
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

LevelDB-based Ethereum client read amplification

Gunwo Do

School of Computer Engineering

Pusan National Univercity

Busan, Korea

doogunwo@pusan.ac.kr

SJ Yun

School of Computer Engineering

Pusan National Univercity

Busan, Korea

yunekorea@pusan.ac.kr

Sungyong Ahn

School of Computer Engineering

Pusan National Univercity

Busan, Korea

sungyong.ahn@pusan.ac.kr

*Corresponding Author

Abstract— This paper addresses about Go-ethereum, an

Ethereum client, uses LevelDB as its backend database. The

LSM-tree architecture of LevelDB ensures write performance

but at the cost of read performance. This trade-off between

write and read performance worsens as the blockchain network

grows. This paper investigates the performance impact of the

LevelDB architecture on the Ethereum client. The results show

that an increased number of Level0 tables negatively affects

read performance, causing read amplification where the

Ethereum client must read small pieces of data multiple times.

Keywords—leveldb, ethereum, disk, read-amplification,

blockchain

I. INTRODUCTION

Blockchain is a data structure that provides consistency
and reliability by sharing a ledger of digital assets. Ethereum,
which emerged in 2015, introduced smart contracts, enabling
the execution of programmable contracts on blockchain
networks. As of 2024, Ethereum remains one of the most
active blockchain projects [1]. However, Ethereum network's
growth simultaneously presents challenges. Go-Ethereum,
one of the Ethereum clients, faces disk I/O amplification
issues due to its backend architecture [2]. The expansive
backend storage, comprising approximately 20 million blocks
and 520 million transactions, degrades Ethereum's read
performance. This paper addresses the disk amplification
problem in LevelDB-based Ethereum clients, focusing on the
relationship between LevelDB table ratios and disk
amplification.

II. BACKGROUND

Geth uses LevelDB, which has a 'Key-value store'
structure [3], as its backend storage. In the case of the Geth
client, it wraps the LevelDB package written in Go language
for its use.

A. LevelDB

Fig 1. illustrates the LevelDB architecture. The memory
storage consists of a Memtable and an Immutable Memtable,

while the disk storage is organized into multiple levels through
compaction. At each level, KV (Key-Value) entries are
compacted into sorted files (*.sst), except for Level 0. To
ensure optimal write performance [4], files in Level 0 are
unsorted and allow duplicates.

B. LevelDB get

When compaction occurs in LevelDB SSTable, it

eliminates duplicate KV and organizes them [4], forming a

layered structure, as shown in Fig 2. However, since

compaction consumes storage bandwidth, frequent

compactions can delay flushing, causing write stalls where

write requests to the memory buffer cannot be executed. To

reduce write stalls, the threshold for Level0 Tables can be

increased, thereby delaying compaction operations and

preventing write stalls. However, this method degrades read

performance [5]. LevelDB read operations traverse all Level0

Tables to search for KV. If the value is not found, it continues

the search in subsequent layers. Importantly, Level0 Tables

are not sorted and allow KV duplicates to facilitate write

operations for updating the most recent data. Consequently,

as the number of Level0 Tables increases, the frequency of

inefficient storage access rises, leading to degraded read

performance [5]. This problem naturally results in decreased

read performance for Geth.

C. Read amplification of previous research [2]

Previous research indicates that Geth's Ethereum storage
suffers from I/O amplification issues. Write operations in Geth
require multiple LevelDB get operations. To conduct
experimental measurements, a node is set up by synchronizing
the Geth client with the ‘mainnet’ from block 1 to 1.6 million.
The underlying hardware configuration includes 16GB of
RAM and a 2TB Intel 750 series SSD configured in raid0.
From blocks 1 to 1.6 million, there are 0.22 million account
addresses and 5.2 million transactions within blocks. And
when measuring the influence of storage layer, to eliminate
the overhead of RPC calls, directly interacting with the geth
client (with the golang layer) [2].

Fig. 1. Architecture of LevelDB [4]

Fig. 2. LevelDB Get executetion operation process [5]

TABLE I. READ AMPLIFICATION IN PIROR STUDIES [2]

Metrics # of execution LevelDB gets

getBlock 1.6 M 8 M (x 5)

getTx 5.2 M 10.4 M (x 2)

getBalance 0.22 M 1.4 M (x 7)

depth of trie 7

 According to To TABLE Ⅰ, it can be confirmed that I/O
amplification was occurring in the go-ethereum client as of
2018. For the three metrics (getBlock, getTx, getBalance),
LevelDB get operations occurred 5 times, 2 times, and 7 times
more frequently than their respective metric execution counts.
It can be anticipated that even greater amplification is likely
occurring in the current Ethereum network [2].

III. EXPERIMENT

The experimental setup includes two distinct node types
within the main network environment, an archive node and a
snapshot node. These configurations allow for a comparative
analysis of read amplification metrics across different node
architectures. The archive node maintains a comprehensive
historical record of the blockchain, while the snapshot node
preserves a condensed version of the state.

TABLE II. CONFIGURATION EXPERIMENT WORKLOAD

Node

type

Workload(getBlock)

Measuring block

range

getBlock

Execute time

Workload

Full time

archive 1 - 400,000 459 s 464 s

archive 1 - 1,600,000 3105 s 3126 s

snapshot 1 - 400,000 475 s 481 s

snapshot 1 - 1,600,000 3045 s 3067 s

TABLE III. RESULT OF EXPERIMENT

Node

type

Read Amplification Metric

Chaindata Disk Read bytes Level0 table

archive 333 M 9.3 M 2.5 GB
300

archive 2489 M 30.6 M 7.9 GB

snapshot 290 M 6 M 0.77 GB
393

snapshot 2172 M 26.8 M 2.2 GB

Table II shows the workload range for getBlock and the
execution time of getBlock within the total workload duration.
Although it could be expected that the archive node would
take more time due to the larger amount of data it needs to
store compared to the snapshot node, this expectation was not
met. Table II suggests that there is no significant difference in
read performance across the tested scenarios. Table II
demonstrates no substantial difference in read performance
across the evaluated scenarios. However, upon examination of
Table III, it becomes evident that the archive node exhibits a
significantly higher number of read operations compared to
the other configurations. When comparing the overall read
ratio, it is natural that archvie nodes with larger chain data
volumes have a higher number of Read bytes, but when
comparing Read bytes, snapshot nodes with larger Level0
tables had a higher amplification rate. The results show that
the read amplification ratio is higher because the snapshot
node has a larger number of Level0 tables. This is not a

comparison of the read performance of snapshot nodes and
archive nodes, and the results show that the number of level0
tables affects go-ethereum read performance.

IV. CONCLUSION

 In summary, LevelDB backend database of the Ethereum
client, causes read amplification issues in go-ethereum due to
architectural issues. Because LevelDB Get must traverse the
entire Level0 table, if the number increases, read performance
may be disadvantageous. If so, such a problem would also
occur in go-ethereum using LevelDB, so we created two
mainnet nodes and varied the number of blocks by varying the
number of Level0 tables. The experimental results show that
Level0 tables are causing a major problem in deteriorating
read performance, and the more Level0 tables there are, the
more small-sized data reads occur. Based on these results, we
emphasize that for the scalability and stability of go-ethereum,
it is necessary to devise a new back-end system and configure
an architecture suitable for the characteristics of blockchain.
In follow-up research, we aim to improve performance by
proposing an optimized architecture suitable for the
characteristics of blockchain.

REFERENCES

[1] Xia, D., Yao, P., Liang, J., & Chen, W. (2024). RemoteBlock: A
Scalable Blockchain Storage Framework for Ethereum. In 2024 IEEE
4th International Conference on Power, Electronics and Computer
Applications (ICPECA) (pp. 878). IEEE. DOI:
10.1109/ICPECA60615.2024.10470941.K. Elissa,

[2] Raju, P., Ponnapalli, S., Oved, G., Keener, Z., Kaminsky, E.,
Chidambaram, V., & Abraham, I. (Year). "mLSM: Making
Authenticated Storage Faster in Ethereum.".

[3] M. Kim and S. Moon, "Analysis of the Characteristics of Storage
Engines and Their Adoption Effects in Blockchain Databases," in Proc.
of the Korea Information Science Society Annual Conference, 2023,
pp. 31-33.

[4] Seo, Y.-C., & Park, S.-H. (2024). PlexDB: Efficient Compaction
Algorithm for Deduplication of LSM-tree based Key-Value Store.
Department of Computer Engineering, Chungbuk National University,
Cheongju, Korea.

[5] Jeongho Lee, Yongju Song, Young Ik Eom.(2022).Read/Write
Performance Analysis depending on Trigger Condition for LSM-tree
Compaction. Korean Institute of Information Scientists and
Engineers,101-102.

