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Secret Voting Application

◦ The tally is computed by summing up the ciphertexts
encoding the votes (either 1 or 0)

◦ Valid encrypted votes are of the form E(0) and E(1).

◦ A malicious voter could send an invalid encrypted vote such as
E(145127835), which can mess up the whole election.
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Problem

◦ *Any* FHE-based application will be required to check the
correctness of the ciphertexts

◦ Only exceptions are applications in which the party performing
the encryption is the only one affected by the result of the
homomorphic computation



Rationale Background Greco Takeaways

Correctness

Users must be able to prove:

◦ the ciphertext they submitted is a valid Ring-Learning with
Errors (RLWE) ciphertext

◦ the plaintext message they encrypted meets certain properties
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Correctness

Users must be able to prove:

◦ the ciphertext they submitted is a valid Ring-Learning with
Errors (RLWE) ciphertext Greco ZKP

◦ the plaintext message they encrypted meets certain properties
App specific ZKP
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LWE

Figure 1: Source: Prof Bill Buchanan OBE FRSE - Learning With Errors and Ring Learning With Errors

A⃗ · s⃗+ E⃗ = B⃗
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RLWE

Figure 2: Source: Prof Bill Buchanan OBE FRSE - Learning With Errors and Ring Learning With Errors

A · s+ E = B
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BFV

BFV [Bra12][FV12] is a leveled FHE scheme based on the RLWE
problem

Ct = (Ct0, Ct1) = ([A · s+ E +K]Q,−A)

◦ Q be the ciphertext modulus and t be the plaintext modulus where Q >> t

◦ RQ be the polynomial ring
ZQ[X]

XN+1
, with N being a power of two.

◦ A← RQ, s← χkey , E ← χerror

◦ K = ⌈Q[M ]t
t
⌋ [KPZ21]
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Chinese Remainder Theorem (CRT)

◦ Set Q =
∏

qi where the qi factors are pairwise coprime.

◦ Using this technique, an integer x ∈ ZQ can be represented by
its CRT components {xi = x mod qi ∈ Zqi}i, and operations
on x in ZQ can be implemented by applying the same
operations to each CRT component xi in Zqi .
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BFV in CRT Setting [Baj+17]

Cti = (Ct0,i, Ct1,i) = ([Ai · s+ E +K0,iK1]qi ,−Ai)

◦ i indicates the i-th CRT decomposition of the ciphertext Ct in the basis qi

◦ Operations in Rq are implemented directly in CRT representation.

◦ If we choose Q and t such that they are co-prime one can calculate K directly
in CRT [KPZ21]

K = −t−1[QM ]t mod qi

◦ We will denote the scalar K0,i = −t−1 mod qi and the polynomial
K1 = [QM ]t
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zk-SNARKs

Informally, a proof for a relation R is a protocol between a prover
P and a verifier V by which P convinces V that ∃w : R(x,w) = 1,
where x is a called an instance, and w a witness for x.

◦ Setup(1λ,R) → pp: setup public parameters for R.

◦ Prove(pp, x,w) → π/⊥: if (x,w) ∈ R, output a proof π,
otherwise ⊥.

◦ Verify(pp, x, π) → {0, 1}: check a proof.
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Introduction

Greco allows users to prove the validity of a FHE Ring-Learning
with Errors (RLWE) ciphertext. Here we focus on BFV Secret Key
Encryption in the CRT setting.

Task: design a zkSNARK to prove the following relation:

Ct0 = [A · s+ E +K]Q
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Challenge - Non Native Arithmetic

◦ Witness values inside the circuit are elements of prime field
mod p.

◦ In KZG-based SNARKs p is 254 bits

◦ The coefficients of Ct0 are defined in ZQ. All the polynomial
operations are performed modulo the ring RQ

◦ Q can range from 27 to 881 bits [Alb+22]
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Solution - CRT Decomposition

◦ Instead of working with Ct0, work with their CRT
decomposed Ct0,i

◦ If Q is 881 bits we can decompose using CRT into k = 15
components Ct0,i where qi is at max 59 bits

◦ Coefficients of Ct0,i can be represented in Zp

◦ Operations on Ct0 are safely implemented on its k CRT
components Ct0,i
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Solution - Precompute Auxiliary Polynomials

Operation to prove Ai · s+ E +K0,iK1 = Ct0,i mod Rqi

ˆCt0,i = Ai · s+ E +K0,iK1

ˆCt0,i = Ct0,i mod Rqi

ˆCt0,i = Ct0,i −R2,i(X
N + 1) mod Zqi

ˆCt0,i = Ct0,i −R2,i(X
N + 1)−R1,iqi

Since qi << p, the equation stays unchanged in Zp:

ˆCt0,i = Ct0,i −R2,i(X
N + 1)−R1,iqi mod Zp

Ct0,i = Ai · s+ E +K0,iK1 +R2,i(X
N + 1) +R1,iqi mod Zp
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Solution - Precompute Auxiliary Polynomials

To prove that Ct0,i is correctly formed, it is needed to prove that
the equation above holds. This can be rewritten as:

Ct0,i =
[
Ai 1 K0,i (XN + 1) qi

]
×


s
E
K1

R2,i

R1,i



or

Ct0,i = Ui × Si
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Challenge - Large Degree Polynomial Multiplication

◦ Many large degree polynomial multiplications involved in the
previous operation

◦ Considering two polynomials f and g of degree n, performing
the polynomial multiplications fg = h using the direct
method would generate:

◦ (n+ 1)2 multiplication
◦ n2 addition
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Solution - Challenge-based Large Degree Polynomial
Multiplication

◦ Evaluate the polynomials f , g, and h at a random point γ

◦ Enforce f(γ) ∗ g(γ) = h(γ) which would be true if fg = h
according to Schwartz-Zippel lemma.

◦ n multiplication and n addition to evaluate f(γ)
◦ n multiplication and n addition to evaluate g(γ)
◦ 2n multiplication and 2n addition to evaluate f(γ)
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Achievement

◦ Complexity of performing polynomial multiplication is reduced
from O(n2) to O(n).

◦ The constraint is then reduced to proving that

[
Ai(γ) 1 K0,i (γN + 1) qi

]
×


s(γ)
E(γ)
K1(γ)
R2,i(γ)
R1,i(γ)

 = Ct0,i(γ)

or
Ui(γ)× Si(γ) = Ct0,i(γ) (1)
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Proving Strategy

During phase one of Proof Generation:

1 Fill the witness table with the secret polynomials of Si

2 Extract the commitment of the witness so far and hash it to
generate the challenge γ (Fiat-Shamir Heuristic)

During phase two of Proof Generation:

1 Prove that the coefficients of the polynomials of Si are in the
expected range

2 Evaluate the secret polynomials of Si at γ, the public
polynomials of Ui at γ and the ciphertext Ct0,i(γ)

3 Prove that (1) holds
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Benchmarks

n log qi k Proof Gen Time Proof Ver Time

1024 27 1 685.51ms 3.66ms
2048 53 1 1.39s 3.74ms
4096 55 2 3.47s 5.02 ms
8192 55 4 8.98s 4.18ms
16384 54 8 29.43s 6.97ms
32768 59 15 102.15s 14.06ms

Table 1: Greco performance benchmarks for different security parameters.

Run M2 Macbook Pro with 12 cores and 32GB of RAM. Implementation in Halo2-lib. Plonk + KZG Commitments
zk-SNARKs
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Sections Omitted from the Presentation

◦ Calculating R2,i and R1,i

◦ Strategies to prove the correct formation of k ciphertexts

◦ Public Key Encryption Extension

◦ Composability with Application-Specific Logic
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Takeaways

◦ *Almost any* FHE-based application will be required to check
the correctness of the ciphertexts using zk-SNARKs

◦ The main strategies employed to efficiently perform RLWE
inside a zk-SNARK are:

◦ Leverage CRT for native coefficient representation
◦ Move reduction ”outside” the circuit leveraging auxiliary

polynomial
◦ Challenge-based polynomial multiplication
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Improvements

◦ Faster (or more FHE-friendly) zk Protocol. Leverage
parallelization across different CRT moduli?

◦ Support for further encodings and FHE schemes
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Thank You

Any Questions?
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