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Summary9

Molecular dynamics (MD) simulations of fast-ion conductors render the trajectories of the10

atoms conforming them. However, extracting meaningful insights from this data is often a11

challenge since most common analysis rely on active supervision of the simulations and definition12

of arbitrary material-dependent parameters, thus frustrating high throughput screenings. In13

particular, to the best of our knowledge, determining exact ionic migrating paths and the level14

of coordination between mobile particles in diffusive events have not been previously addressed15

in a systematic and quantitative manner, despite its central role in the understanding and design16

of high performance solid-state electrolytes. Here, we introduce a completely unsupervised17

approach for analysing ion-hopping events in MD simulations. Based on k-means clustering,18

our algorithm identifies with precision which and when particles diffuse during a simulation,19

thus identifying their exact migrating paths. This analysis allows also for the quantification20

of correlations between many diffusing ions as well as of key atomistic descriptors like the21

duration/length of diffusion events and residence times, to cite some examples. Moreover,22

the present implementation introduces an optimized code for computing the full ion diffusion23

coefficient, that is, entirely considering ionic correlations, thus going beyond the dilute limit24

approximation.25

Statement of need26

Fast-ion conductors (FIC) are materials in which some of their constituent atoms diffuse with27

large drift velocities comparable to those found in liquids (Hull, 2004; Sagotra & Cazorla,28

2017). FIC are the pillars of many energy conversion and storage technologies like solid-29

state electrochemical batteries and fuel cells. Molecular dynamics (MD) simulations is a30

computational method that employs Newton’s laws to evaluate the trajectory of ions in31

complex atomic and molecular systems. MD simulations of FIC are highly valuable since they32

can accurately describe the diffusion and vibration of the ions conforming them. Nevertheless,33

there is a painstaking lack of handy computational tools for analyzing the outputs of FIC34

MD simulations in an unsupervised and materials-independent manner, thus frustrating the35

fundamental understanding and possible rational design of FIC.36

IonDiff37

IonDiff efficiently addresses the challenge described above by implementing unsupervised38

machine learning approaches in a repository of Python scripts designed to extract the exact39
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migrating paths of diffusive particles from MD simulations, along with other physically relevant40

quantities like the degree of correlation between diffusive ions, ionic residence times in metastable41

positions and the length and duration of ionic hops. Additionally, IonDiff efficiently and42

seamlessly evaluates full ion diffusion coefficients, which in contrast to tracer ion diffusion43

coefficients fully encompass ionic correlations. Periodic boundary conditions are fully accounted44

for by IonDiff.45

The repository is divided into three independent functionalities:46

• identify_diffusion: extraction of the migrating paths from a given MD simulation. It47

generates a DIFFUSION file in the folder containing the inputs and outputs of the MD48

simulation. This file contains all the necessary atomistic information for the following49

analysis of ionic diffusion events.50

• analyze_correlations: analysis of the correlations between ionic diffusion events extracted51

from a series of MD simulations (the DIFFUSION file for each of these simulations will52

be generated if it does not exist yet). A more technically detailed description of this53

functionality can be found in the Methods section and in (López et al., 2024b).54

• analyze_descriptors: extraction and analysis of spatio-temporal descriptors involving55

the ionic diffusion events identified in the MD simulations. In this library, an optimized56

approach for computing the full ionic diffusion coefficient (i.e., including ionic cross57

correlations, proven to be non-negligible in FIC (López et al., 2024b; Molinari et al.,58

2021; Sasaki et al., 2023)) is implemented. A technically detailed description of this59

functionality can be found in (López et al., 2024b).60

The minimal input needed (besides the file containing the actual atomistic trajectories) consists61

in an INCAR file with the POTIM and NBLOCK flags (indicating the simulation time step62

and the frequency with which the configurations are written, respectively). After installation,63

all routines are easily controlled from the command line. More detailed information can be64

found in the documentation of the project (including specific READMEs within each folder).65

The script allows graphing the identified diffusion paths for each simulated particle and provides66

the confidence interval associated with the results retrieved by the algorithm. An example of the67

analysis performed on an ab initio MD (AIMD) simulation based on density functional theory68

(DFT) is shown in Figure 1. The AIMD configurations file employed in this example is available69

online at (López et al., 2024a), along with many other AIMD simulations comprehensively70

analyzed in two previous works (López et al., 2023, 2024b).71

Figure 1: Example of the performance of our unsupervised algorithm at extracting the diffusive path for
an arbitrary particle in an AIMD simulation of SrCoO3-x at a temperature of 400K. Green and orange
dots reproduce two different ionic vibrational centers while the blue dots represent the ion diffusion path
between them.

Moreover, users may find information regarding their previous executions of the scripts in the72
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logs folder, which should be used to track possible errors on the data format and more. Finally,73

a number of tests for checking out all IonDiff functions can be found in the tests folder.74

Mainly, our code is based on the sklearn (Pedregosa et al., 2011) implementation of the k-means75

clustering method. The default values of the sklearn hyperparameters are the ones used by76

IonDiff, although these can be varied at wish by the user. Additionally, the python libraries77

numpy (Harris et al., 2020) and matplotlib (Hunter, 2007) are used to perform numerical78

analysis and plotting, respectively. The current IonDiff version reads information from VASP79

(Kresse & Furthmüller, 1996) simulations; future releases, already under active development,80

will extend its scope to simulation data obtained from other quantum and classical molecular81

dynamics packages.82

Methods83

Ionic conductivity84

The (full) ionic diffusion coefficient consists on two parts (Molinari et al., 2021; Sasaki et85

al., 2023), one that involves the mean-square displacement of a particle with itself (MSD𝑠𝑒𝑙𝑓)86

and another that represents the mean-squared displacement of a particle with all others87

(MSD𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡). MSD𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 accounts for the influence of many-atoms correlations in ionic88

diffusive events. Typically, the distinct part of the MSD is neglected in order to accelerate the89

estimation and convergence of diffusion coefficients. However, many-ions correlations have90

been recently demonstrated to be essential in FIC (López et al., 2024b) hence should not91

be disregarded in practice. IonDiff provides a novel implementation of the full ionic diffusion92

coefficient, exploiting the matricial representation of this calculation.93

The ionic conductivity (𝜎) is computed like (Sasaki et al., 2023):94

𝜎 = lim
Δ𝑡→∞

𝑒2

2𝑛𝑑𝑉 𝑘𝐵𝑇
[∑

𝑖
𝑧2𝑖 ⟨[r𝑖(𝑡0 +Δ𝑡) − r𝑖(𝑡0)]

2⟩𝑡0+

+ ∑
𝑖,𝑗≠𝑖

𝑧𝑖𝑧𝑗⟨[r𝑖(𝑡0 +Δ𝑡) − r𝑖(𝑡0)] ⋅ [r𝑗(𝑡0 +Δ𝑡) − r𝑗(𝑡0)]⟩𝑡0]
(1)

where 𝑒, 𝑉, 𝑘𝐵, and 𝑇 are the elementary charge, system volume, Boltzmann constant, and95

temperature of the MD simulation, respectively, 𝑧𝑖 the ionic charge and r𝑖 = 𝑥1𝑖 �̂�+𝑥2𝑖𝑗+𝑥3𝑖�̂�96

the Cartesian position of particle 𝑖, 𝑛𝑑 the number of spatial dimensions, Δ𝑡 the time window,97

and 𝑡0 the temporal offset of Δ𝑡. Thus, for those simulations in which only one atomic species98

diffusses, the three-dimensional ionic diffusion coefficient reads:99

𝐷 = lim
Δ𝑡→∞

1
6Δ𝑡

[∑
𝑖
⟨[r𝑖(𝑡0 +Δ𝑡) − r𝑖(𝑡0)]

2⟩𝑡0+

+ ∑
𝑖,𝑗≠𝑖

⟨[r𝑖(𝑡0 +Δ𝑡) − r𝑖(𝑡0)] ⋅ [r𝑗(𝑡0 +Δ𝑡) − r𝑗(𝑡0)]⟩𝑡0] =

= lim
Δ𝑡→∞

1
6Δ𝑡

[MSD𝑠𝑒𝑙𝑓(Δ𝑡) +MSD𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(Δ𝑡)]

(2)

All the ionic displacements appearing in Eq. (2) can be computed just once and stored in a100

four-dimensional tensor thus allowing for simple vectorization and very much fast processing101

with python libraries (e.g., numpy) as compared to traditional calculation loops. Then, for102

a simulation with 𝑛𝑡 time steps, 𝑛Δ𝑡 temporal windows, and 𝑛𝑝 number of atoms for the103

diffusive species, we only need to compute:104
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Δ𝑥(Δ𝑡, 𝑖, 𝑑, 𝑡0) = 𝑥𝑑𝑖(𝑡0 +Δ𝑡) − 𝑥𝑑𝑖(𝑡0) (3)

being Δ𝑥(Δ𝑡, 𝑖, 𝑑, 𝑡0) a four rank tensor of dimension 𝑛Δ𝑡 × 𝑛𝑡 × 𝑛𝑝 × 𝑛𝑑 that stores all105

mean displacements of temporal length Δ𝑡 for particle 𝑖 in space dimension 𝑑. This leads to:106

MSD𝑠𝑒𝑙𝑓(Δ𝑡) = 1
𝑛𝑝

𝑛𝑝

∑
𝑖=1

⟨∑
𝑑

Δ𝑥(Δ𝑡, 𝑖, 𝑑, 𝑡0) ⋅ Δ𝑥(Δ𝑡, 𝑖, 𝑑, 𝑡0)⟩𝑡0

MSD𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(Δ𝑡) = 2
𝑛𝑝(𝑛𝑝 − 1)

𝑛𝑝

∑
𝑖=1

𝑛𝑝

∑
𝑗=𝑖+1

⟨∑
𝑑

Δ𝑥(Δ𝑡, 𝑖, 𝑑, 𝑡0) ⋅ Δ𝑥(Δ𝑡, 𝑗, 𝑑, 𝑡0)⟩𝑡0

(4)

Note that we keep𝐷𝑠𝑒𝑙𝑓 and𝐷𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 separate since this allows for a straightforward evaluation107

of the 𝐷 contributions resulting from the ionic correlations without increasing the code108

complexity.109

In terms of memory resources, this implementation scales linearly with the length of the110

temporal window, the total duration of the simulation and the number of mobile ions.111

Ionic hop identification112

Our method for identifying vibrational centers from sequential ionic configurations relies on113

k-means clustering, an unsupervised machine learning algorithm. This method assumes isotropy114

in the fluctuations of non-diffusive particles. Importantly, our approach circumvents the need115

for defining arbitrary, materials-dependent threshold distances to analyze ionic hops.116

K-means algorithm conforms spherical groups that, for every subgroup 𝐺 = {𝐺1, 𝐺2,… ,𝐺𝑘}117

in a dataset, minimize the sum of squares:118

𝑁
∑
𝑖=1

min
𝜇𝑗∈𝐺𝑗

(‖x𝑖 − 𝜇𝑗‖
2) (5)

where x1,x2,… ,x𝑁 are the 𝑁 data points and 𝜇𝑗 the mean at 𝐺𝑗.119

This approach is particularly well-suited for crystals, as atoms typically fluctuate isotropically120

around their equilibrium positions. For materials where atoms exhibit strong anisotropic121

vibrations, IonDiff also permits the selection of alternative clustering schemes, such as spectral122

clustering, which is effective for cases where group adjacency is significant. Nevertheless, in a123

previous work (López et al., 2024b), it was found that the performance of k-means clustering in124

identifying ionic hops in standard and technologically relevant fast-ion conductors was generally125

superior to that of other clustering approaches.126

The number of clusters, or equivalently, ionic vibrational centers, determined by IonDiff for a127

molecular dynamics (MD) simulation is the one that maximizes the average silhouette ratio.128

This metric assesses the similarity of a point within its own cluster and its dissimilarity in129

comparison to other clusters. The average silhouette ratio is defined as:130

𝑆(𝑘) = 𝑏(𝑘) − 𝑎(𝑘)
max (𝑎(𝑘), 𝑏(𝑘))

(6)

where:131
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𝑎(𝑘) = 1
|𝐺𝐼| − 1

𝑘
∑
𝑗=1

‖x𝑘 − x𝑗‖2

𝑏(𝑘) = min
𝐽≠𝐼

1
|𝐺𝐽|

𝑘
∑
𝑗=1

‖x𝑘 − x𝑗‖2
(7)

Once the number of vibrational centers, along with their real-space location and temporal132

evolution, are determined, ionic diffusion paths are delineated as the segments connecting two133

distinct vibrational centers over time Figure 1. In other words, the points located between134

different ionic vibrational centers, that is, different k-means clusters, are regarded as part135

of the ionic diffusion path connecting them. Due to the discrete nature of the generated136

trajectories and intricacies of the k-means clustering approach, establishing the precise start137

and end points of ionic diffusion paths is challenging. Consequently, we adopt an arbitrary yet138

physically plausible threshold distance of 0.5 Å from the midpoint of the vibrational centers to139

define the extremities of diffusive trajectories. Tests performed in (López et al., 2024b) have140

shown that reasonable variations of this parameter value have negligible effects on the analysis141

results obtained with IonDiff.142

Correlations between mobile ions143

To quantitatively evaluate the correlations and level of concertation between a variable number144

of mobile ions, we developed the following algorithm. Beginning with a given sequence of ionic145

configurations from a molecular dynamics simulation, we compute the correlation matrix for146

diffusive events. Initially, we assign a value of “1” to each diffusing particle and “0” to each147

vibrating particle at every time frame. This binary assignment is facilitated by the ionic hop148

identification algorithm introduced earlier.149

Due to the discrete nature of the ionic trajectories and to enhance numerical convergence in150

subsequent correlation analysis, the multistep time functions are approximated using Gaussians151

with widths equal to their half-maxima (commonly known as the “full-width-at-half-maximum”152

or FWHM method used in signal processing). Subsequently, we compute the 𝑁×𝑁 correlation153

matrix, where 𝑁 represents the number of potentially mobile ions, using all gathered simulation154

data. However, this correlation matrix may be challenging to converge due to its statistical155

nature, especially in scenarios with limited mobile ions and time steps, typical of AIMD156

simulations.157

Moreover, uncorrelated ion hops occurring simultaneously could be erroneously interpreted as158

correlated. To address these practical challenges, we compute a reference correlation matrix159

based on a randomly distributed sequence of ionic hops, with the Gaussian FWHM matching160

the mean diffusion time determined during the simulation. It is important to note that due to161

the finite width of the Gaussians, this reference matrix is not exactly the identity matrix.162

Next, covariance coefficients in the original correlation matrix larger (smaller) than the163

corresponding random reference values were considered as true correlations (random noise)164

and rounded off to one (zero) for simplification. To ensure an accurate assessment of many-ion165

correlations, different hops of the same ion are treated as independent events. Ultimately, this166

process results in a correlation matrix comprising ones and zeros, facilitating the determination167

of the number of particles that remain concerted during diffusion.168
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