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Abstract— This paper addresses about Go-ethereum, an 

Ethereum client, uses LevelDB as its backend database. The 

LSM-tree architecture of LevelDB ensures write performance 

but at the cost of read performance. This trade-off between 

write and read performance worsens as the blockchain network 

grows. This paper investigates the performance impact of the 

LevelDB architecture on the Ethereum client. The results show 

that an increased number of Level0 tables negatively affects 

read performance, causing read amplification where the 

Ethereum client must read small pieces of data multiple times. 
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I. INTRODUCTION  

Blockchain is a data structure that provides consistency 
and reliability by sharing a ledger of digital assets. Ethereum, 
which emerged in 2015, introduced smart contracts, enabling 
the execution of programmable contracts on blockchain 
networks. As of 2024, Ethereum remains one of the most 
active blockchain projects [1]. However, Ethereum network's 
growth simultaneously presents challenges. Go-Ethereum, 
one of the Ethereum clients, faces disk I/O amplification 
issues due to its backend architecture [2]. The expansive 
backend storage, comprising approximately 20 million blocks 
and 520 million transactions, degrades Ethereum's read 
performance. This paper addresses the disk amplification 
problem in LevelDB-based Ethereum clients, focusing on the 
relationship between LevelDB table ratios and disk 
amplification. 

II. BACKGROUND 

Geth uses LevelDB, which has a 'Key-value store' 
structure [3], as its backend storage. In the case of the Geth 
client, it wraps the LevelDB package written in Go language 
for its use. 

A. LevelDB 

 

Fig 1. illustrates the LevelDB architecture. The memory 
storage consists of a Memtable and an Immutable Memtable, 

while the disk storage is organized into multiple levels through 
compaction. At each level, KV (Key-Value) entries are 
compacted into sorted files (*.sst), except for Level 0. To 
ensure optimal write performance [4], files in Level 0 are 
unsorted and allow duplicates. 

B. LevelDB get 

When compaction occurs in LevelDB SSTable, it 

eliminates duplicate KV and organizes them [4], forming a 

layered structure, as shown in Fig 2. However, since 

compaction consumes storage bandwidth, frequent 

compactions can delay flushing, causing write stalls where 

write requests to the memory buffer cannot be executed. To 

reduce write stalls, the threshold for Level0 Tables can be 

increased, thereby delaying compaction operations and 

preventing write stalls. However, this method degrades read 

performance [5]. LevelDB read operations traverse all Level0 

Tables to search for KV. If the value is not found, it continues 

the search in subsequent layers. Importantly, Level0 Tables 

are not sorted and allow KV duplicates to facilitate write 

operations for updating the most recent data. Consequently, 

as the number of Level0 Tables increases, the frequency of 

inefficient storage access rises, leading to degraded read 

performance [5]. This problem naturally results in decreased 

read performance for Geth. 

C. Read amplification of previous research [2] 

Previous research indicates that Geth's Ethereum storage 
suffers from I/O amplification issues. Write operations in Geth 
require multiple LevelDB get operations. To conduct 
experimental measurements, a node is set up by synchronizing 
the Geth client with the ‘mainnet’ from block 1 to 1.6 million. 
The underlying hardware configuration includes 16GB of 
RAM and a 2TB Intel 750 series SSD configured in raid0. 
From blocks 1 to 1.6 million, there are 0.22 million account 
addresses and 5.2 million transactions within blocks. And 
when measuring the influence of storage layer, to eliminate 
the overhead of RPC calls, directly interacting with the geth 
client (with the golang layer) [2].  

 

Fig. 1. Architecture of LevelDB [4] 

Fig. 2. LevelDB Get executetion operation process [5] 



TABLE I. READ AMPLIFICATION IN PIROR STUDIES [2] 

Metrics # of execution LevelDB gets 

getBlock 1.6 M 8 M (x 5) 

getTx 5.2 M 10.4 M (x 2) 

getBalance 0.22 M 1.4 M (x 7) 

depth of trie  7 

 According to To TABLE Ⅰ, it can be confirmed that I/O 
amplification was occurring in the go-ethereum client as of 
2018. For the three metrics (getBlock, getTx, getBalance), 
LevelDB get operations occurred 5 times, 2 times, and 7 times 
more frequently than their respective metric execution counts. 
It can be anticipated that even greater amplification is likely 
occurring in the current Ethereum network [2].  

III. EXPERIMENT 

The experimental setup includes two distinct node types 
within the main network environment, an archive node and a 
snapshot node. These configurations allow for a comparative 
analysis of read amplification metrics across different node 
architectures. The archive node maintains a comprehensive 
historical record of the blockchain, while the snapshot node 
preserves a condensed version of the state. 

TABLE II. CONFIGURATION EXPERIMENT WORKLOAD 

Node 

type 

Workload(getBlock) 

Measuring block 

range 

getBlock 

Execute time 

Workload 

Full time 

archive 1 - 400,000 459 s 464 s 

archive 1 - 1,600,000 3105 s 3126 s 

snapshot 1 - 400,000 475 s 481 s 

snapshot 1 - 1,600,000 3045 s 3067 s 

TABLE III. RESULT OF EXPERIMENT  

Node 

type 

Read Amplification Metric 

Chaindata Disk Read bytes Level0 table 

archive 333 M 9.3 M 2.5 GB 
300 

archive 2489 M 30.6 M 7.9 GB 

snapshot 290 M 6 M 0.77 GB 
393 

snapshot 2172 M 26.8 M 2.2 GB 

Table II shows the workload range for getBlock and the 
execution time of getBlock within the total workload duration. 
Although it could be expected that the archive node would 
take more time due to the larger amount of data it needs to 
store compared to the snapshot node, this expectation was not 
met. Table II suggests that there is no significant difference in 
read performance across the tested scenarios. Table II 
demonstrates no substantial difference in read performance 
across the evaluated scenarios. However, upon examination of 
Table III, it becomes evident that the archive node exhibits a 
significantly higher number of read operations compared to 
the other configurations. When comparing the overall read 
ratio, it is natural that archvie nodes with larger chain data 
volumes have a higher number of Read bytes, but when 
comparing Read bytes, snapshot nodes with larger Level0 
tables had a higher amplification rate. The results show that 
the read amplification ratio is higher because the snapshot 
node has a larger number of Level0 tables. This is not a 

comparison of the read performance of snapshot nodes and 
archive nodes, and the results show that the number of level0 
tables affects go-ethereum read performance. 

IV. CONCLUSION 

 In summary, LevelDB backend database of the Ethereum 
client, causes read amplification issues in go-ethereum due to 
architectural issues. Because LevelDB Get must traverse the 
entire Level0 table, if the number increases, read performance 
may be disadvantageous. If so, such a problem would also 
occur in go-ethereum using LevelDB, so we created two 
mainnet nodes and varied the number of blocks by varying the 
number of Level0 tables. The experimental results show that 
Level0 tables are causing a major problem in deteriorating 
read performance, and the more Level0 tables there are, the 
more small-sized data reads occur. Based on these results, we 
emphasize that for the scalability and stability of go-ethereum, 
it is necessary to devise a new back-end system and configure 
an architecture suitable for the characteristics of blockchain. 
In follow-up research, we aim to improve performance by 
proposing an optimized architecture suitable for the 
characteristics of blockchain. 
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