
In this notebook, you'll train a Deep Q-Learning agent playing Space Invaders using RL
Baselines3 Zoo, a training framework based on Stable-Baselines3 that provides scripts for
training, evaluating agents, tuning hyperparameters, plotting results and recording videos.

We're using the RL-Baselines-3 Zoo integration, a vanilla version of Deep Q-Learning with no
extensions such as Double-DQN, Dueling-DQN, and Prioritized Experience Replay.

⬇️ Here is an example of what you will achieve ⬇️

Unit 3: Deep Q-Learning with Atari Games 👾 using RL
Baselines3 Zookeyboard_arrow_down

 1
 2

%%html
<video controls autoplay><source src="https://huggingface.co/ThomasSimonini/ppo-Spa

SpacesInvadersNoFrameskip-v4

You can see the difference between Space Invaders versions here 👉
https://gymnasium.farama.org/environments/atari/space_invaders/#variants

📚 RL-Library:

RL-Baselines3-Zoo

🎮 Environments:

At the end of the notebook, you will:

Be able to understand deeper how RL Baselines3 Zoo works.
Be able to push your trained agent and the code to the Hub with a nice video replay and
an evaluation score 🔥.

Objectives of this notebook 🏆

atari_wrappers.py more_horiz
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

SpaceInvadersNoFrameskip-v4:
 env_wrapper:
 - stable_baselines3.common.atari_wrappers.Ata
 frame_stack: 4
 policy: 'CnnPolicy'
 n_timesteps: !!float 1e6
 buffer_size: 100000
 learning_rate: !!float 1e-4
 batch_size: 32
 learning_starts: 100000
 target_update_interval: 1000
 train_freq: 4
 gradient_steps: 1
 exploration_fraction: 0.1
 exploration_final_eps: 0.01
 # If True, you need to deactivate handle_timeou
 # in the replay_buffer_kwargs
 optimize_memory_usage: False

dqn.yml close

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 1/13

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://www.google.com/url?q=https%3A%2F%2Fstable-baselines3.readthedocs.io%2Fen%2Fmaster%2F
https://www.google.com/url?q=https%3A%2F%2Fstable-baselines3.readthedocs.io%2Fen%2Fmaster%2Fmodules%2Fdqn.html
https://www.google.com/url?q=https%3A%2F%2Fgymnasium.farama.org%2Fenvironments%2Fatari%2Fspace_invaders%2F
https://www.google.com/url?q=https%3A%2F%2Fgymnasium.farama.org%2Fenvironments%2Fatari%2Fspace_invaders%2F%23variants
https://github.com/DLR-RM/rl-baselines3-zoo

This notebook is from Deep Reinforcement Learning Coursekeyboard_arrow_down

In this free course, you will:

📖 Study Deep Reinforcement Learning in theory and practice.
🧑‍💻 Learn to use famous Deep RL libraries such as Stable Baselines3, RL Baselines3
Zoo, CleanRL and Sample Factory 2.0.
🤖 Train agents in unique environments

And more check 📚 the syllabus 👉 https://simoninithomas.github.io/deep-rl-course

Don’t forget to sign up to the course (we are collecting your email to be able to send you the
links when each Unit is published and give you information about the challenges and
updates).

The best way to keep in touch is to join our discord server to exchange with the community
and with us 👉🏻 https://discord.gg/ydHrjt3WP5

Before diving into the notebook, you need to:

🔲 📚 Study Deep Q-Learning by reading Unit 3 🤗

Prerequisites 🏗️keyboard_arrow_down

We're constantly trying to improve our tutorials, so if you find some issues in this notebook,
please open an issue on the Github Repo.

We strongly recommend students to use Google Colab for the hands-on exercises instead of
running them on their personal computers.

By using Google Colab, you can focus on learning and experimenting without worrying about
the technical aspects of setting up your environments.

To validate this hands-on for the certification process, you need to push your trained model to
the Hub and get a result of >= 200.

To find your result, go to the leaderboard and find your model, the result = mean_reward - std
of reward

For more information about the certification process, check this section 👉
https://huggingface.co/deep-rl-course/en/unit0/introduction#certification-process

Let's train a Deep Q-Learning agent playing Atari' Space
Invaders 👾 and upload it to the Hub.keyboard_arrow_down

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 2/13

https://www.google.com/url?q=https%3A%2F%2Fsimoninithomas.github.io%2Fdeep-rl-course
https://www.google.com/url?q=http%3A%2F%2Feepurl.com%2Fic5ZUD
https://www.google.com/url?q=https%3A%2F%2Fdiscord.gg%2FydHrjt3WP5
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fdeep-rl-course%2Funit3%2Fintroduction
https://github.com/huggingface/deep-rl-class/issues
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fdeep-rl-course%2Fen%2Funit0%2Fintroduction%23certification-process

It's better to run this colab in a copy on your Google Drive, so that if it timeouts you still have
the saved notebook on your Google Drive and do not need to fill everything from scratch.

To do that you can either do Ctrl + S or File > Save a copy in Google Drive.

Also, we're going to train it for 90 minutes with 1M timesteps. By typing !nvidia-smi will tell
you what GPU you're using.

And if you want to train more such 10 million steps, this will take about 9 hours, potentially
resulting in Colab timing out. In that case, I recommend running this on your local computer
(or somewhere else). Just click on: File>Download .

An advice 💡

To accelerate the agent's training, we'll use a GPU. To do that, go to Runtime > Change
Runtime type

Set the GPU 💪keyboard_arrow_down

Hardware Accelerator > GPU

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 3/13

If you see ERROR: pip's dependency resolver does not currently take into account all
the packages that are installed. this is normal and it's not a critical error there's a
conflict of version. But the packages we need are installed.

Install RL-Baselines3 Zoo and its dependencies 📚keyboard_arrow_down

 1
 2

For now we install this update of RL-Baselines3 Zoo
!pip install git+https://github.com/DLR-RM/rl-baselines3-zoo

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 4/13

Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-p
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dis
Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-pa
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/d
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/d
Requirement already satisfied: mpmath<1.4.0,>=1.1.0 in /usr/local/lib/python3.10
Building wheels for collected packages: rl_zoo3
 Building wheel for rl_zoo3 (pyproject.toml) ... done
 Created wheel for rl_zoo3: filename=rl_zoo3-2.4.0a4-py3-none-any.whl size=7606
 Stored in directory: /tmp/pip-ephem-wheel-cache-wmysaqzt/wheels/5f/9b/c0/8af7a
Successfully built rl_zoo3
Installing collected packages: farama-notifications, tcolorpy, pathvalidate, nvi
Successfully installed DataProperty-1.0.1 Mako-1.3.5 alembic-1.13.2 colorlog-6.8

IF AND ONLY IF THE VERSION ABOVE DOES NOT EXIST ANYMORE. UNCOMMENT AND
INSTALL THE ONE BELOW

 1 #!pip install rl_zoo3==2.0.0a9

 1 !apt-get install swig cmake ffmpeg

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
cmake is already the newest version (3.22.1-1ubuntu1.22.04.2).
ffmpeg is already the newest version (7:4.4.2-0ubuntu0.22.04.1).
The following additional packages will be installed:
 swig4.0
Suggested packages:
 swig-doc swig-examples swig4.0-examples swig4.0-doc
The following NEW packages will be installed:
 swig swig4.0
0 upgraded, 2 newly installed, 0 to remove and 45 not upgraded.
Need to get 1,116 kB of archives.
After this operation, 5,542 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu jammy/universe amd64 swig4.0 amd64 4.0.2-1u
Get:2 http://archive.ubuntu.com/ubuntu jammy/universe amd64 swig all 4.0.2-1ubuntu
Fetched 1,116 kB in 2s (476 kB/s)
Selecting previously unselected package swig4.0.
(Reading database ... 121925 files and directories currently installed.)
Preparing to unpack .../swig4.0_4.0.2-1ubuntu1_amd64.deb ...
Unpacking swig4.0 (4.0.2-1ubuntu1) ...
Selecting previously unselected package swig.
Preparing to unpack .../swig_4.0.2-1ubuntu1_all.deb ...
Unpacking swig (4.0.2-1ubuntu1) ...
Setting up swig4.0 (4.0.2-1ubuntu1) ...
Setting up swig (4.0.2-1ubuntu1) ...
Processing triggers for man-db (2.10.2-1) ...

To be able to use Atari games in Gymnasium we need to install atari package. And accept-
rom-license to download the rom files (games files).

 1
 2

!pip install gymnasium[atari]
!pip install gymnasium[accept-rom-license]

Requirement already satisfied: gymnasium[atari] in /usr/local/lib/python3.10/dist-
Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-pac
Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3.10/dis
Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.
Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/lib/pytho
Collecting shimmy[atari]<1.0,>=0.1.0 (from gymnasium[atari])
 Downloading Shimmy-0.2.1-py3-none-any.whl (25 kB)
Collecting ale-py~=0.8.1 (from shimmy[atari]<1.0,>=0.1.0->gymnasium[atari])
 Downloading ale_py-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.
 ━━ 1.7/1.7 MB 42.9 MB/s eta 0:00:00
Requirement already satisfied: importlib-resources in /usr/local/lib/python3.10/di
Installing collected packages: ale-py, shimmy
Successfully installed ale-py-0.8.1 shimmy-0.2.1
Requirement already satisfied: gymnasium[accept-rom-license] in /usr/local/lib/pyt
Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-pac
Requirement already satisfied: cloudpickle>=1.2.0 in /usr/local/lib/python3.10/dis
Requirement already satisfied: typing-extensions>=4.3.0 in /usr/local/lib/python3.
Requirement already satisfied: farama-notifications>=0.0.1 in /usr/local/lib/pytho
Collecting autorom[accept-rom-license]~=0.4.2 (from gymnasium[accept-rom-license])
 Downloading AutoROM-0.4.2-py3-none-any.whl (16 kB)

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 5/13

http://archive.ubuntu.com/ubuntu
http://archive.ubuntu.com/ubuntu

Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (f
Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (fr
Collecting AutoROM.accept-rom-license (from autorom[accept-rom-license]~=0.4.2->gy
 Downloading AutoROM.accept-rom-license-0.6.1.tar.gz (434 kB)
 ━━ 434.7/434.7 kB 11.1 MB/s eta 0:00:00
 Installing build dependencies ... done
 Getting requirements to build wheel ... done
 Preparing metadata (pyproject.toml) ... done
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-pack
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dis
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dis
Building wheels for collected packages: AutoROM.accept-rom-license
 Building wheel for AutoROM.accept-rom-license (pyproject.toml) ... done
 Created wheel for AutoROM.accept-rom-license: filename=AutoROM.accept_rom_licens
 Stored in directory: /root/.cache/pip/wheels/6b/1b/ef/a43ff1a2f1736d5711faa1ba4c
Successfully built AutoROM.accept-rom-license
Installing collected packages: AutoROM.accept-rom-license, autorom
Successfully installed AutoROM.accept-rom-license-0.6.1 autorom-0.4.2

During the notebook, we'll need to generate a replay video. To do so, with colab, we need to
have a virtual screen to be able to render the environment (and thus record the frames).

Hence the following cell will install the librairies and create and run a virtual screen 🖥

Create a virtual display 🔽keyboard_arrow_down

 1
 2
 3
 4

%%capture
!apt install python-opengl
!apt install xvfb
!pip3 install pyvirtualdisplay

 1
 2
 3

import os

os.kill(os.getpid(), 9)

 1
 2
 3
 4
 5

Virtual display
from pyvirtualdisplay import Display

virtual_display = Display(visible=0, size=(1400, 900))
virtual_display.start()

<pyvirtualdisplay.display.Display at 0x7cf8d772f2e0>

To train an agent with RL-Baselines3-Zoo, we just need to do two things:

1. Create a hyperparameter config file that will contain our training hyperparameters called
dqn.yml .

This is a template example:

SpaceInvadersNoFrameskip-v4:

 env_wrapper:

 - stable_baselines3.common.atari_wrappers.AtariWrapper

 frame_stack: 4

 policy: 'CnnPolicy'

 n_timesteps: !!float 1e6

 buffer_size: 100000

 learning_rate: !!float 1e-4

 batch_size: 32

 learning_starts: 100000

 target_update_interval: 1000

 train_freq: 4

 gradient_steps: 1

 exploration_fraction: 0.1

Train our Deep Q-Learning Agent to Play Space Invaders 👾keyboard_arrow_down

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 6/13

 exploration_final_eps: 0.01

 # If True, you need to deactivate handle_timeout_termination

 # in the replay_buffer_kwargs

 optimize_memory_usage: False

Here we see that:

We use the Atari Wrapper that preprocess the input (Frame reduction ,grayscale, stack
4 frames)
We use CnnPolicy , since we use Convolutional layers to process the frames
We train it for 10 million n_timesteps
Memory (Experience Replay) size is 100000, aka the amount of experience steps you
saved to train again your agent with.

💡 My advice is to reduce the training timesteps to 1M, which will take about 90 minutes on
a P100. !nvidia-smi will tell you what GPU you're using. At 10 million steps, this will take
about 9 hours, which could likely result in Colab timing out. I recommend running this on your
local computer (or somewhere else). Just click on: File>Download .

In terms of hyperparameters optimization, my advice is to focus on these 3 hyperparameters:

learning_rate

buffer_size (Experience Memory size)

batch_size

As a good practice, you need to check the documentation to understand what each
hyperparameters does: https://stable-
baselines3.readthedocs.io/en/master/modules/dqn.html#parameters

2. We start the training and save the models on logs folder 📁

Define the algorithm after --algo , where we save the model after -f and where the
hyperparameter config is after -c .

 1 !python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -c

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 7/13

https://www.google.com/url?q=https%3A%2F%2Fstable-baselines3.readthedocs.io%2Fen%2Fmaster%2Fmodules%2Fdqn.html%23parameters
https://www.google.com/url?q=https%3A%2F%2Fstable-baselines3.readthedocs.io%2Fen%2Fmaster%2Fmodules%2Fdqn.html%23parameters

train/	
learning_rate	0.0001
loss	0.0218
n_updates	224932

Eval num_timesteps=1000000, episode_reward=785.00 +/- 273.06
Episode length: 4740.00 +/- 1501.84

eval/	
mean_ep_length	4.74e+03
mean_reward	785
rollout/	
exploration_rate	0.01
time/	
total_timesteps	1000000
train/	
learning_rate	0.0001
loss	0.0203
n_updates	224999

New best mean reward!
Saving to logs//dqn/SpaceInvadersNoFrameskip-v4_1

↳ 1 cell hidden

Solutionkeyboard_arrow_down

RL-Baselines3-Zoo provides enjoy.py , a python script to evaluate our agent. In most RL
libraries, we call the evaluation script enjoy.py .
Let's evaluate it for 5000 timesteps 🔥

Let's evaluate our agent 👀keyboard_arrow_down

 1 !python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 --no-rende

2024-07-01 18:30:00.990155: E external/local_xla/xla/stream_executor/cuda/cuda_dnn
2024-07-01 18:30:00.990215: E external/local_xla/xla/stream_executor/cuda/cuda_fft
2024-07-01 18:30:00.991750: E external/local_xla/xla/stream_executor/cuda/cuda_bla
2024-07-01 18:30:01.002840: I tensorflow/core/platform/cpu_feature_guard.cc:182] T
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebui
2024-07-01 18:30:02.151868: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38
Loading latest experiment, id=1
Loading logs/dqn/SpaceInvadersNoFrameskip-v4_1/SpaceInvadersNoFrameskip-v4.zip
A.L.E: Arcade Learning Environment (version 0.8.1+53f58b7)
[Powered by Stella]
Stacking 4 frames
Atari Episode Score: 550.00
Atari Episode Length 3793
Atari Episode Score: 550.00
Atari Episode Length 3386
Atari Episode Score: 495.00
Atari Episode Length 3267
Atari Episode Score: 800.00
Atari Episode Length 5181
Atari Episode Score: 605.00
Atari Episode Length 3687

↳ 1 cell hidden

Solutionkeyboard_arrow_down

Now that we saw we got good results after the training, we can publish our trained model on
the hub 🤗 with one line of code.

Publish our trained model on the Hub 🚀keyboard_arrow_down

[]

[]

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 8/13

By using rl_zoo3.push_to_hub you evaluate, record a replay, generate a model card of your
agent and push it to the hub.

This way:

You can showcase our work 🔥
You can visualize your agent playing 👀
You can share with the community an agent that others can use 💾
You can access a leaderboard 🏆 to see how well your agent is performing compared
to your classmates 👉 https://huggingface.co/spaces/huggingface-projects/Deep-
Reinforcement-Learning-Leaderboard

To be able to share your model with the community there are three more steps to follow:

1️⃣ (If it's not already done) create an account to HF ➡ https://huggingface.co/join

2️⃣ Sign in and then, you need to store your authentication token from the Hugging Face
website.

Create a new token (https://huggingface.co/settings/tokens) with write role

Copy the token
Run the cell below and past the token

Token is valid (permission: write).

n saved in your configured git crede

as been saved to /root/.cache/hugg

Login successful

1
2
3

from huggingface_hub import notebook_login # To log to our Hugging Face account to be
notebook_login()
!git config --global credential.helper store

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 9/13

https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fhuggingface-projects%2FDeep-Reinforcement-Learning-Leaderboard
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fhuggingface-projects%2FDeep-Reinforcement-Learning-Leaderboard
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fjoin
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsettings%2Ftokens

If you don't want to use a Google Colab or a Jupyter Notebook, you need to use this
command instead: huggingface-cli login

3️⃣ We're now ready to push our trained agent to the 🤗 Hub 🔥

Let's run push_to_hub.py file to upload our trained agent to the Hub.

--repo-name : The name of the repo

-orga : Your Hugging Face username

-f : Where the trained model folder is (in our case logs)

1 !python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 --repo

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 10/13

Upload file dqn-SpaceInvadersNoFrameskip-v4/policy.pth: 100% 12.9M/12.9M [00:06<

Upload file dqn-SpaceInvadersNoFrameskip-v4/policy.optimizer.pth: 100% 12.9M/12

Upload file dqn-SpaceInvadersNoFrameskip-v4/pytorch_variables.pth: 100% 864/864

Upload file replay.mp4: 100% 226k/226k [00:06<00:00, 38.5kB/s]
ℹ Your model is pushed to the hub. You can view your model here:
https://huggingface.co/eseskay/dqn-SpaceInvadersNoFrameskip-v4

↳ 1 cell hidden

Solutionkeyboard_arrow_down

.keyboard_arrow_down

Congrats 🥳 you've just trained and uploaded your first Deep Q-Learning agent using RL-
Baselines-3 Zoo. The script above should have displayed a link to a model repository such as
https://huggingface.co/ThomasSimonini/dqn-SpaceInvadersNoFrameskip-v4. When you go
to this link, you can:

See a video preview of your agent at the right.
Click "Files and versions" to see all the files in the repository.
Click "Use in stable-baselines3" to get a code snippet that shows how to load the
model.
A model card (README.md file) which gives a description of the model and the
hyperparameters you used.

Under the hood, the Hub uses git-based repositories (don't worry if you don't know what git
is), which means you can update the model with new versions as you experiment and
improve your agent.

Compare the results of your agents with your classmates using the leaderboard 🏆

The Stable-Baselines3 team uploaded more than 150 trained Deep Reinforcement
Learning agents on the Hub.

You can find them here: 👉 https://huggingface.co/sb3

Some examples:

Asteroids: https://huggingface.co/sb3/dqn-AsteroidsNoFrameskip-v4
Beam Rider: https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4
Breakout: https://huggingface.co/sb3/dqn-BreakoutNoFrameskip-v4
Road Runner: https://huggingface.co/sb3/dqn-RoadRunnerNoFrameskip-v4

Let's load an agent playing Beam Rider: https://huggingface.co/sb3/dqn-
BeamRiderNoFrameskip-v4

Load a powerful trained model 🔥keyboard_arrow_down

 1
 2

%%html
<video controls autoplay><source src="https://huggingface.co/sb3/dqn-BeamRiderNoFra

[]

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 11/13

https://huggingface.co/eseskay/dqn-SpaceInvadersNoFrameskip-v4
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2FThomasSimonini%2Fdqn-SpaceInvadersNoFrameskip-v4
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fhuggingface-projects%2FDeep-Reinforcement-Learning-Leaderboard
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3%2Fdqn-AsteroidsNoFrameskip-v4
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3%2Fdqn-BeamRiderNoFrameskip-v4
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3%2Fdqn-BreakoutNoFrameskip-v4
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3%2Fdqn-RoadRunnerNoFrameskip-v4
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3%2Fdqn-BeamRiderNoFrameskip-v4
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3%2Fdqn-BeamRiderNoFrameskip-v4

1. We download the model using rl_zoo3.load_from_hub , and place it in a new folder that
we can call rl_trained

1
2
Download model and save it into the logs/ folder
!python -m rl_zoo3.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga sb3

2024-07-01 18:32:44.687464: E external/local_xla/xla/stream_executor/cuda/cuda_dnn
2024-07-01 18:32:44.689423: E external/local_xla/xla/stream_executor/cuda/cuda_fft
2024-07-01 18:32:44.691347: E external/local_xla/xla/stream_executor/cuda/cuda_bla
2024-07-01 18:32:44.701950: I tensorflow/core/platform/cpu_feature_guard.cc:182] T
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebui
2024-07-01 18:32:46.131128: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38
Downloading from https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4
dqn-BeamRiderNoFrameskip-v4.zip: 100% 27.2M/27.2M [00:02<00:00, 9.73MB/s]
config.yml: 100% 548/548 [00:00<00:00, 3.46MB/s]
No normalization file
args.yml: 100% 887/887 [00:00<00:00, 5.79MB/s]
env_kwargs.yml: 100% 3.00/3.00 [00:00<00:00, 19.5kB/s]
train_eval_metrics.zip: 100% 244k/244k [00:00<00:00, 377kB/s]
Saving to rl_trained/dqn/BeamRiderNoFrameskip-v4_1

2. Let's evaluate if for 5000 timesteps

1 !python -m rl_zoo3.enjoy --algo dqn --env BeamRiderNoFrameskip-v4 -n 5000 -f rl_trai

2024-07-01 18:33:00.100257: E external/local_xla/xla/stream_executor/cuda/cuda_dnn
2024-07-01 18:33:00.100312: E external/local_xla/xla/stream_executor/cuda/cuda_fft
2024-07-01 18:33:00.101621: E external/local_xla/xla/stream_executor/cuda/cuda_bla
2024-07-01 18:33:00.108750: I tensorflow/core/platform/cpu_feature_guard.cc:182] T
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebui
2024-07-01 18:33:01.169925: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38
Loading latest experiment, id=1
Loading rl_trained/dqn/BeamRiderNoFrameskip-v4_1/BeamRiderNoFrameskip-v4.zip
A.L.E: Arcade Learning Environment (version 0.8.1+53f58b7)
[Powered by Stella]
Stacking 4 frames
/usr/local/lib/python3.10/dist-packages/stable_baselines3/common/save_util.py:167:
Exception: 'bytes' object cannot be interpreted as an integer
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/stable_baselines3/common/vec_env/patch_gym
 warnings.warn(
Atari Episode Score: 3028.00
Atari Episode Length 14816

Why not trying to train your own Deep Q-Learning Agent playing BeamRiderNoFrameskip-
v4? 🏆.

If you want to try, check https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-
v4#hyperparameters in the model card, you have the hyperparameters of the trained agent.

But finding hyperparameters can be a daunting task. Fortunately, we'll see in the next Unit,
how we can use Optuna for optimizing the Hyperparameters 🔥.

The best way to learn is to try things by your own!

Some additional challenges 🏆keyboard_arrow_down

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 12/13

https://huggingface.co/sb3/dqn-BeamRiderNoFrameskip-v4
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3%2Fdqn-BeamRiderNoFrameskip-v4%23hyperparameters
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsb3%2Fdqn-BeamRiderNoFrameskip-v4%23hyperparameters

In the Leaderboard you will find your agents. Can you get to the top?

Here's a list of environments you can try to train your agent with:

BeamRiderNoFrameskip-v4
BreakoutNoFrameskip-v4
EnduroNoFrameskip-v4
PongNoFrameskip-v4

Also, if you want to learn to implement Deep Q-Learning by yourself, you definitely should
look at CleanRL implementation:
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py

Congrats on finishing this chapter!

If you’re still feel confused with all these elements...it's totally normal! This was the same for
me and for all people who studied RL.

Take time to really grasp the material before continuing and try the additional challenges.
It’s important to master these elements and having a solid foundations.

In the next unit, we’re going to learn about Optuna. One of the most critical task in Deep
Reinforcement Learning is to find a good set of training hyperparameters. And Optuna is a
library that helps you to automate the search.

This is a course built with you 👷🏿‍♀️keyboard_arrow_down

7/1/24, 2:34 PM unit3.ipynb - Colab

https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit3/unit3.ipynb#scrollTo=Ygk2sEktTDEw&printMode=true 13/13

https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fhuggingface-projects%2FDeep-Reinforcement-Learning-Leaderboard
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py
https://www.google.com/url?q=https%3A%2F%2Foptuna.org%2F

