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Abstract

The shift of human communication to online platforms brings many benefits
to society due to the ease of publication of opinions, sharing experience, get-
ting immediate feedback and the opportunity to discuss the hottest topics.
Besides that, it builds up a space for antisocial behavior such as harassment,
insult and hate speech.

This research is dedicated to detection of antisocial online behavior detection
(AOB) - an umbrella term for cyberbullying, hate speech, cyberaggression
and use of any hateful textual content. First, we provide a benchmark of deep
learning models found in the literature on AOB detection. Deep learning has
already proved to be efficient in different types of decision support: decision
support from financial disclosures, predicting process behavior, text-based
emoticon recognition. We compare methods of traditional machine learn-
ing with deep learning, while applying important advancements of natural
language processing: we examine bidirectional encoding, compare attention
mechanisms with simpler reduction techniques, and investigate whether the
hierarchical representation of the data and application of attention on differ-
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of the many acronyms this one is very new to me - AOB: online behavior detection. 

this could be extremely useful in creating a difference between the two systems working in tandem with one another. 
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identifying the difference between the two may prove critical. 


ent layers might improve the predictive performance. As a partial contribu-
tion of the final hierarchical part, we introduce pseudo-sentence hierarchical
attention network, an extension of hierarchical attention network — a recent
advancement in document classification.

Keywords: Deep Learning, Cyberbullying, Antisocial Online Behavior,
Attention Mechanism, Text Classification

1. Introduction

The shift of human communication to online platforms brings many ben-
efits to society due to the ease of publication of opinions, sharing experience,
getting immediate feedback and the opportunity to discuss the hottest topics.
Besides that, it builds up a space for antisocial behavior such as harassment,
insult and hate speech.

Detection of such antisocial behavior is of higher importance for social wel-
fare due to financial, legislative and social reasons. According to the annual
data of the Cyberbullying Research Center in 2016, 33.8 % of young people
aged 12-17 in the US have experienced cyberbullying in their lifetime [1].
July 2, 2019, Facebook gets a $2.3 million fine because of violating German
hate speech law [2]. According to this law, social media providers like Face-
book, Google, Microsoft are obliged in Germany to remove hate speech posts
within 24 hours and report on their progress every six months [3]. A few
days after the government of France also considers announcing a law similar
in application [4]. This emphasizes the importance for online platforms to
find a solution on how to identify AOB. Manual detection and monitoring of
online content can be very costly, this is why we need an automatic procedure
to detect such behavior.

In this paper, we elaborate on the detection of antisocial online behavior
(AOB) using DL methods. The term AOB is an umbrella term that de-
scribes any malicious behavior that can be found in the textual content on
online communications platforms such as insult, threat, personal attack, us-
age of harmful, rude or offensive language, cyberbullying and abuse.

Early academic research on detection of AOB in online communication was
mostly concentrated on the use of traditional machine learning methods
(TML) such as logistic regressions, support vector machines and decision
trees [e.g., 5], as well as lexicon-based approaches [e.g., [6]. These methods
heavily rely on extensive feature engineering and performance highly depends
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on the representation of the data, deep learning (DL) methods automate the
procedure of feature engineering by learning the representations of the data
through non-linear transformations. Such representations often achieve much
better performance than handcrafted features [7]. DL has proved to be effi-
cient in different types of decision support: decision support from financial
disclosures [§], predicting process behavior [9], text-based emoticon recogni-
tion [10] and many others. Also in the area of AOB detection DL modelling
have gained a lot of popularity: within the last two years, the amount of
academic research on deep learning models in the cyberbullying detection
has grown exponentially. Later research shows a tendency of comparing the
more sophisticated DL models from text classification with rather simpler
architectures.

The main contribution of this work is the following: we provide a benchmark
of DL structures found in the literature on AOB detection. We compare
methods of TML with DL, while applying important advancements of natural
language processing: we examine bidirectional encoding - a strategy to incor-
porate dependency of a future input to the model. Bidirectional processing
have proved to be successful in the area of text-based emoticon recognition
[10]. Moreover, we compare attention mechanisms, a way to reduce data
while retaining information of intermediate hidden states and not only of the
last hidden state, with simpler reduction techniques — global pooling layers.
Finally, we investigate whether the hierarchical representation of the data
and application of attention on different layers, a popular approach in docu-
ment classification, might improve the predictive performance. As a partial
contribution of the final hierarchical part, we introduce pseudo-sentence hi-
erarchical attention network — an extension of hierarchical attention network
— a recent advancement in document classification. The code is available on
Github https://github.com/QuantLet/AOBDL_code.

2. Deep Learning Architectures

To fully appreciate the technical content, the reader might benefit from
the following section where we describe the technology used in the previous
academic literature on AOB detection: bidirectional recurrent neural net-
works, attention and pooling mechanisms, hierarchical learning approaches,
as well as the model proposed in this work - pseudo-sentence hierarchical
attention network.

On figure [, we summarize our motivation on what machine learning ap-
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proaches to include. The figure shows different types of methods and their
drawbacks, which are simultaneously strengths of more complex models at
the end of the arrow.
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Figure 1: Overview of models

We start with methods of TML, and as mentioned in the introduction,
these methods heavily rely on handcrafted features, whereas DL models help
to learn abstract data representations and extract features automatically. A
traditional fully connected neural network (NN) cannot cope with sequen-
tial data and introduces separate parameters for each time step separately,
resulting in an insufficient generalization on sequences with length not seen
during the training [7]. Networks with loops [I1], based on a directed graph
along the temporal component of data, recurrent neural networks (RNN)
are able to work with sequences. Traditional RNNs, though, have impaired
ability to deal with very long-term dependencies, the gradients propagated
through the net might either vanish or explode [12] [13]. The models which
can deal with such a “vanishing gradient” problem are long short-term mem-
ory (LSTM) [14] and gated recurrent unit (GRU) [15]. The recurrent neural
networks usually have a causal structure: the state at time step ¢ does de-
pend only on the past information [7]. However, some applications require
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knowledge of the whole input sequence. In text classification, a word mean-
ing might, in some cases, be dependent on other words at the end of the
sentence. Bidirectional LSTM (BLSTM) and GRU (BGRU) proposed by
Schuster and Paliwal [16] are models which can deal with such dependency
of the future input. In the case of AOB detection, a bidirectional model may
help us to differentiate between “idiot like me” and “idiot like you”, where
one of the sentences is meant to be insulting and other not. Attention mod-
els introduced by Bahdanau et al. [I7] and other reduction techniques allow
a model to memorize longer sequences, whereas hierarchical models help in
reflecting the hierarchical structure of a text [I8], which is advantageous in
long text classification. By using attention, pooling layers, and hierarchical
structure in AOB detection we aim to improve performance on longer posts.
DL models that are included in the research will be described in greater detail
in the following section.

2.1. Bidirectionality

Regular RNNs have a causal structure, the state at time ¢ is trained only
on the past information [7]. Some problems though, require information from
the future or the whole input sentence. For example, in German language
some prefixes of verbs are moved to the end of the sentence. To understand
the meaning of the verb, whether we “switch on” or “switch off” the light for
instance, the model needs to know the input from the end of the sentence.
Bidirectional RNN (BRNN) is a construct of two RNNs proposed by Schuster
and Paliwal [16] in order to incorporate future temporal dynamics. The idea
is to combine forward pass - one RNN going from the first to the last state
with backward pass which goes vice versa. Outputs from forward states are
not connected with those of backward pass. This extension of RNN allows
to train the network in both time directions simultaneously [16]. BRNN is
trained similarly as a regular RNN. Only if back-propagation through time
is used, the forward and backward procedure are more complicated, since
update of a state and output cannot be done simultaneously, special actions
are required at the beginning and the end of training data. The forward state
at t =1 and t =T are unknown, as well as local state derivatives, and set to
0.5 and 0 respectively [16]. The general structure can be see on the figure [2]

2.2. Dimensionality reduction with attention and pooling

The original Attention Mechanism was developed as a memory extension
for the encoder-decoder (E-D) architecture, whereas the E-D architecture was
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Figure 2: General structure of BRNN proposed by Schuster and Paliwal [16]

first proposed in two different papers, submitted almost at the same time,
“Sequence to Sequence Learning with Neural Networks” by Sutskever et al.
[19] and in “Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation” by Cho et al. [I5]. This structure is de-
signed to tackle sequence-to-sequence modeling, where the input, as well as
the output, are sequences. The domains that use such models are machine
translation [e.g., 20], video captioning [e.g., 21], and speech recognition [e.g.,
29).

Before the attention mechanism was invented, machine translation relied on
encoding the whole input sequence into a one hidden state representation.
And encoding data into only one hidden state representation might result in
the loss of information. With an attention mechanism proposed by Bahdanau
et al. [I7], the model should be able to cope with a limitation of the classical
E-D model — difficulty with decoding of long sentences. “This may make it
difficult for the neural network to cope with long sentences, especially those
that are longer than the sentences in the training corpus.” [I7]. Attentive
model no longer encodes the full input sentence into a fixed-length vector —
hidden state, yet, it enables the decoder to zoom or concentrate on different
parts of the initial sentence while producing different elements of the output
generation. In other words, instead of encoding the input sequence into a
single fixed context vector, the attention model trains context vectors that
identify inputs that are relevant for each output time step.

The attention mechanism that is used for text classification has a slightly
different structure and acts as a reduction technique, such as average and
max-pooling. By using the attention mechanism we introduce an additional
context vector that summarizes the input on the different time steps and is



co-trained with the model. By using the scalar product of the hidden repre-
sentation of the input at different time steps, obtained through an additional
one-layer fully-connected network, with context vector state, we measure
their similarity. This similarity score is used to weight the input [18]. As
compared to pooling techniques, we introduce additional trainable parame-
ters to the model and a “smart” way to get our model to concentrate only
on the important input.

Global Pooling Layers can be seen as a simpler alternative to the attention
mechanism. Pooling layers are usually used in the context of convolutional
neural networks (CNNs) and computer vision. Similarly to the attention
layer, they also act as a reduction technique by taking the feature maps and
transforming them into one vector [23]. Nonetheless, pooling layers can also
be used in combination with recurrent neural networks, such as LSTMs and
GRUs. They take the sentence matrix produced through embedding and
encoding and reduces it to one vector. The most common approaches are
averaging and taking the maximum along the embedding dimension, which
subsequently results in the names Global Average Pooling and Global Max
Pooling. They are less complex, as compared to the attention layer due to
the fact they do not require additional parameters to be trained, which leads
to the faster training process.

2.3. HAN and PsHAN

One of the models using attention mechanism on multiple levels is the hi-
erarchical attention network (HAN). HAN was first proposed by Yang et al.
[18] for document classification tasks. The authors have tested it on six dif-
ferent data sets of different sizes, reflecting the hierarchical structure of the
text shown a positive effect on the models’ performances. This multi-leveled
structure should enable the model to pay more or less attention to different
parts of content when constructing a representation of the document. Dif-
ferent words are differently important by depicting the whole essence of one
sentence. Moreover, sentences are differently important when we describe
the meaning of the whole post or a document. Moreover, the same word
can have different meanings, which depend on the context. The hierarchical
attention network is depicted in figure [3]

HAN is designed to classify documents from a corpus to different categories.
The first part of the model is the word encoder, every document is broken
down into sentences, where each of the sentences is encoded separately: first
each word will be embedded into an embedding matrix, afterward using bidi-
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Figure 3: HAN Architecture. Proposed by Yang et al. [I8].

rectional GRU (BGRU) words are encoded by summarizing context within
the sentence for both directions, so each word is represented by its surround-
ing context. The next part of the mechanism is the word attention. Not
each word is equally important for the meaning of the sentence. Therefore,
word annotations obtained in the previous step are fed into a one-layer feed-
forwarded neural network to generate hidden-state representation, which is
then compared to the context vector through the softmax function resulting
in normalized importance weights. These weights, afterward, are used to
compute sentence vectors by weighting the sum of word annotations by their
importance scores.

A similar procedure is done on the sentence level since not every sentence
within a document contributes equally to the meaning of the document.
Through BGRU each sentence within a document is encoded by its sur-
rounding context, then hidden-representation is generated through a feed-
forwarded neural network, which is then compared to a sentence level context
vector. Obtained importance scores are used to weigh encoded sentences, the
sum of which results in the document representation. Classification into cate-
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gories is done in the very last step though a softmax one-layer feed-forwarded
network.

In the AOB detection though the length of posts varies extensively and rarely
posts are very long documents, which HAN is normally used for.

In the next step, we propose the pseudo-sentence HAN (psHAN) algorithm -
the extension of HAN. To the best of our knowledge, this adjustment of HAN
has not been issued in the previous academic research. The motivation to ad-
just the HAN algorithm is twofold: In the classical HAN, the pre-processing
step requires an additional split of the posts into sentences according to punc-
tuation marks, which enforces to maintain all other pre-processing steps for
each sentence independently after the split, otherwise, some pre-processing
steps are not feasible. Whereas psHAN does not require additional splitting
beforehand, which simplifies and accelerates the pre-processing procedure.
Moreover, the technical implementation of HAN can be connected to an es-
sential drawback: the length of a sentence, the number of sentences per post
can have high variability, which is usually the case in AOB detection. And
even though in theory using recurrent networks we can encode sequences of
variable length, in practice during the implementation one has to set up a
threshold on the length of a sequence, and HAN has even two such thresh-
olds. Having a positively skewed distribution of the sentence length and the
number of sentences, taking the maximum values for the threshold can lead
to very long computational times. Whilst cutting off twice, on the sentence
and post level, can remove a lot of essential for prediction information: for
some sentences which are longer than the threshold we would remove parts of
the text while adding zeros to the shorter sentences. Therefore, we propose
pseudo-sentence hierarchical attention network psHAN — networks where the
input documents are split not into real sentences but a set of sequences of an
arbitrarily set length, so the input forms a list of sequences without separa-
tion into real sentences. Pseudo-sentence — a sequence of words from a sen-
tence but not necessarily the whole sentence, the length of pseudo-sentence
is treated as a meta-parameter, i.e. we choose the length during model se-
lection and tuning.

Hence, having psHAN we are setting the cutoff only once - on the number
of words per post, we will call it N, so padding procedure is done also only
once. Further, we introduce two additional hyper-parameters: length of a
sentence and the number of sentences per input document, as in the HAN
architecture T" and L respectively. In the case of psHAN, the following equal-
ity holds L x T'= N, which is not necessarily true for the HAN model.

9
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By rearranging data, we can gain the profit of the hierarchical structure at
the same time not removing any information, every post is just split into
several sequences of a specific word amount.

This can be exemplified in the following artificial case. Imagine having the
following input sentence: This is an example of a comment on social me-
dia. In pseudo-sentence attention network, it will be padded with zeros to the
mazimum length of a post parameter, which is equal for all the posts. This
parameter acts as a hyper-parameter and is chosen during the training. As-
suming we set T'=4 and L =7, so i.e., for psHAN N = 28. On the figures
[ and [5] we can see how the input will be tokenized for HAN and psHAN,
respectively:

[[example, comment, social, media, 0, 0, 0],

[pseudosentence, attention, network, padded, zeros, maximum, length],
[parameter, acts, hyperparameter, chosen, during, training, 0],
[0,0,0,0,0,0,0]]

Figure 4: Tokenized Input for HAN

[example, comment, social, media, pseudosentence, attention],
network, padded, zeros, maximum, length, post parameter],
equal, posts, parameter, acts, hyperparameter, chosen, during],
training, 0, 0, 0, 0, 0, O]]

— e ——

Figure 5: Tokenized Input for psHAN

In the case of HAN, we had to introduce more zeros for shorter sentences
while removing some of the words for longer sentences. In this work, we
expect that the effect of having less reduced input will overweight the effect
of having semantically completed input sequences. The rest of the psHAN’s
architecture remains the same as of HAN’s, with the only difference that
instead of real sentences we have pseudo-sentences.

3. Related Work

The amount of literature on DL for AOB detection has exponentially
grown within the last two years. DL techniques can be used on different
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Table 2: Deep learning in AOBD - literature review (cont.)
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. . Hindi FB data set and English Twitter, data augmen-
Risch and Krestel [5) tation and usage of word embeddings, ensemble with * iﬂ
gradient boosting trees
Differemt CNN-based models, usage of word2vec, DL

Rosa. et al. ) vs DVM and LR, balanced and unbalanced data x X w 1

w - word-level, ¢ - character-level, d - document-level, ° character level used only for logistic regression
not for DL models
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Table 3: Deep learning in AOBD - literature review (cont.)
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Pre-trained embeddings, sentiment features using Sen-

Tommasel ot al. tiWordNet corpus,'composed features TF—IDE segtl— e 1
ment and punctuation related features, Gaussian noise -
after input layer
Error-Analysis, DL models compared with LR, pre-

i} i trained embeddings, common challenges, ensemble
van Aken et al. 1) learning, multi-label classification, Twitter and Face- * rxx ﬂ 1
w
book data
Cyberaggression detection using convolutional net-
works, differentiation between cyberbullying and cy-

G peraggressmn, session level bully 1n01dent,'text and < 0
image features, Instagram data max pooling layer, w
comparison with LR, comment level, usage of word
embeddings

%unerman et al Ensembles of convolutional NNs, Twitter data, x w 1
HAN;, attention on word and comment level, usage of

Cheng et al. [54] word-embeddings. Compare to KNN, NB, LR, RF, X X X x ¢, 11
XGBoost, Instagram data w

Data from Facebook and Twitter in Italian, limit
Fagni et al. feature engineering phase, DI models and ensemble. X X X w 1
Compare with SVM
Sexual Assault intent detection, Twitter data, convo-
Pandey et al. [56] lutional networks, usage of Part-of-Speech tags and X 1
pre-trained embeddings
Hierarchical attention model, only one attention layer,
- word and syllable encoder, compare to SVM, RF, X X X w,1 1
Twitter data s

w - word-level, ¢ - character-level, s - syllable-level, 7 character level used only for logistic regression
not for DL models

Santosh and Aravind
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steps of the modeling process. One can use it solely for feature extraction
to learn abstract representations of data and build another TML classifier
on the top, e.g., Zhong et al. [58], or one can use deep learning networks for
the whole training process, the feature extraction as well as classification. In
this research, we concentrate on academic work that uses DL for the entire
training process.

In the tables 1] 2] and [3] we depict papers on DL in AOB detection. We iden-
tify some details, algorithm, type of tokenization for textual input as well as
whether the researchers train their models solely on textual features.
Earlier research is dedicated to architectures such as CNN and LSTM, as
well as fully connected DNN and RNN models [24, 25]. In their work, da Sil-
veira Marciano et al. [31] have used extreme learning machines — a class of
neural networks, proposed by Huang et al. [59], where the parameter weights
are specified on random and only upper layer weights are trained, to classify
data whether it contains cyberbullying in the Portuguese language.

Later research on DL models in AOB detection tends to use more complex
models and constructs, such as bidirectional recurrent networks, attention
mechanism and even hierarchically structured data in combination with at-
tention. Agrawal and Awekar [33] compare the performance of CNN, LSTM,
bidirectional LSTM (BLSTM), and BLSTM with attention for training and
validation for task-specific as well as for transfer learning. Santosh and Ar-
avind [57] use a hierarchical model, where data is aggregated first on the
syllable level and then on word level. The attention mechanism is applied
further on word level. In another work, Cheng et al. [54] applied hierarchical
attention model HAN on Instagram data and compared it to the perfor-
mance of another TML classifiers, KNN, NB, LR, RF, and XGBoost. For
their research, van Aken et al. [51] used LSTM, BLSTM, BGRU, BGRU
with attention and CNN on Twitter and Wikipedia data. Furthermore, they
identified common challenges in cyberbullying detection, such as doubtful
labels and rhetorical questions, and performed in-depth error-analysis.
Interestingly, almost all the papers use tokenization on the word level and
do not add additional variables apart from the text itself. Moreover, the
majority of research is connected to classification the data in English lan-
guage, nonethelsess, there are examples in other languages: Portuguese [31],
Japanese [30], Italian [39], mix of Hindi and English [44] 48]. The most pop-
ular data sets used are coming from Twitter [e.g., 39, 146, 48|, 51], Facebook
le.g., BB, BT) B9], Wikipedia [e.g., [42] B3], 41].

Current research uses sophisticated techniques such as attention convention-
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ally compares it with either TML models or with DL models without other
dimensionality reduction. To the best of our knowledge, in AOB detection,
the pooling layers stacked onto recurrent layers have never been compared
with the attention layer. Max pooling layers have been used only in com-
binations with CNN so far [e.g., [37]. Therefore, in our work, as one of the
contributions, we want to identify whether we need the attention mechanism
leading to the introduction of additional trainable parameters or whether
global pooling can perform as good, keeping the model simpler in terms of
the amount of co-trainable weights.

4. Experimental Design

In this section, we describe our experimental design including datasets,
models, pre-processing and evaluation procedure we used.

4.1. Dataset

Data used for the experiments comes from a Kaggle competition “Toxic
Comment Classification” [60]. The data is provided by Jigsaw, a project
of Google — a technology incubator where researchers try to improve on-
line communication by preventing cyberbullying, protection of the speech
right, offering services preventing DDoS attacks on the websites about me-
dia, elections, and human-rights content, etc. [61I]. One of the main areas of
investigation is so-called “toxic comments, content that can be classified as
“rude, disrespectful, or unreasonable comment that is likely to make people
leave a discussion” [62]. This competition is dedicated to the identification
of different levels of toxicity in the Wikipedia Talk Pages. The problem def-
inition is organized as a multi-label classification problem with the following
classes: toxic, severe toxic, obscene, insult, threat, identity hate. We decided
to binarize the data to the malicious and non-malicious classes since the
focus of our work lies on providing a benchmark in general rather than on
multi-label classification.

Data contains 223,549 labeled data points. 29% of the labeled data were
drawn for the test data, stratified sampling was used to maintain the same
ratio of the malicious to non-malicious classes in the data. The percentage
of the malicious content in the training set and the test set is around 10%.
For the training and validation we have 158,719 and for the testing 64,830
observations.
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4.2. Pre-processing

First, the data was transformed into the lower case. Short versions of
negative contractions with apostrophes have been substituted with their full
version. The negation “not” has usually shown good predictive performance,
and if they would not have been substituted, in the step of deletion of ad-
ditional punctuation this negation would have got lost. Moreover, we sub-
stituted the emojis with their semantic equivalent. Such information has
shown to be very helpful in the tasks of sentiment analysis and classification
of malicious content. After substitution was completed, the set of following
stopwords, the words that are either used very often — have an equal likeli-
hood to occur in all documents relevant for the task [63] or do not hold any
additional semantic meaning for this task, was removed: [a, the, an, are, as,
did, do, is, has, have, had, was, were, will, would, am, it, for, on, it, of].
The pronounce “you” showed importance in the identification of malicious
content, therefore it was not removed.

Besides, we deleted repeating parts of the text, URLs, IP-addresses, user-
names. Finally, the removal of all non-alphanumeric characters was per-
formed.

4.2.1. Pre-processing for TML

For TML classifiers the TF-IDF tokenization was performed on the n-
gram wording level, where n = 1. TF-IDF, short for term frequency—inverse
document frequency, reflects how important a word is to a document in a

collection or corpus [64]. The final meta-parameter of the maximum amount
of the features was set to 40,000.

4.2.2. Pre-processing for DL

For all DL models tokenization was performed on the word level. The
maximal amount of features have been also set to 40,000 in order to maintain
compatibility with TML methods. As opposed to the TML, we did not
apply the TF-IDF features weighting scheme. Distinct integer token IDs
were assigned to the individual words. The aim of not deploying the TF-IDF
is connected to the fact that for DL models embedding techniques will be
applied. Finally, individual posts were padded to the maximum amount of
words in the post, which was most frequently 400. Padding sequences with
zeros is required if the sentence is shorter than the parameter — the maximum
amount of elements in a post. Hence, additional zeros added to achieve the
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same length for all posts. The maximum amount of words can also be seen
as a meta-parameter.

4.8. FEvaluation

Cross-validation with k = 5, where £ is the number of folds, was used for
model evaluation to achieve a more reliable result and greater generalization
rather than if we used the train-validation-test split. Stratified sampling was
used.

For all models, manual hyper-parameter tuning was performed in order to
ensure that difference in the performance arises through architecture charac-
teristics and not through differentiation of hyper-parameters.

While dealing with AOB detection, we usually have to deal with a very small
portion of the positive class observation — i.e., we have the data imbalance
problem. Often the area under the receiver operating characteristic curve
ROC, AUC ROC, is used for evaluation in the situation where we have to
deal with data imbalance. Nonetheless, we decided to use the area under the
precision-recall curve, AUC PR-C. The reason for using AUC under PR-C
instead of AUC ROC is the fact that even high changes in the number of
false positives can lead to a small change in the false positive rate used in
ROC analysis [65], if we have a sufficiently large amount of true negatives. In
order to avoid this problem, we should use the metric that does not include
the amount of the true negative into the calculation of the score, e.g. AUC
PR-C.

Thus, in the analysis we report metrics AUC PR-C, AUC ROC, as well as
the F1 score. However for parameter tuning and model selection, PR-C space
was used as the primary criterion. The threshold for the F-Score was set to
0.3, after selecting it using cross-validation for multiple models like LSTM,
GRU, BGRU, BLSTM.

5. Experiments

5.1. TML vs. DL

As a first sub-experiment, we are going to compare methods of traditional
machine learning with LSTM, CNN and GRU - the basic architectures the
most common DL architecture are based on. For that purpose we decided to
take one the most popular models from AOB detection with TML: logistic
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regression with 12 regularization LR, random forest RF [e.g., 33, 27, [5]. More-
over, we chose gradient boosting trees Light GBM as a model, its ensembles
are often used in data science competitions for structured data as winning
model.

In table [4, we depict the results in terms of AUC PR-C, AUC ROC and the
F1 Score. As we expected, DL models outperform TML models, by approxi-
mately 0.02 in terms of average precision. The difference in the performance
is higher in AUC PR-C and F1 Score than in AUC ROC.

Interestingly, the decision-tree ensemble-based models, which are seen to per-
form strongly with structured data, showed the worst performance in terms
of AUC PR-C while having the smallest gap between CV and test values and
having a high performance according to AUC ROC. Among all TML models
logistic regression achieved the best performance.

GRU model has shown the best performance among DL models. The differ-
ence in the performance of different types of recurrent neural networks, GRU
over LSTM, is quite marginal. Surprisingly, CNN has shown the most un-
satisfactory result. One of the possible reasons could be a higher amount of
meta-parameters and not so natural way of representing the text as a block,
compared to the typical application domain of CNN networks - computer
vision.

Our results support the idea that neural network-based architectures are
more powerful in AOB detection, as a type of text classification than the
traditional machine learning algorithms. The highlighted numbers represent
the best performance in each category.

5.2. Bidirectionality

In the second experiment, we added bidirectionality to our recurrent net-
works, in order to understand, whether in AOB detection classification pro-
cess depends on the future input. The results can be found in the table [5]
Compared to the results in experiment 1, we can see a marginal improvement
of the performance in terms of AUC PR-C of the GRU model. Nonetheless,
the improvement is marginal that if using the models in production, one
could consider using a model with fewer parameters in order to reduce com-
putational costs. Lower F1 Score of the bidirectional model even supports
the idea of preferring a rather simpler model. GRU-gate based models still
show better performance than LSTM-based, which emphasizes that a simpler
GRU unit can outperform LSTM that requires a greater amount of train-
able parameters. Adding bidirectionality to the LSTM has even marginally

18


Venia Logan
Huzzah! A metric I understand and can follow it's measurement! 

Venia Logan


Venia Logan
this is the exact problem I mentioned above. The context causes the algorithm to fail as it scales through abstraction layers. that process should be improved through the other systems mentioned below though - the researchers did in fact predict this would happen. 

Venia Logan
In the practicality of the analysis in my Ph.D I will need to heavily delve into the computational costs of my metric toward the end of it all because the parameters themselves are quite a bit more complicated.


Table 4: Results of Experiment 1: TML vs. DL

AUC Precision/Recall AUC ROC F1 Score
Model Folds CcvV Test CV Test CV Test
CV Fold 1 0.869 0.969 0.760
CV Fold 2 0.866 0.968 0.760
LR (Ridge) CV Fold 3 0.867 0.968 0.766
CV Fold 4 0.814 0.965 0.723
CV Fold 5 0.776 0.963 0.687
CV Average | 0.838 0.833 0.967  0.967 0.739  0.745
CV Fold 1 0.846 0.960 0.766
CV Fold 2 0.854 0.964 0.773
RF CV Fold 3 0.847 0.961 0.766
CV Fold 4 0.787 0.960 0.720
CV Fold 5 0.737 0.961 0.652
CV Average | 0.814 0.814 0.961 0.963  0.737  0.741
CV Fold 1 0.862 0.964 0.720
CV Fold 2 0.862 0.962 0.729
SVM CV Fold 3 0.864 0.963 0.726
CV Fold 4 0.812 0.963 0.715
CV Fold 5 0.781 0.963 0.698
CV Average | 0.836 0.827 0.963  0.962  0.718 0.722
CV Fold 1 0.851 0.960 0.751
CV Fold 2 0.854 0.959 0.759
LightGBM CV Fold 3 0.850 0.958 0.761
CV Fold 4 0.798 0.956 0.721
CV Fold 5 0.764 0.958 0.680
CV Average | 0.830 0.819 0.961 0.958  0.735  0.736
CV Fold 1 0.886 0.976 0.800
CV Fold 2 0.884 0.973 0.800
LSTM CV Fold 3 0.888 0.973 0.814
CV Fold 4 0.835 0.970 0.719
CV Fold 5 0.806 0.970 0.689
CV Average | 0.860 0.855 0.972 0971 0.764 0.767
CV Fold 1 0.887 0.975 0.804
CV Fold 2 0.887 0.973 0.794
GRU CV Fold 3 0.894 0.977 0.812
CV Fold 4 0.834 0.971 0.724
CV Fold 5 0.799 0.970 0.665
CV Average | 0.860 0.859 0.973 0.973 0.760 0.768
CV Fold 1 0.882 0.975 0.783
CV Fold 2 0.881 0.974 0.798
CNN CV Fold 3 0.882 0.974 0.799
CV Fold 4 0.829 0.970 0.725
CV Fold 5 0.787 0.967 0.641
CV Average | 0.852 0.850 0.972 0971 0.749  0.762

19


Venia Logan
This is very hard to undertand at the moment. Need more context to get this. 


Table 5: Results of Experiment 2: Bidirectionality

’ AUC Precision/Recall AUC ROC F1 Score
Model Folds CcvV Test CcvV Test CcvV Test
CV Fold 1 0.882 0.971 0.797
CV Fold 2 0.845 0.956 0.739
BLSTM CV Fold 3 0.889 0.974 0.804
CV Fold 4 0.836 0.970 0.740
CV Fold 5 0.795 0.969 0.665
CV Average | 0.850 0.852 0.968 0971 0.749  0.748
CV Fold 1 0.890 0.977 0.805
CV Fold 2 0.887 0.975 0.805
BGRU CV Fold 3 0.892 0.974 0.813
CV Fold 4 0.833 0.970 0.737
CV Fold 5 0.805 0.971 0.695
CV Average | 0.861 0.860 0.973 0.973 0.771 0.758

worsen its performance on the test data and led to the increase of discrep-
ancy of AUC PR-C between CV and test. It indicates that models of higher
complexity for AOB detection on Wikipedia data might lead to overfitting.

5.8. Attention vs. Pooling

In the introductory and literature parts, we mentioned that AOB research
quite often compares models with sophisticated reduction techniques with
models without reduction techniques at all. Further, we introduce reduction
techniques: we compare the attention mechanism with global maximum and
average pooling by using BGRU and BLSTM + different reduction tech-
niques. Therefore, we want to scrutinize, whether attention mechanism is
needed for our recurrent based model or we can achieve sufficient perfor-
mance using just global pooling. For that purpose, we take the best per-
forming bidirectional GRU-based model and add attention, average global
pooling, and maximum global pooling to it. The results are depicted in the
table [6] Bidirectional GRU model with maximum pooling outperformed the
other two reduction techniques, attention, and average pooling. The differ-
ence in the performance between all three reduction techniques is marginal.
Compared to the previous experiments reduction techniques have decreased
the performance.

5.4. Hierarchical Attention Models

In the last step, we dive into hierarchical attention models to investigate
whether reflecting hierarchical structure that benefits in the document clas-
sification might also improve the performance of machine learning models in
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Table 6: Results of Experiment 3: Attention vs. Pooling

, AUC Precision/Recall AUC ROC F1 Score

Model Folds CcvV Test CcvV Test cvV Test
CV Fold 1 0.887 0.972 0.805
CV Fold 2 0.878 0.969 0.787

BGRU CV Fold 3 0.877 0.971 0.789

+ CV Fold 4 0.822 0.968 0.718

Att. CV Fold 5 0.792 0.968 0.689
CV Average | 0.851 0.856 0.970 0.972 0.758  0.757
CV Fold 1 0.890 0.976 0.808
CV Fold 2 0.879 0.970 0.797

BGRU CV Fold 3 0.895 0.976 0.817

+ CV Fold 4 0.836 0.970 0.742

Avg. CV Fold 5 0.793 0.966 0.702
CV Average | 0.859 0.855 0972 0971 0.773 0.769
CV Fold 1 0.887 0.976 0.794
CV Fold 2 0.883 0.973 0.799

BGRU CV Fold 3 0.889 0.975 0.802

+ CV Fold 4 0.834 0.969 0.714

Max CV Fold 5 0.803 0.970 0.658
CV Average | 0.859 0.857 0.972 0.972 0.754  0.764

the case of AOB detection. Therefore we use HAN and psHAN proposed in
the Deep Learning Architectures section.

In other words, we investigate whether there is a need to separate social me-
dia comments into sentences and use this hierarchical structure to improve
predictive performance. As we can see in table [7] the use of such hierarchy
only reduces area under precision recall and under the ROC curves, i.e., HAN
performs worse than just GRU or BGRU. Interestingly, the use of pseudo-
sentences in psHAN shows better results than the original HAN, nonetheless,
still loosing to the best models GRU and BGRU.

5.5. Best Models

In table[§, we depicted all the best performing models throughout exper-
iments. As we can see the BGRU outperformed all other models, following
by the GRU. Moreover, GRU as well as BGRU has no gap between training
and testing performance according to AUC ROC. As stated before bidirec-
tionality has marginally improved the performance of a simpler GRU and in
production we might tend to choose the model of lower complexity.

All the reduction techniques have decreased the performance, compared to
the model without any reduction. Therefore, this type of increasing com-
plexity of the model might even en-worsen the result. Our results emphasize
the fact that it is not always recommendable to use reduction over different
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Table 7: Results of Experiment 3: Hierarchical models

AUC Precision/Recall AUC ROC F1 Score

Model Folds CV Test CV Test CvV Test
CV Fold 1 0.870 0.965 0.791
CV Fold 2 0.863 0.966 0.777
HAN CV Fold 3 0.866 0.964 0.782
CV Fold 4 0.812 0.958 0.721
CV Fold 5 0.784 0.963 0.666

CV Average | 0.839 0.833 0.963  0.964  0.747  0.748
CV Fold 1 0.879 0.971 0.788
CV Fold 2 0.880 0.971 0.795
psHAN CV Fold 3 0.886 0.972 0.804
CV Fold 4 0.829 0.969 0.752
CV Fold 5 0.791 0.968 0.708

CV Average | 0.853 0.853 0.970 0.971 0.769 0.768

time-steps of our encoder but sometimes having just the last hidden-state is
more efficient.

Reflecting hierarchical structure for AOB detection has also decreased the
performance. A probable explanation for this fact is the higher variability
of the length in the posts and in general shorter texts, as compared to the
HAN domain — document classification. Nonetheless, psHAN, among all DL
models, shows the smallest discrepancy between cross-validation and test
performance, which indicates the robustness of the model.

6. Conclusion and Further work

The first aim of this work is to present a benchmark of DL models for AOB
detection used in the existing literature. We showed that GRU-based models
perform the best and all DL models outperform methods of TML. Further,
we were able to show that predictive performance slightly improves when we
introduce a bidirectional recurrent layer, as the future input is important to
understand the meaning of the word now. Additionally, we concluded that in
the case of Wikipedia data we do not need any reduction techniques, neither
hierarchical structure is required. A rather simple GRU and bidirectional
GRU outperform models with additional structures. Moreover, the proposed
psHAN model outperforms the original HAN and also shows the smallest
discrepancy in the performance between cross-validation and test sets among
all DL models. For further work, we are planning to address the problem
of noisy labels and use similar techniques as in the semi-supervised learning
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Table 8: Best models

AUC Precision/Recall AUC ROC F1 Score
Model Folds Ccv Test (A% Test CvV Test
CV Fold 1 0.887 0.975 0.804
CV Fold 2 0.887 0.973 0.794
GRU CV Fold 3 0.894 0.977 0.812
CV Fold 4 0.834 0.971 0.724
CV Fold 5 0.799 0.970 0.665
CV Average | 0.860 0.859 0.973 0.973 0.760 0.768
CV Fold 1 0.890 0.977 0.805
CV Fold 2 0.887 0.975 0.805
BGRU CV Fold 3 0.892 0.974 0.813
CV Fold 4 0.833 0.970 0.737
CV Fold 5 0.805 0.971 0.695
CV Average | 0.861 0.860 0.973 0.973 0.771 0.758
CV Fold 1 0.887 0.976 0.794
CV Fold 2 0.883 0.973 0.799
BGRU CV Fold 3 0.889 0.975 0.802
+ CV Fold 4 0.834 0.969 0.714
Max CV Fold 5 0.803 0.970 0.658
CV Average | 0.859 0.857 0.972 0972 0.754  0.764
CV Fold 1 0.879 0.971 0.788
CV Fold 2 0.880 0.971 0.795
psHAN CV Fold 3 0.886 0.972 0.804
CV Fold 4 0.829 0.969 0.752
CV Fold 5 0.791 0.968 0.708
CV Average | 0.853 0.853 0.970  0.971 0.769  0.768
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to correct wrongly assigned labels, extend the research to different data sets
and investigate whether the use of pre-trained transformer models might
outperform models trained only on the domain data set.
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