
Ceph Improved Read
Balancer
OSD Size aware read balancer

Josh Salomon, Red Hat

Laura Flores, IBM

▸ Capacity balancing is a mandatory functional requirement for software defined

storage systems

▸ This implies that larger devices handle more capacity

▸ Which means that larger devices are more loaded

▸ Which implies that under load they become the weakest link in the performance

chain

▸ So larger devices make the system slower

▸ This is just "the physics laws of distributed loaded systems"

Motivation

▸ Capacity balancing is a mandatory functional requirement for software defined

storage systems

▸ This implies that larger devices handle more capacity

▸ Which means that larger devices are more loaded

▸ Which implies that under load they become the weakest link in the performance

chain

▸ So larger devices make the system slower

▸ This is just "the physics laws of distributed loaded systems"

▸ Or possibly not always…

Motivation

▸ Most devices bandwidth depends just on the technology and not on the capacity

■ Note: This is incorrect for some AWS EBS types

▸ Write load is decided based on the PG distribution (which depends on the device

capacity)

▸ Read load depends on the primary distribution (which can be changed as of Reef)

▸ Smaller devices have less load than larger devices, hence we can give them more

read tasks (more primaries)

▸ This breaks "the physics laws of distributed loaded systems", and gives better

cluster performance.

Assumptions

▸ Most devices bandwidth depends just on the technology and not on the capacity

■ Note: This is incorrect for some AWS EBS types

▸ Write load is decided based on the PG distribution (which depends on the device

capacity)

▸ Read load depends on the primary distribution (which can be changed as of Reef)

▸ Smaller devices have less load than larger devices, hence we can give them more

read tasks (more primaries)

▸ This breaks "the physics laws of distributed loaded systems", and gives better

cluster performance.

▸ Up to some level - this is not a magic remedy for every heterogenous OSD

configuration

Assumptions

▸ So we need to assume one thing - what is the read ratio out of all the IOs per pool

▸ Step 1: a new pool parameter was added read_ratio

▸ Usage:

■ ceph osd pool set rbd read_ratio 70

➢ Valid values - [0..100].

➢ 0 unsets this parameter, 1-100 are the predicted read IOs percentage

out of all IOs to this pool

■ ceph osd pool get rbd read_ratio

▸ Applicable only to replicated pool.

▸ Should not be fully accurate, but should the closer it is to the real value the better

the cluster performance will be

▸ Note: Currently the PR does not handle PGs of different weights

Assumptions

▸ First step: PG load

■ The load of a single PG = 100 + (100 - read_ratio)*(pool_size - 1)

■ For every 100 IOs on the system the primary performs 100 IOs and the

secondaries perform only the write IOs

▸ Pool load = PG load * PG num

▸ Desired load per OSD = pool load / osd num

System Load Calculation

▸ First step: PG load

■ The load of a single PG = 100 + (100 - read_ratio)*(pool_size - 1)

■ For every 100 IOs on the system the primary performs 100 IOs and the

secondaries perform only the write IOs

▸ Pool load = PG load * PG num

▸ Desired load per OSD = pool load / osd num

▸ If we can keep OSD load even across all OSDs the system will perform optimally

(no weakest link in the chain)

System Load Calculation

▸ The same for PG load calculator but we take part of PG for each OSD:

■ The load on a single OSD: nPrims * 100 + (nPGs - nPrims) * write_ratio

■ We want the OSD load to be close to X (calculated before) so we need to

solve nPrims * 100 + (nPGs - nPrims) * write_ratio = X where the only variable

is nPrims: nPrims = (X - nPGs * write_ratio) / read_ratio

➢ When read_ratio is 0 there is no meaning for read balancing (and

technically it means the parameter is not set)

■ Note: The load of a single OSD is in the range between nPGs * 100 and

NPGs * write_ratio

OSD Load Calculation

▸ Now we need to move from theory to practice, let's look at the following

configuration

■ Assume we want the small osd to be all primaries

From math to accounting

Node 1

OSD1

OSD2

Node n

OSD1

OSD2

▸ Challenges

■ What happens if we have PG which maps to 2 (or 3) small OSDs

■ What happens if we have a PG which is mapped only to large OSDs

■ Here we need to move from math to accounting, which will give us worse

performance than the math calculation

▸ The code implements iterative approach

■ First the all-primaries OSDs

■ Then no-primaries OSDs

■ Then math calculation

From math to accounting

Node 1
OSD1

OSD2

Node n
OSD1

OSD2

Results (calculation results from unit test)

OSD weights

▸ Osd.0 - 50

▸ Osd.1 - 70

▸ Osd.2 - 50

▸ Osd.3 - 35

▸ Osd.4 - 35

▸ Osd.5 - 35

▸ Osd.6 - 50

▸ Osd.7 - 75

▸ Osd.8 - 35

▸ Osd.9 - 50

▸ Osd.10 - 100

▸ This feature is totally opt in, usage via osdmaptool

▸ No code on a critical path, minor changes for code on existing read balancer non

critical path

▸ Based on ceph osd pg-upmap-primary which exists in Reef and is now in

production

■ This command has a minor impact on the IO path, but it was Tech Preview in

Reef and is part of Squid.

▸ Can be easily canceled (opt out)

▸ ⇒ Risk is very low

Risks

▸ Works only on replicated pools

▸ Works only on pools with number of PGS is a power of 2 (all PGs have the same

weight)

▸ Works only when all PGs are full

▸ For this version we do not honor OSD primary_affinity

■ If a user requires this, he should not use this feature

■ In future version we may honor OSD primary_affinity 0 , but probably

no other values (just 0 and 1)

▸ Works better from scratch than as an iterative process

■ This might be a bug - but it is not handled in Squid.

▸ In extreme cases may produce non optimal results

Limitations

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you
Questions?

