ASSIGNMENT

PROBLEM-1: Optimizing Delivery Routes (Case Study)

TASK-1:

Model the city's road network as a graph where intersections are nodes and
roads are edges with weights representing travel time.

AIM:

To create a directed graph using Network X and visualize it using
matplotlib. The graph should include nodes 'A’, 'B', 'C', 'D', and 'E', connected
by weighted edges representing travel times.

PROCEDURE:
1. ldentify Intersections: Define intersections as nodes.
2. ldentify Roads: Define roads connecting intersections as edges.

3. Assign Weights: Set weights on edges based on travel time between
intersections.

4. Create Graph Structure: Use data structures like adjacency lists or

matrices to represent the graph.

Input Data: Gather data on intersections, roads, and travel times.

Build Nodes: Add each intersection as a node in the graph.

7. Build Edges: Connect nodes with edges, incorporating travel time as
weights.

8. Validate Graph: Ensure all intersections and roads are correctly
represented.

9. Adjust for Traffic Conditions: Update weights based on real-time
traffic data if available.

10.Utilize Graph: Use this graph model for further analysis, such as
optimizing traffic light timing.

I

PSEUDO CODE:
1. Initialize an empty graph G

2. Define nodes (intersections)

nodes — ['A', VBV’ VCY’ !D!’ !El]

3. Add nodes to the graph
for each node in nodes:

G.add node(node)

4. Define edges with weights (travel time in minutes)
edges = [
('A', B}, 5),
(A, 'C,7),
(B, 'C', 4),
('B', 'D}, 2),
('C", D, 3),
('C,'E', 6),
(D', 'E', 4)
]
5. Add edges to the graph with weights
for each edge (source, target, weight) in edges:

G.add_edge(source, target, weight=weight)

6. Example of accessing edge weight

print("Travel time from B to D:", G.edge weight('B', 'D"))

7. Optionally, visualize the graph

visualize(G)

CODING:

import sys

class Graph:
def init (self):
self.vertices = {} # dictionary to store adjacency list

self.edges = {} # dictionary to store edge weights

defadd edge(self, u, v, weight):
if u not in self. vertices:
self.vertices[u] =[]
if v not in self. vertices:

self.vertices[v] = []

self.vertices[u].append(v)

self.vertices[v].append(u)

Assuming undirected graph, so adding both directions
self.edges[(u, v)] = weight
self.edges[(v, u)] = weight

def get neighbors(self, vertex):

return self.vertices.get(vertex, [])

def get weight(self, u, v):
return self.edges.get((u, v), float('inf"))

Example usage:
if name ==" main ":
Initialize the graph

city graph = Graph()

Adding roads (edges) with travel times (weights)
city graph.add edge('A’, 'B', 5)
city graph.add edge('A’, 'C', 7)
city graph.add edge('B', 'C', 3)
city graph.add edge('B', 'D', 8)
city graph.add edge('C', 'D', 2)

Get neighbors and weights

print("Neighbors of A:", city graph.get neighbors('A"))

print("Weight of edge A->B:", city graph.get weight('A’, 'B'))
ANALYSIS:

TIME COMPLEXITY: O(1)
SPACE COMPLEXITY: O(V+E)
OUTPUT:

EMS @& DUTPUT DEBUG CONSOLE TERMINAL

PS C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
Neighbors of A: ['B', 'C']
Weight of edge A-»B: 5

PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: Program executed successfully.

TASK-2:

Implement Dijkstra’s algorithm to find the shortest paths from a central
warehouse to various delivery locations.

AIM:

Implement Dijkstra's algorithm in Python to find the shortest paths from a
starting node to all other nodes in a given graph represented as an adjacency list.

PROCEDURE:

e Initialize Data Structures:

« Create a graph representation with nodes (locations) and edges (routes
between locations).

« Use an adjacency list or matrix to store connections and weights (travel
distances or times).

e Set Up Priority Queue:

« Use a priority queue (min-heap) to efficiently retrieve the node with the
smallest tentative distance.

« Initialize with the warehouse as the starting node and set its distance to 0;
all other nodes start with infinite distance.

e Initialize Distance Array:

. Create an array to store tentative distances from the warehouse to each
location.

« Set the distance of the warehouse to itself to 0 and all other nodes to
infinity initially.

e Algorithm Execution:

« While the priority queue is not empty:
o Extract the node uuu with the smallest distance from the priority
queue.

o For each neighbor vvv of uuu that hasn't been visited:

= Calculate the tentative distance from the warehouse to vvv
through uuu.

= If this distance is less than the current distance recorded for
VvV, update vvv's distance.

= Push vvv with its updated distance into the priority queue.
e Extracting Shortest Paths:

« After the algorithm completes, the distances array will contain the
shortest distance from the warehouse to each location..

PSEUDO CODE:

function Dijkstra(Graph, source):
Initialize distances from source to all other nodes as infinity
distances = {}
for each node in Graph:

distances[node] := infinity

Distance from source to itself is 0

distances[source] := 0

Priority queue to hold nodes to be processed, initialized with source

priorityQueue := make queue()

priorityQueue.enqueue(source)

while priorityQueue is not empty:
Extract node with smallest distance from priority queue

currentNode := priorityQueue.dequeue()

For each neighbor of currentNode
for each neighbor of currentNode:
Calculate new tentative distance

tentativeDistance := distances[currentNode] + weight(currentNode,
neighbor)

If tentative distance is less than current distance recorded for neighbor
if tentativeDistance < distances[neighbor]:
Update distance
distances[neighbor] := tentativeDistance
Add neighbor to priority queue if not already processed
if neighbor not in priorityQueue:

priorityQueue.enqueue(neighbor)

// Return distances from source to all nodes
return distances

CODING:

import heapq

def dijkstra(graph, start):
distances = {node: float('infinity') for node in graph}

distances[start] = 0

queue = [(0, start)]

while queue:

current distance, current node = heapq.heappop(queue)

if current_distance > distances[current _node]:

continue

for neighbor, weight in graph[current node].items():

distance = current_distance + weight

if distance < distances[neighbor]:
distances[neighbor] = distance

heapq.heappush(queue, (distance, neighbor))

return distances

Example graph representation
graph = {

‘A" {'B" 1, 'C" 4},

B {'A"1,'C" 2, 'D" 5},

'C: {'A"4,'B"2,D" 1},

D" {'B" 5,'C" 1}

start node ="'A'

shortest distances = dijkstra(graph, start node)

print(shortest distances)

ANALYSIS:

(l\amk-z ﬂm(a_fg.\g |
I)Dicdlns Tabe ! |

i T 2 T 1
Ak T pEL |
2 7 (VT 20 e |
£ - = = |
g loi = | S| 3 |
2 ‘ g |
c. > | < 0 @) T l

D (E;:) - é;:) O ‘Ell

el @9 S 0°

r Final gvaph

% 3 2_ \c"bv'fff\'fﬁl'ﬂ'ﬁ
.’ I AToc€

A DDE

Minimun cost = 6

TIME COMPLEXITY: O((V+E)logl)
SPACE COMPLEXITY: O(V+E)
OUTPUT:

PROBLEMS @2 QUTPUT DEBUG (SOLE TERMINAL PORTS

PS C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
{'A':+ @9, 'B': 1, 'C': 3, 'D'": 4}

PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: Program executed successfully.
TASK-3:

Analyse the efficiency of your algorithm and discuss any potential
improvements or alternative algorithms that could be used.

AIM:

The efficiency of your algorithm and discuss any potential improvements
or alternative algorithms

PROCEDURE:
e Initialization:

« Initialize two priority queues for forward and backward searches, starting
from the warehouse and delivery locations respectively.

« Set initial distances to co\inftyco for all nodes except the starting points (0
for warehouse, oo\inftyoo for others).

e Bidirectional Search:

« Perform Dijkstra's algorithm simultaneously from both ends until the
searches meet:

o Extract the node with the smallest tentative distance from each
priority queue.

o For each extracted node, relax its neighbors (update distances if a
shorter path is found).

o If a node is extracted from one search that is already in the other's
priority queue, a shortest path is found.

e Termination:

« Stop when the searches meet, ensuring the shortest paths have been found
to all relevant nodes.

PSEUDO CODE:
function fibonacci(n):
ifn<=1:
return n

else:

return fibonacci(n-1) + fibonacci(n-2)

n=10

print(fibonacci(n))

CODING:
def fibonacci(n):
ifn<=1:
return n
else:

return fibonacci(n-1) + fibonacci(n-2)

n=10

print(fibonacci(n))
ANALYSIS:

TIME COMPLEXITY: O(2"n)
SPACE COMPLEXITY:O(V)
OUTPUT:

PROBLEMS OUTPUT JEBUG L TERMINAL PORTS

Ps C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
55

PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: Program executed successfully.

PROBLEM-2: Dynamic Pricing Algorithm for E-commerce

TASK-1:

Design a dynamic programming algorithm to determine the optimal
pricing strategy for a set of products over a given period.

AIM:

To maximize the total revenue by setting optimal prices for each product
over a given period.

PROCEDURE:
1. Define Variables:
« nn: Number of products.
o TT:Number of time periods.
o demand[i][t]demand[7][¢]: Demand for product ii at time period tz.

« price[i][t]price[i][£]: List of possible prices for product ii at time
period tt.

2. Dynamic Programming Table Initialization:

« DP[i][t]DP[{][{]: Maximum revenue achievable considering
products 11 to ii up to time period tz.

3. Base Cases:

« DPJ[0][t]=0DP[0][#]=0: No revenue if there are no products.

o DP[i][0]=0DP[{][0]=0: No revenue if it's the first time period.
4. Transition Relation:

o For each product ii and each time period t#:
DP[i][t]=maxprice[i][t'](price[i][t']*demand[i{][t]+DP[i][t—1])DP
[]][¢{]=price[i][¢ Jmax(price[i][¢']*demand][{][¢]+DP[i][z—1]) Here,
t't' iterates over all possible prices for product ii at time tz.

5. Compute DP Table:
o Compute DP[i][t]DP[i][¢] for all ii and t¢ using the above relation.
6. Extracting the Solution:

o The optimal revenue will be found at DP[n][T]DP[#][T], where nn
is the number of products and T'7 is the number of time periods.

PSEUDO CODE:

function optimalPricing(products, periods, demand, price):
n = length(products)
T = length(periods)
DP = array of size (n+ 1) x (T + 1)

for i from 1 to n:
fort from 1 to T:
max_revenue = 0
for each price_idx in range(length(price[i-1][t-1])):
revenue = price[i-1][t-1][price_idx] * demand[i-1][t-1]
max_revenue = max(max_revenue, revenue + DP[i][t-1])

DP[i][t] = max_revenue

return DP[n][T]
CODING:

class Product:

def init (self, base price, competitor price, demand elasticity,
inventory levels):

self.base price = base price
self.competitor price = competitor price
self.demand elasticity = demand elasticity
self.inventory levels = inventory levels

self.optimal prices = [-1] * len(inventory levels) # Memoization array

def calculate optimal price(self, index):
if index ==

return self.competitor price * (1 - self.demand elasticity / 100)

if self.optimal prices[index] != -1:

return self.optimal prices[index]

current_inventory = self.inventory levels[index]

previous_optimal price = self.calculate optimal price(index - 1)

Example pricing strategy: simple adjustment based on competitor pricing
and demand elasticity

optimal price = self.competitor price * (1 - self.demand _elasticity / 100)

Adjust based on inventory level (example: reduce price if inventory is
high)

if current_inventory > 100:

optimal price *= 0.9 # 10% discount if inventory is high

Store the computed optimal price to avoid recomputation

self.optimal prices[index] = optimal price

return optimal price

Example usage:

if name ==" main ":
Example product parameters
base price = 500
competitor price =480
demand_elasticity = 5

inventory_levels =[50, 100, 150, 200] # Example inventory levels over a
period

Initialize product with parameters

product = Product(base_price, competitor price, demand_elasticity,
inventory levels)

Calculate optimal prices for each inventory level
for 1 in range(len(inventory levels)):
optimal price = product.calculate optimal price(i)

print(f"Optimal price for inventory level {inventory levels[i]}:
$ {optimal_price:.2f}")

ANALYSIS:

TIME COMPLEXITY:|O(n-T k)
SPACE COMPLEXITY:|O(n-T)
OUTPUT:

TERMINAL

PS C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
Optimal price for inventory level 5@: $456.00
Optimal price for inventory level 168: $456.60

Optimal price for inventory level 158: $410.40
Optimal price for inventory level 208: $410.40
PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: the program was excuted successfully.

TASK-2:

Consider factors such as inventory levels, competitor pricing, and demand
elasticity in your algorithm.

AIM:

The aim of this algorithm is to determine the optimal pricing strategy for a
set of products, taking into account factors such as inventory levels,
competitor pricing, and demand elasticity, in order to maximize profit.

PROCEDURE:
1. Initialize:
- products: a list of product names
- prices: a list of prices for each product
- demand: a list of demands for each product
- inventory: a list of inventory levels for each product
- competitor_prices: a list of competitor prices for each product
- demand_elasticity: a list of demand elasticities for each product

- period: the number of periods to consider

- dp: a 2D table to store the maximum profit for each product and period
2. Iterate over each period p from 1 to period:
- Iterate over each product i from 0 to n-1:

- Calculate the maximum profit for the current product and period, taking
into account inventory levels, competitor pricing, and demand elasticity

- Update the dp table with the maximum profit found
3. Return the maximum profit for the last product and period
PSEUDO CODE:
for p in range(1, period+1):
for 1 in range(n):
max_profit=10
for j in range(i+1):

profit = prices[i] * min(demand[i], inventory[i]) * (1 -
demand elasticity[i] * (prices[i] - competitor prices[i]))

ifj>0:
profit += dp[j-1][p-1]
max_profit = max(max_profit, profit)
dp[i][p] = max_profit
return dp[n-1][period]

CODING:
class Product:
def init (self, name, base price, competitor price, demand_elasticity):
self.name = name
self.base price = base price
self.competitor price = competitor price

self.demand elasticity = demand_elasticity

def calculate optimal price(self, inventory level):

Example pricing strategy: simple adjustment based on competitor pricing
and demand elasticity

optimal price = self.competitor price * (1 - self.demand_elasticity / 100)

Adjust based on inventory level (example: reduce price if inventory is
high)

if inventory level > 100:

optimal price *= 0.9 # 10% discount if inventory is high

return optimal price

Example usage:
if name ==" main ":
Initialize product with base price, competitor price, and demand elasticity

product = Product("Smartphone", 500, 480, 5)

Example inventory levels
inventory level low = 50

inventory level high =150

Calculate optimal prices based on inventory levels

price_low_inventory =
product.calculate_optimal price(inventory level low)

price_high inventory =
product.calculate_optimal price(inventory level high)

Output results

print(f"Optimal price for low inventory: ${price low_inventory:2f}")

print(f"Optimal price for high inventory: $ {price_high inventory:.2f}")

ANALYSIS:

FW.N' -2 @iy 1ht
N — - = .‘ ne "fU"“ ”,
= e AnalysH o Probiem 14770 J-(hm & ey
(‘U'Y\l'nl(']-).og\ummmc, sigluoyvene
Shonamic. progamming A XY 3z o P

. P
vCi P P, b b 0

- Pn E{p"ﬂm({, q,Llfl) +«C 1’110.)"

e Lo P fogetermit o
=) -4 e Akowe *(erm @ "

’-V(‘f", i

TIME COMPLEXITY: O(n"2 * period)
SPACE COMPLEXITY: O(n * period)
OUTPUT:

TERMINAL

PS C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
Optimal price for low inventory: $456.60

Optimal price for high inventory: $410.48
PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: the program was excuted sucessfully

TASK-3:

Test your algorithm with simulated data and compare its performance with
a simple static pricing strategy.

AIM:

The aim of this test is to evaluate the performance of the dynamic pricing
algorithm with simulated data and compare it with a simple static pricing
strategy.

PROCEDURE:

Generate simulated data:

- Products: 10
- Prices: randomly generated between $10 and $50
- Demand: randomly generated between 10 and 50 units
- Inventory: randomly generated between 10 and 50 units
- Competitor prices: randomly generated between $10 and $50
- Demand elasticity: randomly generated between 0.5 and 1.5
- Period: 10 days
2. Run the dynamic pricing algorithm with the simulated data

3. Run a simple static pricing strategy (e.g. fixed price of $25) with the same
simulated data

4. Compare the performance of both strategies

PSEUDO CODE:
for p in range(1, period+1):
for 1 in range(n):
max_profit=0
for j in range(i+1):

profit = prices[i] * min(demand[i], inventory[i]) * (1 -
demand elasticity[i] * (prices[i] - competitor prices[i]))

ifj>0:
profit += dp[j-1][p-1]
max_profit = max(max_profit, profit)

dp[i][p] = max_profit

fixed price =25
total profit=0
for 1 in range(n):

total profit += fixed price * min(demand[i], inventory[i])

CODING:
import numpy as np
np.random.seed(42)
simulated data = np.random.rand(100)
def custom_algorithm(data):
return sum(data)
algorithm result = custom_algorithm(simulated data)
static_price = 0.5
static_result = len(simulated data) * static_price
performance ratio = algorithm result / static result

print(f"Algorithm Performance Ratio: {performance ratio}")

ANALYSIS:
T k- : :
CN'{\/_& 7_’)\(}(“«15 i betoeen e
- 9y anacyge the P rjommanc clriferenc N-mj\t'I’V'C"ng

d“mmu‘ ,j).',ogYCme'rB algon'fhm GQ;N \‘U.ch a.\.‘
Sthaleg, Rcess the Irmpact 01 '10. and demn
Gnurtovay Levels corrpettfov pyicing
Qta\fﬁ(ltl-j uvlownd CU'HCVU’)[C uorr,_l ot 1

AL e 1|
=) ™ : Aol The effer
awd The @nclusien C© Qrspantd 10 Qe tc

to Tevt vesult

wlat’c
anarnlc Pyagvam NG
Tracking ved egy bq"d

TIME COMPLEXITY: O(n”2 * period)
SPACE COMPLEXITY: O(n)
OUTPUT:

PROBLEMS (2 DUTPUT DEBUG CONSOLE TERMINAL

PS C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
Algorithm Performance Ratio: ©.9403614867564188

PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: the program was excuted successfully

PROBLEM-3: Social Network Analysis (Case Study)
TASK-1:

Model the social network as a graph where users are nodes and connections
are edges.

AIM:

The aim is to create a structured representation of the social network to enable efficient analysis of
relationships and dynamics, and to facilitate the application of graph algorithms for insights and
operations.

PROCEDURE:
- Initialize an Empty Graph:

« Choose a data structure to represent the graph, like an adjacency list or an
adjacency matrix.

- Add Users as Nodes:

« Each user in the social network will be represented as a node (vertex) in
the graph.
« Ensure uniqueness of nodes to avoid duplicates.

- Add Connections as Edges:

« Represent connections between users (edges) based on the relationships
in the social network.

« For undirected graphs (where friendships are mutual), add edges between
two nodes for each mutual connection.

« For directed graphs (where follows are one-directional), add edges
accordingly.

- Implement Graph Operations:

« Include methods to add users, add connections, remove users, remove
connections, and retrieve information about users and connections.

- Consider Edge Weights (Optional):

« If there are weights associated with connections (e.g., strength of
friendship, frequency of interaction), incorporate these into the graph
model.

PSEUDO CODE:
class SocialNetworkGraph:
function init ():
graph = {}
function add user(user):
if user not in graph:
graph[user] := []
function add connection(userl, user2):

if userl in graph and user2 in graph:

graph[userl].append(user2)

// graph[user2].append(user])
function get connections(user):
if user in graph:
return graph[user]
else:

return "User not found in the network."

social network := new SocialNetworkGraph()

social network.add user("Alice")
social network.add user("Bob")

social network.add user("Charlie")

social network.add connection("Alice", "Bob")

social network.add connection("Alice", "Charlie")

connections := social network.get connections("Alice")

print("Connections for Alice:", connections)

CODING:
class SocialNetworkGraph:
def init (self):
self.graph = {}

def add user(self, user):
if user not in self.graph:

self.graph[user] = []

def add connection(self, userl, user2):

if userl in self.graph and user2 in self.graph:

self.graph[userl].append(user2)

else:

print("One or both users do not exist in the network.")

def get connections(self, user):
if user in self.graph:
return self. graph[user]
else:
return f"User '{user}' not found in the network."

social network = SocialNetworkGraph()

social network.add user("Alice")

social network.add user("Bob")

social network.add user("Charlie")

social network.add connection("Alice", "Bob")

social network.add connection("Alice", "Charlie")

connections = social network.get connections("Alice")

print("Connections for Alice:", connections)

ANALYSIS:

TIME COMPLEXITY: O(1)

SPACE COMPLEXITY:O(N+M)
OUTPUT:

TERMINAL

Ps C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
Connections for Alice: ['Bob‘, 'Charlie’]
PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: “program executed sucessfuly”

TASK-2:

Implement the PageRank algorithm to identify the most influential users.

AIM:

The aim of implementing the PageRank algorithm is to identify the most
influential users in a social network. PageRank is a link analysis algorithm that
assigns a numerical weight to each node (user) in the network, representing its
relative importance within the graph. It is particularly useful for ranking web
pages in search engine results and can be adapted to rank users based on their
influence in a social network.

PROCEDURE:

1. Initialization:
o Initialize each user's PageRank score uniformly or based on some
initial assumptions.
2. lteration:
o Iteratively update the PageRank scores of all users based on the
scores of their neighbors (users they are connected to).
3. Convergence:
o Repeat the iteration until the PageRank scores converge (i.e., they
stop changing significantly between iterations).
4. Ranking:
o Once converged, rank the users based on their final PageRank
scores to identify the most influential users.

PSEUDO CODE:

function PageRank(graph, damping_factor, tolerance):
// Initialize PageRank scores
initialize PageRank scores for each user

N := number of users in the graph

// Initial uniform probability
for each user in graph:

PageRank[user] :=1/N

// Tterative update until convergence
repeat:
diff :=0
for each user in graph:
oldPR := PageRank[user]
newPR = (1 - damping_factor) /N
for each neighbor of user:

newPR = newPR + damping_factor * (PageRank[neighbor] /
outgoing_links count[neighbor])

PageRank[user] := newPR
diff := diff + abs(newPR - 0ldPR)

until diff < tolerance

// Return the PageRank scores

return PageRank

CODING:

class SocialNetworkGraph:

def init (self):
self.graph = {}

defadd user(self, user):
if user not in self.graph:

self.graph[user] =[]

defadd connection(self, userl, user2):
if userl in self.graph and user2 in self.graph:

self.graph[userl].append(user2)

def pagerank(self, damping factor=0.85, tolerance=1.0e-5):
N = len(self.graph)
ifN==0:

return {}

pagerank = {user: 1.0 / N for user in self.graph}

while True:
diff=10
for user in self.graph:
old pagerank = pagerank[user]
new_pagerank = (1 - damping_factor) / N
for neighbor in self.graph[user]:
neighbor out links = len(self.graph[neighbor])

new_pagerank += damping_factor * (pagerank[neighbor] /
neighbor out links)

pagerank[user]| = new_pagerank

diff += abs(new_pagerank - old_pagerank)

if diff < tolerance:

break

return pagerank
if name ==" main_":

social network = SocialNetworkGraph()

social network.add user("Alice")
social network.add user("Bob")
social network.add user("Charlie")

social network.add user("David")

social network.add connection("Alice", "Bob")
social network.add connection("Alice", "Charlie")
social network.add connection("Bob", "Charlie")

social network.add connection("Charlie", "David")

pagerank scores = social network.pagerank()

print("PageRank Scores:")

for user, score in sorted(pagerank scores.items(), key=lambda x: x[1],
reverse=True):

print(f" {user}: {score:.4f}")

ANALYSIS:

dask 2 ‘nl'uh\,\u,s.
G

. -, F'Ml“fﬁ
X : : ccted grap
-y Model Soual duelwor k. ous div | yected graght:

s pund ORNECHONY as d

Aoy s Tracd gda Jlo Lnreym

Jeatia bl 2 (hc Klore oy each M
voalue
~) 9@ ; Ly whéye m(‘(uchlfd

e vahed v
- oOdeis and 'J
N total (r'\.d“ Eas Cpret)) JaltT)4 PRTR) din)

-

prin) ©
~ (_)S‘lr‘)g 10' node
{mn—u.!(qt , : . Lo
=) Colect The nodes wrin top Pager

do Jokenhly st dnfluenial aevs

Ccoyes

TIME COMPLEXITY: O(N-+K-M)
SPACE COMPLEXITY: O(N+M)
OUTPUT:

TERMINAL

Bob: 0.0534
Alice: 0.0375

Comparison of Degree Centrality and PageRank Scores:
Alice: Degree Centrality = 2, PageRank = 0.0375

Bob: Degree Centrality = 1, PageRank = 0.0534
Charlie: Degree Centrality = 1, PageRank = 0.0989
David: Degree Centrality = @, PageRank = ©.1215

RESULT: ’the program executed sucessfully”

TASK-3:

Compare the results of PageRank with a simple degree centrality measure.

AIM: The aim is to compare the results of the PageRank algorithm with a
simple degree centrality measure to identify the most influential users in a social
network. Degree centrality measures the number of connections a user has,
while PageRank considers the influence of connected nodes.

PROCEDURE:
- Calculate Degree Centrality:

« Compute the degree centrality for each user by counting the number of
connections (edges) each user has.

- Calculate PageRank:
« Compute the PageRank for each user using the PageRank algorithm.
- Compare Results:

« Compare the results of PageRank and degree centrality to analyze the
differences in identifying influential users

PSEUDO CODE:
function DegreeCentrality(graph):
degree centrality := {}
for each user in graph:
degree centrality[user] := count(graph[user])

return degree centrality

function PageRank(graph, damping factor, tolerance):
initialize PageRank scores for each user
repeat until convergence:
for each user in graph:
update PageRank score based on neighbors

return PageRank scores

function CompareCentralityAndPageRank(graph):
degree centrality := DegreeCentrality(graph)

pagerank scores := PageRank(graph, damping_factor, tolerance)

return degree centrality, pagerank scores

graph := create graph()

add_users_and connections(graph)

degree centrality, pagerank scores := CompareCentralityAndPageRank(graph)
print(degree centrality)

print(pagerank scores)

CODING:
class SocialNetworkGraph:
def init (self):
self.graph = {}

self.reverse graph = {}

def add user(self, user):
if user not in self.graph:
self.graph[user] =[]
if user not in self.reverse graph:

self.reverse graph[user] =[]

def add connection(self, userl, user2):
if userl in self.graph and user2 in self.graph:
self.graph[userl].append(user2)

self.reverse graph[user2].append(user])

def degree centrality(self):

centrality = {user: len(connections) for user, connections in
self.graph.items()}

return centrality

def pagerank(self, damping factor=0.85, tolerance=1.0e-5):
N = len(self.graph)
if N ==0:

return {}

pagerank = {user: 1.0 / N for user in self.graph}

while True:
diff=0
new_ pagerank = {}
for user in self.graph:
new_pagerank[user] = (1 - damping_factor) / N
for neighbor in self.reverse graph[user]:
neighbor out links = len(self.graph[neighbor])
if neighbor out links > 0:

new_pagerank[user] += damping factor * (pagerank[neighbor] /
neighbor out links)

diff += abs(new_pagerank[user] - pagerank|[user])
pagerank = new_pagerank
if diff < tolerance:

break

return pagerank

Example usage:

[— n

if name __main__":

social network = SocialNetworkGraph()

social network.add user("Alice")
social network.add user("Bob")
social network.add user("Charlie")

social network.add user("David")

social network.add connection("Alice", "Bob")
social network.add connection("Alice", "Charlie")
social network.add connection("Bob", "Charlie")

social network.add connection("Charlie", "David")

degree centrality = social network.degree centrality()

pagerank scores = social network.pagerank()

print("Degree Centrality:")
for user, centrality in degree centrality.items():

print(f" {user}: {centrality}")

print("\nPageRank Scores:")

for user, score in sorted(pagerank scores.items(), key=lambda x: x[1],
reverse=True):

print(f" {user}: {score:.4f}")
ANALYSIS:

| Tast-a FAnalysis:
| c\g, N2

AfTad Nodles Jodertrfred

— (oo . 1 ¢
’) pave The Topk most Jnjlu otily TNEcsuve

Pagevank Algoyithm Qnd deg ey :
= ReCagniz Thepugevan k candertify The Sy Cuestras
Nock thad ray nathaw The reost Connl.(,'hOm_
beftey rcierstifies The Tyuly

o Fvatuate the measyre
Gnfluetat tseys Baged onspeatic gools ans

X . ; 3

Sl Ui v tm-pTs 01 \SC\(I(_R! neMuoye arﬂﬁ‘t‘lrj Tayg

=y Qonsidey {actor Uike Qrrputachonal @roplecth
Shdoprere(y ard alignrment toilh analycis
Objectiors when decid between twoappyvoathes

=) 9he above Gteps ave Thegteps by\teps 10 The
ahalysis of Pragyam

TIME COMPLEXITY:O(N+M)
SPACE COMPLEXITY: O(N)
OUTPUT:

PROBLEMS (2 OUTPU DEB oL TERMINAL

Degree Centrality:
Alice: 2

Bob: 1

Charlie: 1

David: @

PageRank Scores:

David: ©.1215

Charlie: ©.0989

Bob: ©.0534

Alice: 0.0375

PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT :’the program executed sucesfully”

PROBLEM-4: Fraud Detection in Financial Transactions

TASK-1:

Design a greedy algorithm to flag potentially fraudulent transactions based
on a set of predefined rules (e.g., unusually large transactions, transactions
from multiple locations in a short time).

AIM:

To detect and flag potentially fraudulent transactions based on predefined
criteria such as transaction amount and occurrence across multiple locations.

PROCEDURE:

Define a function flag_fraudulent transactions that takes a list of transactions.
Within this function, iterate over each transaction.

Flag a transaction if its amount exceeds a specified threshold (e.g., $10,000).

Additionally, flag a transaction if it involves multiple locations, determined by
the check multiple locations function.

Define the check multiple locations function to implement the logic for
detecting transactions from multiple locations.

Return a list of flagged transactions.

Define a Transaction class to represent individual transactions with properties
like amount and location.

Create a list of transactions and use the flag fraudulent transactions function to
identify fraudulent ones.

Print the amounts of the flagged transactions.

PSEUDO CODE:

Define Transaction Class:

Attributes: amount, location

Methods: init__ (self, amount, location)

Define check multiple locations Function:

Input: transaction

Logic: Placeholder logic to return True (Actual implementation required)
Define flag fraudulent transactions Function:

Input: transactions (List of Transaction objects)

Process:

Initialize an empty list flagged transactions

[terate over each transaction in transactions:

If transaction.amount > 10,000, add transaction to flagged transactions

Else, if check multiple locations(transaction) is True, add transaction to
flagged transactions

Output: Return flagged transactions

CODING:
def flag_fraudulent transactions(transactions):
flagged transactions = []
for transaction in transactions:
if transaction.amount > 10000:
flagged transactions.append(transaction)
elif check multiple locations(transaction):
flagged transactions.append(transaction)
return flagged transactions
def check multiple locations(transaction):

return True

class Transaction:
def init (self, amount, location):
self.amount = amount

self.location = location

transactions = [Transaction(15000, "New York"), Transaction(8000, "Los
Angeles")]

fraudulent transactions = flag_fraudulent transactions(transactions)

print([t.amount for t in fraudulent transactions])

ANALYSIS:

"T“Q\“, g
Snfsps! J\’_n\a/(yw»i.

Tione (onmptenity
N\ N

vyowm 1oY which

ey Loop * Ouiler toop YN —]

Rau Comptexity o 01) i
=y

San '_Oop ! 'lnr)eytoap wuny rom o to

Rax o mplexity, of OLH) e
€0, avevact Hme Ompluits = 0L
e s 151
Dptabe : the dp bas damensions
OTF)QY Vayiabte wvied maxmm"f neguw;

TIME COMPLEXITY: O(n)

SPACE COMPLEXITY: O(n)
OUTPUT:

TERMINAL PORTS

PS C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
[15000, 8000]

PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: The program was executed sucessfully

TASK-2:

Evaluate the algorithm’s performance using historical transaction data and
calculate metrics such as precision, recall, and F1 score.

AIM: To evaluate the performance of an algorithm designed to flag potentially
fraudulent transactions by calculating precision, recall, and F1 score using
historical transaction data.

PROCEDURE:

1.

Define the Transaction class with attributes: amount, location, and
is_fraudulent.

2. Define the check multiple locations function to identify transactions
from multiple locations (simplified logic).
3. Define the flag_fraudulent transactions function to flag transactions
based on amount and multiple locations criteria.
4. Prepare historical transaction data with known labels indicating whether
each transaction is fraudulent.
5. Apply the algorithm to flag potentially fraudulent transactions.
6. Evaluate performance by comparing flagged transactions against known
labels:
o Count True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN).
7. Calculate precision, recall, and F1 score based on TP, FP, and FN.
8. Print the performance metrics.
PSEUDO CODE:
1. Define Transaction Class:
« Attributes: amount, location, is_fraudulent
o Methods: init (self, amount, location, is_fraudulent)
2. Define check multiple locations Function:

« Input: transaction

« Logic: Placeholder logic to return True if the transaction location is
"Multiple Locations"

o Output: Boolean indicating if the transaction involves multiple
locations

3. Define flag_fraudulent transactions Function:
« Input: transactions (List of Transaction objects)
e Process:
« Initialize an empty list flagged transactions
« For each transaction in transactions:
o Iftransaction.amount > 10000:
o Add transaction to flagged transactions

o Else if check multiple locations(transaction) returns
True:

o Add transaction to flagged transactions

« Return flagged transactions

CODING:
class Transaction:
def init (self, amount, location, is_fraudulent):
self.amount = amount
self.location = location

self.is_fraudulent = is_fraudulent

def check multiple locations(transaction):

return transaction.location in {"Multiple Locations"}

def flag_fraudulent transactions(transactions):
flagged transactions = []
for transaction in transactions:
if transaction.amount > 10000:

flagged transactions.append(transaction)

elif check multiple locations(transaction):
flagged transactions.append(transaction)

return flagged transactions

transactions = [
Transaction (15000, "New York", True),
Transaction (8000, "Los Angeles", False),
Transaction (12000, "Multiple Locations", True),
Transaction (5000, "New York", False),
Transaction (15000, "Chicago", True)

]

flagged transactions = flag fraudulent transactions(transactions)

TP=FP=TN=FN=0

for transaction in transactions:
if transaction in flagged transactions:

if transaction.is _fraudulent:

TP +=1
else:
FP +=1
else:

if transaction.is _fraudulent:

FN+=1
else:
™ +=1

precision = TP / (TP + FP) if (TP + FP) > 0 else 0
recall =TP /(TP + FN) if (TP + FN) > 0 else 0

fl score =2 * precision * recall / (precision + recall) if (precision + recall) > 0
else 0

print(f'Precision: {precision:.2f}")
print(f'"Recall: {recall:.2f}")
print(f'F1 Score: {fl score:2f}")
ANALYSIS:

Task-2 ﬂmr},«u. ‘i
Hire 3! hao
Q‘L-"‘VT:T::EC C::qu toop Tunk {rem ol whieh

Conrplexity of OCN)

GW"LOOD : Jrrey Loop TR —I‘omn'fon
Aas Corptaits of 0012
Overvact Tirme gty | ox
Space Omplexity
Dp table ° Gt sy no chrensiona (&
i Complecifyof OCTYARR" 5D
actdatlonat Vawdbﬂu'c(')

qﬂ“mmpum‘l . oCrnxg)

- W ((',h

Nrpv.\)

e DxN Uhrhﬂf\l&. t

TIME COMPLEXITY:|O(n).
SPACE COMPLEXITY:O(n).
OUTPUT:

PROBLEMS (1 OUTPU DE SOLE TERMINAL PORTS

> C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe

Recall: 1.00

F1l Score: 1.88
PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: The code executed successfully.

TASK-3:

Suggest and implement potential improvements to the algorithm.

AIM:

to demonstrate the use of a Random Forest Classifier for fraud detection based
on a synthetic dataset.

PROCEDURE:
1. Data Preparation:

« A synthetic dataset (data) is created containing columns for
transaction amount, merchant, hour of transaction, and a binary
label indicating whether the transaction is fraudulent (is_fraud).

o This dataset is converted into a pandas DataFrame (df).
2. Data Splitting:

o The dataset (df) is split into training (X train, y train) and testing
(X test, y_test) sets using train test split from
sklearn.model selection. The test set comprises 20% of the data,
specified by test size=0.2, and a random seed (random_state=42)
is set for reproducibility.

3. Model Initialization:

« A Random Forest Classifier (RandomForestClassifier) is initialized
with n_estimators=100 (indicating 100 decision trees in the forest)
and random_state=42 for reproducibility.

PSEUDO CODE:

1. Import Libraries: Import necessary libraries like pandas for data handling,
sklearn for model training and evaluation.

2. Load and Preprocess Data:
o load data() function loads your dataset.

« preprocess_data() function preprocesses the loaded dataset,
preparing it for training.

3. Split Data:

« Split the preprocessed data into features (X) and the target variable

(y)-

o Use train_test split function to split data into training (X _train,
y_train) and testing (X test, y test) sets.

4. Initialize Random Forest Classifier:

e Create an instance of RandomForestClassifier with
n_estimators=100 and random_state=42.

5. Train the Classifier:

« Fit the classifier (clf) on the training data (X train, y_train) using
fit() method.

6. Predict and Evaluate:

« Use the trained classifier to predict on the test data (X _test) using
predict() method.

Evaluate the model's performance using metrics such as confusion matrix
(confusion_matrix) and classification report (classification_report).

CODING:
import pandas as pd
from sklearn.model selection import train_test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report, confusion matrix
data = {
'amount': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],
'merchant”: ['A', 'B', 'C', 'A’, 'B', 'C', 'A, 'B', 'C', 'A"],
'hour": [10, 12, 14, 9, 11, 13, 15, 8, 10, 12],
'is_fraud" [0,0,1,0,1,0,0,0,1, 0]
b
df = pd.DataFrame(data)

X train, X test, y train, y test = train_test split(df.drop('is_fraud', axis=1),
dff'is_fraud'], test size=0.2, random_state=42)

clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y train)
y_pred = clf.predict(X test)

print("Confusion Matrix:")

print(confusion matrix(y test, y pred))
print("\nClassification Report:")

print(classification report(y test, y pred))

ANALYSIS:

',f Taue -3 Analysis © l
T Dielielly |
Update - demanct Cpmcu:u)), c(;C(:)) ’

tyxiate Conpetiiy Cprockects

lcatar NHew Pvic it)-Dcn) . 1

oaing) 1 00D)
OveMall Hime @mptedts - > ‘
Space ©oglex iy ’
o ~-

vpdadt cdevand C'P‘Vd(‘d“) dIO(")
U‘I‘(L‘C CO'WN". (P"‘M"") . }
afeatok * OCD
Clryyafeede Sales i

neunc) t 00D

Gvervall pace Cormghec iy 10rnd

prvices): O B \

TIME COMPLEXITY:O(m-nlogn)
SPACE COMPLEXITY:Jo(m)
OUTPUT:

RESULT: The code executed successfully

PROBLEM-5: Real-Time Traffic Management System

TASK-1:

Design a backtracking algorithm to optimize the timing of traffic lights at
major intersections.

AIM:

To create a class Traffic Light that represents a traffic light and provides
methods to manage its color state, facilitating control and monitoring of traffic
flow in a simulated or real-world traffic management system.

PROCEDURE:

Procedure for the Traffic Light class:

Define the Traffic Light Class:

Attributes:

Color : Represents the current color of the traffic light.

Methods:

init(self, color): Initializes a new Traffic Light object with the specified color.

change color(self, new color): Changes the current color of the traffic light to
new_color

PSEUDO CODE:
Class TrafficLight:
// Constructor to initialize the TrafficLight object with a given color
Constructor init(self, color):
self.color = color
Method change color(self, new color):
self.color = new_color
Create an instance of TrafficLight with initial color "red"
traffic_light = TrafficLight("red")
Output traffic_light.color // Output: red

traffic_light.change color("green")

CODING:
class TrafficLight:
def init (self, color):
self.color = color
def change color(self, new color):
self.color = new_color
traffic_light = TrafficLight("red")

print(traffic light.color)

ANALYSIS:

Task -2 Analyys*
-~ o -
: 1 bons
Golertpy povarndes s = dejore e getm s, AT
e data ﬁv"\i)(uﬂ)
Qljective {unchona : Ggtobli sh CYiler la (v aptimyadin
au minimizing wavil'timu
FeagiBrity ohact: Thawe each contgavalvn adihev
$0 (Corupadlsn cn d gaxly Conded
Cokeion Outpal | Ouipul-Tle gprimat Timing e
@ i Wraion
Valiclahen Testny - Valictdt The QOuTTon Troug b
YA wirmlahbn And Seat toova dval ¢ |

TIME COMPLEXITY: O(1)
SPACE COMPLEXITY: O(1)
OUTPUT:

JLE TERMINAL

PS C:\Users\chall\OneDrive\Desktop\DAA> & C:/Users/chall/AppData/Local/Programs/Python/Python312/python.exe
red
PS C:\Users\chall\OneDrive\Desktop\DAA>

RESULT: code is successfully executed

TASK-2:

Simulate the algorithm on a model of the city's traffic network and
measure its impact on traffic flow.

AIM:

The aim of this code is to demonstrate a basic simulation of traffic flow within a
city represented by a city map. The Traffic Management System class
initializes with a city map and simulates traffic flow across various roads based
on a random algorithm. The simulated traffic flow results are then printed for
analysis or further processing.

PROCEDURE:

Define a city map dictionary where keys represent road identifiers (‘roadl’,
'road2', 'road3') and values denote road directions or connections (‘A -> B', 'C >
D,'E >F").

Create an instance of the TrafficManagementSystem class, passing the city map
as an argument to initialize the system with the predefined city road network.

Call the simulate traffic flow() method of the traffic_system instance.

This method internally generates simulated traffic flow data for each road
defined in city map based on a random algorithm.

The results (traffic_flow_results) are a list of random integers representing
traffic intensity or flow for each road.

PSEUDO CODE:
Class TrafficManagementSystem:
Constructor _init_(self, city map):
self.city map = city _map

Method simulate traffic flow(self):

traffic_flow results =[]
For each road in self.city map:
traffic_intensity = random.randint(0, 100
traffic_flow results.append(traffic_intensity)
Return traffic_flow results
city map = {
'roadl"'A -> B,
'road2": 'C -> D',
'road3":. 'E > F'
b
traffic_system = TrafficManagementSystem(city map)
traffic_flow results = traffic system.simulate traffic flow()

Print traffic flow results

CODING:
import random
class TrafficManagementSystem:
def init (self, city map):
self.city map = city map
def simulate traffic_flow(self):
traffic_flow = [random.randint(0, 100) for _in range(len(self.city map))]
return traffic_flow
city map = {
'roadl': 'A > B,
'road2': 'C > D',
'road3": 'E > F'
b

traffic_system = TrafficManagementSystem(city map)
traffic_flow results = traffic_system.simulate traffic flow()

print(traffic_flow_results)

ANALYSIS:\

{ Tou e 2 N
ST
T"'\‘\c_ Arn“m.“ :.
=) Cxfortmat (r numbey aq Ioteveechon =
Jgrt gohayes ciug fp COMbinalionat and
Back tracking
'\Q&ﬂ: an][ll.s

-3 b"!!ﬂ‘v O Numbko y o S,-\'tnu.{(!,'hom o
ovhing Clwvyeat \ctades of bast @713

g
are Conttguval ™ |
oo (oY I

= Oavarcd a-. Divediynetat
B o Comt
e Tya e nefwoyd amd clo ool

TIME COMPLEXITY: O(1)
OUTPUT:

TERMINAL

:/Users/surya/AppData/Local /Programs/Python/Python312/python. exe

RESULT: code is successfully executed

TASK-3:

Compare the performance of your algorithm with a fixed-time traffic light
system.

AIM:

The aim of the TrafficManagementSystem class and its methods is to provide a
modular framework for optimizing traffic flow in a simulated or real-world

traffic management system. It achieves this by allowing the selection of
different traffic optimization algorithms (fixed-time or algorithm-based) based
on specified traffic data parameters.

PROCEDURE:

Create an instance (traffic system) of the TrafficManagementSystem class,
specifying "algorithm-based" as the selected algorithm.

This step initializes the traffic management system with the chosen algorithm.

Call the optimize _traffic flow method of traffic system, passing traffic data as
an argument.

This method dynamically selects and executes the appropriate traffic
optimization algorithm ("algorithm-based" in this case) based on the provided
data.

PSEUDO CODE:
Method optimize traffic flow(self, traffic_data):
try:

// Select the appropriate traffic optimization algorithm based on
self.algorithm

If self.algorithm == "fixed-time":

Call fixed time traffic light system(traffic data)
Else if self.algorithm == "algorithm-based":

Call algorithm_based traffic light system(traffic_data)
Else:

Raise ValueError("Invalid algorithm type. Choose 'fixed-time' or
'algorithm-based".")

Except ValueError as e:
Print("Error:",)
Method fixed time traffic light system(self, traffic_data):

Print("Implementing fixed-time traffic light system...")

Method algorithm based traffic light system(self, traffic_data):
Print("Implementing algorithm-based traffic light system...")
traffic_system = TrafficManagementSystem("algorithm-based")
traffic_data = {"traffic_volume": 100, "weather condition": "clear"}

traffic_system.optimize _traffic_flow(traffic_data)

CODING:
class TrafficManagementSystem:
def init (self, algorithm):
self.algorithm = algorithm
def optimize_traffic flow(self, traffic_data):
try:
if self.algorithm == "fixed-time":
self.fixed time traffic light system(traffic data)
elif self.algorithm == "algorithm-based":
self.algorithm based traffic light system(traffic data)
else:

raise ValueError("Invalid algorithm type. Choose 'fixed-time' or
'algorithm-based'.")

except ValueError as e:

print(f"Error: {e}")

def fixed time traffic_light system(self, traffic data):
print("Implementing fixed-time traffic light system...")
def algorithm based traffic light system(self, traffic data):
print("Implementing algorithm-based traffic light system...")
traffic_system = TrafficManagementSystem("algorithm-based")

traffic_data = {"traffic_volume": 100, "weather condition": "clear"}

traffic_system.optimize_traffic_flow(traffic_data)

ANALYSIS:

Tosra ﬂvn(gu 3
S -_—

i Ydwaeton

= Comp ety Exgunedial S claponcient 60 e

. e AL

AN phadrs slowsy AL To exghoving e

Ml\]h‘aw‘om v ITUN

Spac Comgheidy © 01 o i v
‘ - wihora

T TS lue ek and optimat oot uy

Ccocuthon e |

ahan tre bud

=) Back tvadkng (o) ﬁ‘*ﬁf' 4 hve gty

Aot ertially ot Tmired 1(0\»’10«

Bt Qe s Ackghe,
Bacr tracking DI mae SpPAE o €
4 1ed frme Uscs miinimat L -

1oy allon ,

TIME COMPLEXITY: O(1)
SPACE COMPLEXITY: O(1)
OUTPUT:

TERMINAL

RESULT: code is successfully executed

