily canceled (opt out)

= Risk is very low

& RedHat

Limitations

Works only on replicated pools
Works only on pools with number of PGS is a power of 2 (all PGs have the same
weight)
Works only when all PGs are full
For this version we do not honor OSD primary affinity
m If auserrequires this, he should not use this feature
m Infuture version we may honor OSD primary affinity 0, butprobably
no other values (just O and 1)
Works better from scratch than as an iterative process
m This might be a bug - butitis not handled in Squid.

In extreme cases may produce non optimal results

& RedHat

linkedin.com/company/red-hat

Thank you

B outube.com/user/RedHatVideos
Questions?

§ facebook.com/redhatinc

Y twittercom/RedHat

