
1

SPDK fsdev Introduction
Anton Nayshtut, SW Engineer | 2024-02-01

2

SPDK File System Device
bdev for the File Systems

• The “S” in SPDK means Storage

• bdev represents the block storage layer

• fsdev represents the file system layer

• fsdev is inspired by bdev and shares the same ideology (concepts, partitioning, modules etc.)

• The SPDK file system device layer (hereafter – fsdev), is a C library intended to be equivalent to the operating system
file system layer.

• Provides the following functionality:

• A pluggable module API for implementing file system devices that interface with different types of file systems.

• Driver modules

• The 1st one - Linux/Posix AIO implementing a bridge to a local folder

• An application API for enumerating and claiming SPDK file system devices and then performing file operations (lookup, forget,
getattr, setattr, mknod, read, write, unink, etc.) on those devices

• Facilities to stack file system devices to create complex I/O pipelines

• Configuration of file system devices via JSON-RPC

• Multiple, lockless queues for asynchronous handling of file operations

• Like bdev, the fsdev module creates abstraction layer that provides common API for all devices. User can use available
fsdev modules or create own module with any type of device underneath

3

SPDK fsdev Architecture
High Level

4

SPDK fsdev API
bdev-like but for the file ops

• Management SPDK fsdev subsystem API – bdev-like, lot of stuff copied from there

• spdk_fsdev_initialize/spdk_fsdev_finish
• spdk_fsdev_get_by_name
• spdk_fsdev_open/spdk_fsdev_close
• spdk_fsdev_get_io_channel
• etc.

• File System specific file-operation level fsdev API inspired by the libfuse’s low-level API

• spdk_fsdev_op_lookup
• spdk_fsdev_op_forget
• spdk_fsdev_op_getattr/spdk_fsdev_op_setattr
• spdk_fsdev_op_readlink
• spdk_fsdev_op_symlink
• spdk_fsdev_op_read
• spdk_fsdev_op_write
• spdk_fsdev_op_release
• spdk_fsdev_op_fsync
• spdk_fsdev_op_mkdir
• spdk_fsdev_op_opendir
• etc.

5

SPDK fsdev Module
How to implement a new file system driver or a virtual fsdev

• An fsdev module can implement

• a new user space file system driver – either generic (NFS, SMB etc.) or custom

• a virtual module – encryption, QoS etc.

• Currently we only have one module implemented – AIO, implementing a Linux AIO-based bridge to a local folder

• based on the libfuse’s passthrough_ll.c

• The next step could be an io_uring-based fsdev module (a performance improvement)

• Some generic File Systems may come later:

• NFS
• SMB
• ?

• Customers can extend the SPDK fsdev functionality by implementing a custom fsdev module

6

Use case - QEMU
fsdev as a virtio-fs backend

• QEMU supports user-land virtio-pci devices

• via the virtio-specific vhost-user API (old way)

• via the generic vfio-user API (new way)

• virtiofsd-rs Rust daemon is currently responsible for emulating virtio-fs devices

• spdk-tgt with fsdev can do the same!

• Problem: virtiofs speaks FUSE (structs, requests, responses), not aware of the file ops

• Solution: FUSE dispatcher! ☺

• fuse_dispatcher is an auxiliary library that implements the FUSE fsdev API translation

• iovec-based API according to virtio-fs spec

• the iovecs contain the FUSE-specific structures (IN and OUT)

• the fuse_dispatcher
• parses the FUSE requests

• calls the corresponding file-operation level fsdev APIs

• format the FUSE responses

• handles the completion

• A minimalistic, pure functional API

• spdk_fuse_dispatcher_create/spdk_fuse_dispatcher_delete
• spdk_fuse_dispatcher_sumbit_request

https://gitlab.com/virtio-fs/virtiofsd
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html

7

QEMU with SPDK fsdev
QEMU + spdk_tgt + Virtio FS Target + FUSE dispatcher + SPDK fsdev

8

	Slide 1: SPDK fsdev Introduction
	Slide 2: SPDK File System Device
	Slide 3: SPDK fsdev Architecture
	Slide 4: SPDK fsdev API
	Slide 5: SPDK fsdev Module
	Slide 6: Use case - QEMU
	Slide 7: QEMU with SPDK fsdev
	Slide 8

