Background 000000 Greco 00000000000 Takeaways 000

Greco

Fast Zero-Knowledge Proofs for Valid FHE RLWE Ciphertexts Formation

Enrico Bottazzi

PSE - Ethereum Foundation

27-6-24 FHE.org

Background 000000 Takeaways 000

Outline

1 Rationale

2 Background

3 Greco

4 Takeaways

Background

Greco 00000000000 Takeaways 000

Secret Voting Application

- The tally is computed by summing up the ciphertexts encoding the votes (either 1 or 0)
- $\circ~$ Valid encrypted votes are of the form E(0) and E(1).
- $\circ~$ A malicious voter could send an invalid encrypted vote such as E(145127835), which can mess up the whole election.

Rationale 0●0 Background 000000 Greco 00000000000 Takeaways 000

Problem

- *Any* FHE-based application will be required to check the correctness of the ciphertexts
- Only exceptions are applications in which the party performing the encryption is the only one affected by the result of the homomorphic computation

Rationale 00● Background 000000 Greco 00000000000 Takeaways 000

Correctness

Users must be able to prove:

- $\circ\,$ the ciphertext they submitted is a valid Ring-Learning with Errors (RLWE) ciphertext
- $\circ\,$ the plaintext message they encrypted meets certain properties

Rationale 00● Background 000000 Greco 00000000000 Takeaways 000

Correctness

Users must be able to prove:

- the ciphertext they submitted is a valid Ring-Learning with Errors (RLWE) ciphertext Greco ZKP
- the plaintext message they encrypted meets certain properties App specific ZKP

Background ●00000 Takeaways 000

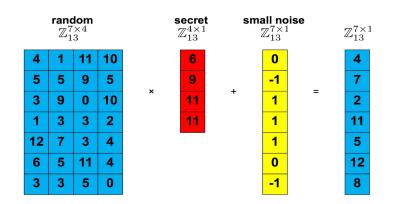


Figure 1: Source: Prof Bill Buchanan OBE FRSE - Learning With Errors and Ring Learning With Errors

$$\vec{A}\cdot\vec{s}+\vec{E}=\vec{B}$$

Background 0●0000 Takeaways 000

RLWE

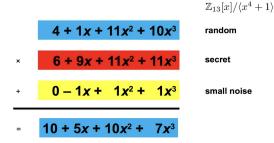


Figure 2: Source: Prof Bill Buchanan OBE FRSE - Learning With Errors and Ring Learning With Errors

$$A \cdot s + E = B$$

Background 00€000 Greco 00000000000 Takeaways 000

$\mathsf{BFV}\xspace[\mathsf{Bra12}][\mathsf{FV12}]$ is a leveled FHE scheme based on the RLWE problem

$$Ct = (Ct_0, Ct_1) = ([A \cdot s + E + K]_Q, -A)$$

• Q be the ciphertext modulus and t be the plaintext modulus where Q >> t• R_Q be the polynomial ring $\frac{Z_Q[X]}{X^N+1}$, with N being a power of two. • $A \leftarrow R_Q, s \leftarrow \chi_{key}, E \leftarrow \chi_{error}$ • $K = \left\lceil \frac{Q[M]_t}{4} \right\rceil$ [KPZ21]

Background 000€00 Greco 00000000000 Takeaways 000

Chinese Remainder Theorem (CRT)

- Set $Q = \prod q_i$ where the q_i factors are pairwise coprime.
- Using this technique, an integer $x \in \mathbb{Z}_Q$ can be represented by its CRT components $\{x_i = x \mod q_i \in \mathbb{Z}_{q_i}\}_i$, and operations on x in Z_Q can be implemented by applying the same operations to each CRT component x_i in Z_{q_i} .

Background 0000●0 Takeaways 000

BFV in CRT Setting [Baj+17]

$$Ct_i = (Ct_{0,i}, Ct_{1,i}) = ([A_i \cdot s + E + K_{0,i}K_1]_{q_i}, -A_i)$$

- \circ *i* indicates the *i*-th CRT decomposition of the ciphertext Ct in the basis q_i
- \circ Operations in R_q are implemented directly in CRT representation.
- $\circ~$ If we choose Q and t such that they are co-prime one can calculate K directly in CRT [KPZ21]

$$K = -t^{-1} [QM]_t \mod q_i$$

 $\circ~$ We will denote the scalar $K_{0,i}=-t^{-1}\mod q_i$ and the polynomial $K_1=[QM]_t$

Background 00000● Greco 00000000000 Takeaways 000

zk-SNARKs

Informally, a *proof* for a relation \mathcal{R} is a protocol between a prover \mathcal{P} and a verifier \mathcal{V} by which \mathcal{P} convinces \mathcal{V} that $\exists w : \mathcal{R}(x, w) = 1$, where x is a called an *instance*, and w a *witness* for x.

- $\circ \ \mathsf{Setup}(1^\lambda,\mathcal{R}) \to \mathsf{pp:} \ \mathsf{setup} \ \mathsf{public} \ \mathsf{parameters} \ \mathsf{for} \ \mathcal{R}.$
- ∘ Prove(pp, x, w) → π/\bot : if $(x, w) \in \mathcal{R}$, output a proof π , otherwise ⊥.
- \circ Verify(pp, x, π) \rightarrow {0,1}: check a proof.

Background 000000 Greco •0000000000 Takeaways 000

Introduction

Greco allows users to prove the validity of a FHE Ring-Learning with Errors (RLWE) ciphertext. Here we focus on BFV Secret Key Encryption in the CRT setting.

Task: design a zkSNARK to prove the following relation:

$$Ct_0 = [A \cdot s + E + K]_Q$$

Greco o●ooooooooo

Challenge - Non Native Arithmetic

- $\circ\,$ Witness values inside the circuit are elements of prime field $\mod\,p.$
 - $\circ~$ In KZG-based SNARKs p is 254 bits
- The coefficients of Ct_0 are defined in Z_Q . All the polynomial operations are performed modulo the ring R_Q

 $\circ~Q$ can range from 27 to 881 bits [Alb+22]

Background

Greco 00●00000000 Takeaways 000

Solution - CRT Decomposition

- \circ Instead of working with Ct_0 , work with their CRT decomposed $Ct_{0,i}$
 - $\circ~$ If Q is 881 bits we can decompose using CRT into k=15 components $Ct_{0,i}$ where q_i is at max 59 bits
- $\circ~$ Coefficients of $Ct_{0,i}$ can be represented in Z_p
- $\circ\,$ Operations on Ct_0 are safely implemented on its k CRT components $Ct_{0,i}$

Solution - Precompute Auxiliary Polynomials

Operation to prove $A_i \cdot s + E + K_{0,i}K_1 = Ct_{0,i} \mod R_{q_i}$

$$\begin{split} C\hat{t}_{0,i} &= A_i \cdot s + E + K_{0,i}K_1 \\ C\hat{t}_{0,i} &= Ct_{0,i} \mod R_{q_i} \\ C\hat{t}_{0,i} &= Ct_{0,i} - R_{2,i}(X^N + 1) \mod Z_{q_i} \\ C\hat{t}_{0,i} &= Ct_{0,i} - R_{2,i}(X^N + 1) - R_{1,i}q_i \end{split}$$

Since $q_i \ll p$, the equation stays unchanged in Z_p :

$$C\hat{t}_{0,i} = Ct_{0,i} - R_{2,i}(X^N + 1) - R_{1,i}q_i \mod Z_p$$
$$Ct_{0,i} = A_i \cdot s + E + K_{0,i}K_1 + R_{2,i}(X^N + 1) + R_{1,i}q_i \mod Z_p$$

Greco 00000000000 Takeaways 000

Solution - Precompute Auxiliary Polynomials

To prove that $Ct_{0,i}$ is correctly formed, it is needed to prove that the equation above holds. This can be rewritten as:

$$Ct_{0,i} = \begin{bmatrix} A_i & 1 & K_{0,i} & (X^N + 1) & q_i \end{bmatrix} \times \begin{bmatrix} s \\ E \\ K_1 \\ R_{2,i} \\ R_{1,i} \end{bmatrix}$$

or

$$Ct_{0,i} = U_i \times S_i$$

Greco 00000000000 Takeaways 000

Solution - Precompute Auxiliary Polynomials

To prove that $Ct_{0,i}$ is correctly formed, it is needed to prove that the equation above holds. This can be rewritten as:

$$Ct_{0,i} = \begin{bmatrix} A_i & 1 & K_{0,i} & (X^N + 1) & q_i \end{bmatrix} \times \begin{bmatrix} s \\ E \\ K_1 \\ R_{2,i} \\ R_{1,i} \end{bmatrix}$$

or

$$Ct_{0,i} = U_i \times S_i$$

Greco 00000●00000

Challenge - Large Degree Polynomial Multiplication

- Many large degree polynomial multiplications involved in the previous operation
- Considering two polynomials f and g of degree n, performing the polynomial multiplications fg = h using the direct method would generate:
 - $\circ (n+1)^2$ multiplication
 - $\circ \ n^2$ addition

Greco 000000●0000

Solution - Challenge-based Large Degree Polynomial Multiplication

- $\circ~$ Evaluate the polynomials f,~g, and h at a random point γ
- $\circ~$ Enforce $f(\gamma)*g(\gamma)=h(\gamma)$ which would be true if fg=h according to Schwartz-Zippel lemma.
 - $\circ n$ multiplication and n addition to evaluate $f(\gamma)$
 - $\circ~n$ multiplication and n addition to evaluate $g(\gamma)$
 - $\circ~2n$ multiplication and 2n addition to evaluate $f(\gamma)$

Background 000000 Greco 0000000●000 Takeaways 000

Achievement

- $\circ\;$ Complexity of performing polynomial multiplication is reduced from $O(n^2)$ to O(n).
- $\circ~$ The constraint is then reduced to proving that

$$\begin{bmatrix} A_i(\gamma) & 1 & K_{0,i} & (\gamma^N + 1) & q_i \end{bmatrix} \times \begin{bmatrix} s(\gamma) \\ E(\gamma) \\ K_1(\gamma) \\ R_{2,i}(\gamma) \\ R_{1,i}(\gamma) \end{bmatrix} = Ct_{0,i}(\gamma)$$

or

$$U_i(\gamma) \times S_i(\gamma) = Ct_{0,i}(\gamma) \tag{1}$$

Proving Strategy

During **phase one** of Proof Generation:

- ${\rm \ 1}$ Fill the witness table with the secret polynomials of S_i
- 2 Extract the commitment of the witness so far and hash it to generate the challenge γ (Fiat-Shamir Heuristic)
- During **phase two** of Proof Generation:
 - $\ensuremath{\mathbbm 1}$ Prove that the coefficients of the polynomials of S_i are in the expected range
 - 2 Evaluate the secret polynomials of S_i at γ , the public polynomials of U_i at γ and the ciphertext $Ct_{0,i}(\gamma)$
 - 3 Prove that (1) holds

Benchmarks

Background 000000 Greco 00000000●0 Takeaways 000

n	$\log q_i$	k	Proof Gen Time	Proof Ver Time
1024	27	1	685.51ms	3.66ms
2048	53	1	1.39s	3.74ms
4096	55	2	3.47s	5.02 ms
8192	55	4	8.98s	4.18ms
16384	54	8	29.43s	6.97ms
32768	59	15	102.15s	14.06ms

Table 1: Greco performance benchmarks for different security parameters.

Run M2 Macbook Pro with 12 cores and 32GB of RAM. Implementation in Halo2-lib. Plonk + KZG Commitments zk-SNARKs

Background 000000 Greco 0000000000 Takeaways 000

Sections Omitted from the Presentation

- $\circ~$ Calculating $R_{2,i}$ and $R_{1,i}$
- $\circ~$ Strategies to prove the correct formation of k ciphertexts
- Public Key Encryption Extension
- $\circ~$ Composability with Application-Specific Logic

- *Almost any* FHE-based application will be required to check the correctness of the ciphertexts using zk-SNARKs
- The main strategies employed to efficiently perform RLWE inside a zk-SNARK are:
 - $\circ~$ Leverage CRT for native coefficient representation
 - Move reduction "outside" the circuit leveraging auxiliary polynomial
 - Challenge-based polynomial multiplication

Background 000000 Greco 00000000000 Takeaways 0●0

Improvements

- Faster (or more FHE-friendly) zk Protocol. Leverage parallelization across different CRT moduli?
- $\circ~$ Support for further encodings and FHE schemes

Background 000000 Greco 00000000000 Takeaways 00●

Thank You

Any Questions?