

National Aeronautics and

M21C Land Budgets, Part 2

Rolf Reichle

28 July 2024

Land Water and Energy Balance

Balance equations from the land ("Ind") perspective:

Correct balance equations (M-2 and M21C):

```
WCHANGE = PRECTOTLAND – EVLAND – RUNOFF – BASEFLOW – SPWATR
```

ECHANGE = SWLAND + LWLAND – SHLAND – EVPINTR – EVPSBLN – EVPSOIL – EVPTRNS – Lf * PRECSNO – SPLAND – SPSNOW

For details and plots, see 11 Jun 2024 slides.

Land Energy Balance

Inconsistent output within "Ind" Collection (M-2 and M21C):

EVPINTR + EVPSBLN + EVPSOIL + EVPTRNS 🗲 LHLAND 🛛 🛄

In GCM mode, LHLAND adjusted in GEOS_CatchGridComp.F90:

if	(CATCH	INTERNAL	STATE%CATCH	OFFLINE	== 0)	then
	_					

!amm add correction term to latent heat diagnostics (HLATN is always allocated)
! this will impact the export LHLAND

HLATN = HLATN - LHACC

! also add some portion of the correction term to evap from soil, int, veg and snow

SUMEV = EVPICE + EVPSOI + EVPVEG + EVPI	INT
---	-----

where(SUMEV>0.)

EVPICE = EVPICE - EVACC*EVPICE/SUMEV EVPSOI = EVPSOI - EVACC*EVPSOI/SUMEV EVPINT = EVPINT - EVACC*EVPINT/SUMEV EVPVEG = EVPVEG - EVACC*EVPVEG/SUMEV endwhere endif

11 Jun 2024 slides:

 \rightarrow LHLAND modified

EVACC~0 for SUMEV>0

→ EVP[*] essentially unchanged

For details and plots, see 11 Jun 2024 slides.

Connect Land Water and Energy Balances

<u>Water</u> [kg m-2 s-1]:

WCHANGE = PRECTOTLAND – EVLAND – RUNOFF – BASEFLOW – SPWATR

Energy [W m-2]:

ECHANGE = SWLAND + LWLAND - SHLAND - EVPINTR - EVPSBLN - EVPSOIL - EVPTRNS

- Lf * PRECSNO - SPLAND - SPSNOW

Consistent? No!

EVLAND ≠ (EVPINTR + EVPSOIL + EVPTRNS)/Lv + EVPSBLN/Ls

Connect Land Water and Energy Balances

Water [kg m-2 s-1]:

WCHANGE = PRECTOTLAND - EVLAND - RUNOFF - BASEFLOW - SPWATR

Energy [W m-2]:

ECHANGE = SWLAND + LWLAND - SHLAND - EVPINTR - EVPSBLN - EVPSOIL - EVPTRNS

– Lf * PRECSNO – SPLAND – SPSNOW

Consistent when including SPWATR:

EVLAND + <u>SPWATR = (EVPINTR + EVPSOIL</u> + EVPTRNS)/Lv + EVPSBLN/Ls

Land:

C

WCHANGE = PRECTOTLAND - EVLAND - RUNOFF - BASEFLOW - SPWATR

<u>Atmosphere</u>:

DQVDT_PHY + DQLDT_PHY + DQIDT_PHY = EVAP – PRECCU – PRECLS – PRECSN + QTFILL

For <u>land-only</u> grid cells: EVLAND_{Ind} = EVAP_{flx}

Energy Balance Across Land and Atmosphere

National Aeronautics and Space Administration

Land:

= SUMEVP

ECHANGE = SWLAND + LWLAND - SHLAND - (EVPINTR + EVPSBLN + EVPSOIL + EVPTRNS) - Lf * PRECSNO - SPLAND - SPSNOW

<u>Atmosphere</u>: (Closure to be confirmed by Nathan.)

DHDT_PHY + DKDT_PHY + DQVDT_PHY + DQIDT_PHY = (SWNETTOA – SWNETSRF) – (LWTNET + LWGNET) + HFLUX + Lv*EVAP + Lf*(FRZRN + SUBSN + SDMCI + COLCNVSN) + Lv*DQVDT_CHM + Lv*DQVDT_FIL – Lf*DQIDT_FIL

For <u>land-only</u> grid cells:

SWLAND_{Ind} =? SWNETSRF_{int} LWLAND_{Ind} =? LWGNET_{int} SHLAND_{Ind} =? HFLUX_{flx} SUMEVP_{Ind} =? EFLUX_{flx}

Energy Balance Across Land and Atmosphere

National Aeronautics and Space Administration

Energy Balance Across Land and Atmosphere

National Aeronautics and Space Administration

FRLAND>0.

Horizontal lines at:

0.001 mm/d

0.030 W/m2

C

LHLAND and EFLUX match somewhat better than other terms, owing to explicit modification of LHLAND after catchment()?

Balance residuals are small but larger than roundoff.

m21c_prod.lnd_tavg_2hr_glo_L1152x721_slv

National Aeronautics and

 $\times 10^{-3}$

4

2

0

-2

-4

M21C vs MERRA-2

evland

-evap [mm/d]

avg=-0.0007 std=0.0047

min=-0.2945 max=0.0808

Water balance terms across atmosphere and land equally consistent in M21C and M-2.

M21C vs MERRA-2

SUMEVP ≠ LHLAND less severe in M-2, possibly because of land model change.

In M-2, radiation inconsistent across atmosphere and land.

GMAO

Summary of Balance Equations

Land water:

WCHANGE = PRECTOTLAND – EVLAND – RUNOFF – BASEFLOW – SPWATR

Land energy:

ECHANGE = SWLAND + LWLAND - SHLAND - SUMEVP - Lf * PRECSNO - SPLAND - SPSNOW

where SUMEVP = EVPINTR + EVPSBLN + EVPSOIL + EVPTRNS

LHLAND \neq SUMEVP (Δ ~LHACC, not in output!!!)

Land water and energy: EVLAND + SPWATR = (EVPINTR + EVPSOIL + EVPTRNS)/Lv + EVPSBLN/Ls Why SPWATR here but not in land-atmosphere eqn?

For land-only grid cells:

Land-atmosphere water: Land-atmosphere energy: $EVLAND = EVAP_{flx}$ $SWLAND = SWNETSRF_{int}$ $LWLAND = LWGNET_{int}$ $SHLAND = HFLUX_{flx}$ $LHLAND = EFLUX_{flx}$

All variables from "Ind" collection unless subscript indicates otherwise.

Summary

- For brevity, variable names in this presentation were shortened from M21C names.
- Water and energy balance equations in M2 File Specs are wrong and need to be corrected!
- Corrected balance equations apply equally to M2 and M21C.
- While LHLAND matches EFLUX from turbulence, it is not equal to the sum of the EVP* component fluxes! (Equality holds in offline mode.)
 → Inconsistent across land and atmosphere balances.
- Spatial pattern of balance residuals is persistent, and residuals are larger than roundoff. Acceptable?
- A very minor and very rare residual energy balance error in M2 and M21C ("snow mass-limited sublimation from top snow layer") is addressed in <u>GEOSgcm_GridComp PR#956</u>.
- Radiation terms across land and atmosphere energy balances are more consistent in M21C than in M-2.

EXTRA SLIDES

Land Energy Budget

National Aeronautics and Space Administration

One-day AMIP simulations:

- "ctrl" : LH and evap output as in M21C.
- "exp1" : <u>Without</u> application of "accounting" terms.

C

600