
ASSIGNMENT 

 

PROBLEM-1: Optimizing Delivery Routes (Case Study) 

 

TASK-1: 

Model the city's road network as a graph where intersections are nodes and 

roads are edges with weights representing travel time. 

 

AIM: 

         To create a directed graph using Network X and visualize it using 

matplotlib. The graph should include nodes 'A', 'B', 'C', 'D', and 'E', connected 

by weighted edges representing travel times. 

 

PROCEDURE: 

1. Identify Intersections: Define intersections as nodes. 

2. Identify Roads: Define roads connecting intersections as edges. 

3. Assign Weights: Set weights on edges based on travel time between 

intersections. 

4. Create Graph Structure: Use data structures like adjacency lists or 

matrices to represent the graph. 

5. Input Data: Gather data on intersections, roads, and travel times. 

6. Build Nodes: Add each intersection as a node in the graph. 

7. Build Edges: Connect nodes with edges, incorporating travel time as 

weights. 

8. Validate Graph: Ensure all intersections and roads are correctly 

represented. 

9. Adjust for Traffic Conditions: Update weights based on real-time 

traffic data if available. 

10. Utilize Graph: Use this graph model for further analysis, such as 

optimizing traffic light timing. 

 

 



PSEUDO CODE: 

1. Initialize an empty graph G 

 

2. Define nodes (intersections) 

   nodes = ['A', 'B', 'C', 'D', 'E'] 

 

3. Add nodes to the graph 

   for each node in nodes: 

       G.add_node(node) 

 

4. Define edges with weights (travel time in minutes) 

   edges = [ 

       ('A', 'B', 5),    

       ('A', 'C', 7),    

       ('B', 'C', 4),    

       ('B', 'D', 2),   

       ('C', 'D', 3),    

       ('C', 'E', 6),    

       ('D', 'E', 4)     

   ] 

5. Add edges to the graph with weights 

   for each edge (source, target, weight) in edges: 

       G.add_edge(source, target, weight=weight) 

 

6. Example of accessing edge weight 

   print("Travel time from B to D:", G.edge_weight('B', 'D'))   

 



7. Optionally, visualize the graph 

   visualize(G) 

 

CODING: 

import sys 

 

class Graph: 

    def __init__(self): 

        self.vertices = {}  # dictionary to store adjacency list 

        self.edges = {}     # dictionary to store edge weights 

 

    def add_edge(self, u, v, weight): 

        if u not in self.vertices: 

            self.vertices[u] = [] 

        if v not in self.vertices: 

            self.vertices[v] = [] 

 

        self.vertices[u].append(v) 

        self.vertices[v].append(u) 

 

        # Assuming undirected graph, so adding both directions 

        self.edges[(u, v)] = weight 

        self.edges[(v, u)] = weight 

 

    def get_neighbors(self, vertex): 

        return self.vertices.get(vertex, []) 

 



    def get_weight(self, u, v): 

        return self.edges.get((u, v), float('inf')) 

 

# Example usage: 

if __name__ == "__main__": 

    # Initialize the graph 

    city_graph = Graph() 

 

    # Adding roads (edges) with travel times (weights) 

    city_graph.add_edge('A', 'B', 5) 

    city_graph.add_edge('A', 'C', 7) 

    city_graph.add_edge('B', 'C', 3) 

    city_graph.add_edge('B', 'D', 8) 

    city_graph.add_edge('C', 'D', 2) 

 

    # Get neighbors and weights 

    print("Neighbors of A:", city_graph.get_neighbors('A')) 

    print("Weight of edge A->B:", city_graph.get_weight('A', 'B')) 

ANALYSIS: 

  

 



 

TIME COMPLEXITY:  O(1) 

SPACE COMPLEXITY:  O(V+E) 

OUTPUT:  

 

RESULT: Program executed successfully. 

 

 

TASK-2: 

Implement Dijkstra’s algorithm to find the shortest paths from a central 

warehouse to various delivery locations. 

 

AIM: 

          Implement Dijkstra's algorithm in Python to find the shortest paths from a 

starting node to all other nodes in a given graph represented as an adjacency list. 

PROCEDURE: 

 Initialize Data Structures: 

 Create a graph representation with nodes (locations) and edges (routes 

between locations). 

 Use an adjacency list or matrix to store connections and weights (travel 

distances or times). 

 Set Up Priority Queue: 

 Use a priority queue (min-heap) to efficiently retrieve the node with the 

smallest tentative distance. 

 Initialize with the warehouse as the starting node and set its distance to 0; 

all other nodes start with infinite distance. 



 Initialize Distance Array: 

 Create an array to store tentative distances from the warehouse to each 

location. 

 Set the distance of the warehouse to itself to 0 and all other nodes to 

infinity initially. 

 Algorithm Execution: 

 While the priority queue is not empty: 

o Extract the node uuu with the smallest distance from the priority 

queue. 

o For each neighbor vvv of uuu that hasn't been visited: 

 Calculate the tentative distance from the warehouse to vvv 

through uuu. 

 If this distance is less than the current distance recorded for 

vvv, update vvv's distance. 

 Push vvv with its updated distance into the priority queue. 

 Extracting Shortest Paths: 

 After the algorithm completes, the distances array will contain the 

shortest distance from the warehouse to each location.. 

 

PSEUDO CODE: 

function Dijkstra(Graph, source): 

    Initialize distances from source to all other nodes as infinity 

    distances := {} 

    for each node in Graph: 

        distances[node] := infinity 

     

     Distance from source to itself is 0 

    distances[source] := 0 

     

   Priority queue to hold nodes to be processed, initialized with source 

    priorityQueue := make_queue() 



    priorityQueue.enqueue(source) 

     

    while priorityQueue is not empty: 

       Extract node with smallest distance from priority queue 

        currentNode := priorityQueue.dequeue() 

         

        For each neighbor of currentNode 

        for each neighbor of currentNode: 

            Calculate new tentative distance 

            tentativeDistance := distances[currentNode] + weight(currentNode, 

neighbor) 

             

             If tentative distance is less than current distance recorded for neighbor 

            if tentativeDistance < distances[neighbor]: 

                Update distance 

                distances[neighbor] := tentativeDistance 

          Add neighbor to priority queue if not already processed 

                if neighbor not in priorityQueue: 

                    priorityQueue.enqueue(neighbor) 

     

    // Return distances from source to all nodes 

    return distances 

CODING: 

import heapq 

 

def dijkstra(graph, start): 

    distances = {node: float('infinity') for node in graph} 

    distances[start] = 0 



    queue = [(0, start)] 

 

    while queue: 

        current_distance, current_node = heapq.heappop(queue) 

 

        if current_distance > distances[current_node]: 

            continue 

 

        for neighbor, weight in graph[current_node].items(): 

            distance = current_distance + weight 

 

            if distance < distances[neighbor]: 

                distances[neighbor] = distance 

                heapq.heappush(queue, (distance, neighbor)) 

 

    return distances 

 

# Example graph representation 

graph = { 

    'A': {'B': 1, 'C': 4}, 

    'B': {'A': 1, 'C': 2, 'D': 5}, 

    'C': {'A': 4, 'B': 2, 'D': 1}, 

    'D': {'B': 5, 'C': 1} 

} 

 

start_node = 'A' 

shortest_distances = dijkstra(graph, start_node) 



print(shortest_distances) 

ANALYSIS: 

 

 

 

TIME COMPLEXITY: O((V+E)logV) 

SPACE COMPLEXITY: O(V+E) 

OUTPUT: 

 

RESULT: Program executed successfully. 

TASK-3: 



Analyse the efficiency of your algorithm and discuss any potential 

improvements or alternative algorithms that could be used. 

 

AIM: 

          The efficiency of your algorithm and discuss any potential improvements 

or alternative algorithms 

 

PROCEDURE: 

 Initialization: 

 Initialize two priority queues for forward and backward searches, starting 

from the warehouse and delivery locations respectively. 

 Set initial distances to ∞\infty∞ for all nodes except the starting points (0 

for warehouse, ∞\infty∞ for others). 

 Bidirectional Search: 

 Perform Dijkstra's algorithm simultaneously from both ends until the 

searches meet: 

o Extract the node with the smallest tentative distance from each 

priority queue. 

o For each extracted node, relax its neighbors (update distances if a 

shorter path is found). 

o If a node is extracted from one search that is already in the other's 

priority queue, a shortest path is found. 

 Termination: 

 Stop when the searches meet, ensuring the shortest paths have been found 

to all relevant nodes. 

 

PSEUDO CODE: 

         function fibonacci(n): 

    if n <= 1: 

        return n 

    else: 



        return fibonacci(n-1) + fibonacci(n-2) 

 

n = 10 

print(fibonacci(n)) 

            

CODING: 

          def fibonacci(n): 

    if n <= 1: 

        return n 

    else: 

        return fibonacci(n-1) + fibonacci(n-2) 

 

n = 10 

print(fibonacci(n)) 

ANALYSIS: 

 

 

TIME COMPLEXITY: O(2^n) 

SPACE COMPLEXITY:O(V) 

OUTPUT: 



 

RESULT: Program executed successfully. 

 

 

PROBLEM-2: Dynamic Pricing Algorithm for E-commerce 

 

TASK-1: 

Design a dynamic programming algorithm to determine the optimal 

pricing strategy for a set of products over a given period. 

 

AIM: 

To maximize the total revenue by setting optimal prices for each product 

over a given period. 

 

PROCEDURE: 

1. Define Variables: 

 𝑛n: Number of products. 

 𝑇T: Number of time periods. 

 demand[𝑖][𝑡]demand[i][t]: Demand for product 𝑖i at time period 𝑡t. 

 price[𝑖][𝑡]price[i][t]: List of possible prices for product 𝑖i at time 

period 𝑡t. 

2. Dynamic Programming Table Initialization: 

 DP[𝑖][𝑡]DP[i][t]: Maximum revenue achievable considering 

products 11 to 𝑖i up to time period 𝑡t. 

3. Base Cases: 

 DP[0][𝑡]=0DP[0][t]=0: No revenue if there are no products. 



 DP[𝑖][0]=0DP[i][0]=0: No revenue if it's the first time period. 

4. Transition Relation: 

 For each product 𝑖i and each time period 𝑡t: 

DP[𝑖][𝑡]=max price[𝑖][𝑡′](price[𝑖][𝑡′]×demand[𝑖][𝑡]+DP[𝑖][𝑡−1])DP

[i][t]=price[i][t′]max(price[i][t′]×demand[i][t]+DP[i][t−1]) Here, 

𝑡′t′ iterates over all possible prices for product 𝑖i at time 𝑡t. 

5. Compute DP Table: 

 Compute DP[𝑖][𝑡]DP[i][t] for all 𝑖i and 𝑡t using the above relation. 

6. Extracting the Solution: 

 The optimal revenue will be found at DP[𝑛][𝑇]DP[n][T], where 𝑛n 

is the number of products and 𝑇T is the number of time periods. 

 

PSEUDO CODE: 

function optimalPricing(products, periods, demand, price): 

    n = length(products) 

    T = length(periods) 

    DP = array of size (n + 1) x (T + 1) 

 

    for i from 1 to n: 

        for t from 1 to T: 

            max_revenue = 0 

            for each price_idx in range(length(price[i-1][t-1])): 

                revenue = price[i-1][t-1][price_idx] * demand[i-1][t-1] 

                max_revenue = max(max_revenue, revenue + DP[i][t-1]) 

            DP[i][t] = max_revenue 

 

    return DP[n][T] 

CODING: 

class Product: 



    def __init__(self, base_price, competitor_price, demand_elasticity, 

inventory_levels): 

        self.base_price = base_price 

        self.competitor_price = competitor_price 

        self.demand_elasticity = demand_elasticity 

        self.inventory_levels = inventory_levels 

        self.optimal_prices = [-1] * len(inventory_levels)  # Memoization array 

 

    def calculate_optimal_price(self, index): 

        if index == 0: 

            return self.competitor_price * (1 - self.demand_elasticity / 100) 

 

        if self.optimal_prices[index] != -1: 

            return self.optimal_prices[index] 

 

        current_inventory = self.inventory_levels[index] 

        previous_optimal_price = self.calculate_optimal_price(index - 1) 

 

        # Example pricing strategy: simple adjustment based on competitor pricing 

and demand elasticity 

        optimal_price = self.competitor_price * (1 - self.demand_elasticity / 100) 

 

        # Adjust based on inventory level (example: reduce price if inventory is 

high) 

        if current_inventory > 100: 

            optimal_price *= 0.9  # 10% discount if inventory is high 

 

        # Store the computed optimal price to avoid recomputation 



        self.optimal_prices[index] = optimal_price 

 

        return optimal_price 

 

# Example usage: 

if __name__ == "__main__": 

    # Example product parameters 

    base_price = 500 

    competitor_price = 480 

    demand_elasticity = 5 

    inventory_levels = [50, 100, 150, 200]  # Example inventory levels over a 

period 

 

    # Initialize product with parameters 

    product = Product(base_price, competitor_price, demand_elasticity, 

inventory_levels) 

 

    # Calculate optimal prices for each inventory level 

    for i in range(len(inventory_levels)): 

        optimal_price = product.calculate_optimal_price(i) 

        print(f"Optimal price for inventory level {inventory_levels[i]}: 

${optimal_price:.2f}") 

ANALYSIS: 

  



 

TIME COMPLEXITY: O(n⋅T⋅k) 

SPACE COMPLEXITY: O(n⋅T) 

OUTPUT: 

 

RESULT: the program was excuted successfully. 

 

TASK-2: 

Consider factors such as inventory levels, competitor pricing, and demand 

elasticity in your algorithm. 

 

AIM: 

The aim of this algorithm is to determine the optimal pricing strategy for a 

set of products, taking into account factors such as inventory levels, 

competitor pricing, and demand elasticity, in order to maximize profit. 

 

PROCEDURE: 

1. Initialize: 

    - products: a list of product names 

    - prices: a list of prices for each product 

    - demand: a list of demands for each product 

    - inventory: a list of inventory levels for each product 

    - competitor_prices: a list of competitor prices for each product 

    - demand_elasticity: a list of demand elasticities for each product 

    - period: the number of periods to consider 



    - dp: a 2D table to store the maximum profit for each product and period 

2. Iterate over each period p from 1 to period: 

    - Iterate over each product i from 0 to n-1: 

        - Calculate the maximum profit for the current product and period, taking 

into account inventory levels, competitor pricing, and demand elasticity 

        - Update the dp table with the maximum profit found 

3. Return the maximum profit for the last product and period 

PSEUDO CODE: 

for p in range(1, period+1): 

 for i in range(n): 

  max_profit = 0 

  for j in range(i+1): 

   profit = prices[i] * min(demand[i], inventory[i]) * (1 - 

demand_elasticity[i] * (prices[i] - competitor_prices[i])) 

   if j > 0: 

    profit += dp[j-1][p-1] 

   max_profit = max(max_profit, profit) 

  dp[i][p] = max_profit 

return dp[n-1][period] 

 

CODING: 

class Product: 

    def __init__(self, name, base_price, competitor_price, demand_elasticity): 

        self.name = name 

        self.base_price = base_price 

        self.competitor_price = competitor_price 

        self.demand_elasticity = demand_elasticity 

 



    def calculate_optimal_price(self, inventory_level): 

        # Example pricing strategy: simple adjustment based on competitor pricing 

and demand elasticity 

        optimal_price = self.competitor_price * (1 - self.demand_elasticity / 100) 

 

        # Adjust based on inventory level (example: reduce price if inventory is 

high) 

        if inventory_level > 100: 

            optimal_price *= 0.9  # 10% discount if inventory is high 

 

        return optimal_price 

 

# Example usage: 

if __name__ == "__main__": 

    # Initialize product with base price, competitor price, and demand elasticity 

    product = Product("Smartphone", 500, 480, 5) 

 

    # Example inventory levels 

    inventory_level_low = 50 

    inventory_level_high = 150 

 

    # Calculate optimal prices based on inventory levels 

    price_low_inventory = 

product.calculate_optimal_price(inventory_level_low) 

    price_high_inventory = 

product.calculate_optimal_price(inventory_level_high) 

 

    # Output results 

    print(f"Optimal price for low inventory: ${price_low_inventory:.2f}") 



    print(f"Optimal price for high inventory: ${price_high_inventory:.2f}") 

 

ANALYSIS: 

 

TIME COMPLEXITY: O(n^2 * period) 

SPACE COMPLEXITY: O(n * period) 

OUTPUT: 

 

RESULT: the program was excuted sucessfully 

 

TASK-3: 

Test your algorithm with simulated data and compare its performance with 

a simple static pricing strategy. 

 

AIM: 

The aim of this test is to evaluate the performance of the dynamic pricing 

algorithm with simulated data and compare it with a simple static pricing 

strategy. 

 

PROCEDURE: 

Generate simulated data: 



    - Products: 10 

    - Prices: randomly generated between $10 and $50 

    - Demand: randomly generated between 10 and 50 units 

    - Inventory: randomly generated between 10 and 50 units 

    - Competitor prices: randomly generated between $10 and $50 

    - Demand elasticity: randomly generated between 0.5 and 1.5 

    - Period: 10 days 

2. Run the dynamic pricing algorithm with the simulated data 

3. Run a simple static pricing strategy (e.g. fixed price of $25) with the same 

simulated data 

4. Compare the performance of both strategies 

 

PSEUDO CODE: 

for p in range(1, period+1): 

 for i in range(n): 

  max_profit = 0 

  for j in range(i+1): 

   profit = prices[i] * min(demand[i], inventory[i]) * (1 - 

demand_elasticity[i] * (prices[i] - competitor_prices[i])) 

   if j > 0: 

    profit += dp[j-1][p-1] 

   max_profit = max(max_profit, profit) 

  dp[i][p] = max_profit 

 

fixed_price = 25 

total_profit = 0 

for i in range(n): 

 total_profit += fixed_price * min(demand[i], inventory[i]) 



 

CODING: 

import numpy as np 

np.random.seed(42) 

simulated_data = np.random.rand(100) 

def custom_algorithm(data): 

    return sum(data) 

algorithm_result = custom_algorithm(simulated_data) 

static_price = 0.5 

static_result = len(simulated_data) * static_price 

performance_ratio = algorithm_result / static_result 

print(f"Algorithm Performance Ratio: {performance_ratio}") 

 

ANALYSIS: 

 

TIME COMPLEXITY:  O(n^2 * period) 

SPACE COMPLEXITY: O(n) 

OUTPUT: 

 



RESULT: the program was excuted successfully 

 

 

 

PROBLEM-3: Social Network Analysis (Case Study) 

TASK-1: 

Model the social network as a graph where users are nodes and connections 

are edges. 

 

AIM:  

The aim is to create a structured representation of the social network to enable efficient analysis of 

relationships and dynamics, and to facilitate the application of graph algorithms for insights and 

operations. 

PROCEDURE: 

· Initialize an Empty Graph: 

 Choose a data structure to represent the graph, like an adjacency list or an 

adjacency matrix. 

· Add Users as Nodes: 

 Each user in the social network will be represented as a node (vertex) in 

the graph. 

 Ensure uniqueness of nodes to avoid duplicates. 

· Add Connections as Edges: 

 Represent connections between users (edges) based on the relationships 

in the social network. 

 For undirected graphs (where friendships are mutual), add edges between 

two nodes for each mutual connection. 

 For directed graphs (where follows are one-directional), add edges 

accordingly. 

· Implement Graph Operations: 



 Include methods to add users, add connections, remove users, remove 

connections, and retrieve information about users and connections. 

· Consider Edge Weights (Optional): 

 If there are weights associated with connections (e.g., strength of 

friendship, frequency of interaction), incorporate these into the graph 

model. 

 

 

PSEUDO CODE: 

class SocialNetworkGraph: 

    function __init__(): 

        graph := {} 

    function add_user(user): 

        if user not in graph: 

            graph[user] := [] 

    function add_connection(user1, user2): 

        if user1 in graph and user2 in graph: 

             

            graph[user1].append(user2) 

             

            // graph[user2].append(user1) 

    function get_connections(user): 

        if user in graph: 

            return graph[user] 

        else: 

            return "User not found in the network." 

 

social_network := new SocialNetworkGraph() 



 

social_network.add_user("Alice") 

social_network.add_user("Bob") 

social_network.add_user("Charlie") 

 

social_network.add_connection("Alice", "Bob") 

social_network.add_connection("Alice", "Charlie") 

 

connections := social_network.get_connections("Alice") 

print("Connections for Alice:", connections) 

 

CODING: 

class SocialNetworkGraph: 

    def __init__(self): 

        self.graph = {} 

 

    def add_user(self, user): 

        if user not in self.graph: 

            self.graph[user] = [] 

 

    def add_connection(self, user1, user2): 

        if user1 in self.graph and user2 in self.graph: 

             

            self.graph[user1].append(user2) 

             

        else: 

            print("One or both users do not exist in the network.") 



 

    def get_connections(self, user): 

        if user in self.graph: 

            return self.graph[user] 

        else: 

            return f"User '{user}' not found in the network." 

social_network = SocialNetworkGraph() 

 

 

social_network.add_user("Alice") 

social_network.add_user("Bob") 

social_network.add_user("Charlie") 

social_network.add_connection("Alice", "Bob") 

social_network.add_connection("Alice", "Charlie") 

 

connections = social_network.get_connections("Alice") 

print("Connections for Alice:", connections) 

ANALYSIS: 

 

 

TIME COMPLEXITY: O(1) 



SPACE COMPLEXITY:O(N+M) 

OUTPUT: 

 

RESULT: “program executed sucessfuly” 

 

TASK-2: 

Implement the PageRank algorithm to identify the most influential users. 

 

AIM: 

The aim of implementing the PageRank algorithm is to identify the most 

influential users in a social network. PageRank is a link analysis algorithm that 

assigns a numerical weight to each node (user) in the network, representing its 

relative importance within the graph. It is particularly useful for ranking web 

pages in search engine results and can be adapted to rank users based on their 

influence in a social network.  

PROCEDURE: 

1. Initialization: 

o Initialize each user's PageRank score uniformly or based on some 

initial assumptions. 

2. Iteration: 

o Iteratively update the PageRank scores of all users based on the 

scores of their neighbors (users they are connected to). 

3. Convergence: 

o Repeat the iteration until the PageRank scores converge (i.e., they 

stop changing significantly between iterations). 

4. Ranking: 

o Once converged, rank the users based on their final PageRank 

scores to identify the most influential users. 

 



PSEUDO CODE: 

function PageRank(graph, damping_factor, tolerance): 

    // Initialize PageRank scores 

    initialize PageRank scores for each user 

    N := number of users in the graph 

 

    // Initial uniform probability 

    for each user in graph: 

        PageRank[user] := 1 / N 

 

    // Iterative update until convergence 

    repeat: 

        diff := 0 

        for each user in graph: 

            oldPR := PageRank[user] 

            newPR := (1 - damping_factor) / N 

            for each neighbor of user: 

                newPR := newPR + damping_factor * (PageRank[neighbor] / 

outgoing_links_count[neighbor]) 

            PageRank[user] := newPR 

            diff := diff + abs(newPR - oldPR) 

        until diff < tolerance 

 

    // Return the PageRank scores 

    return PageRank 

 

CODING: 

class SocialNetworkGraph: 



    def __init__(self): 

        self.graph = {} 

 

    def add_user(self, user): 

        if user not in self.graph: 

            self.graph[user] = [] 

 

    def add_connection(self, user1, user2): 

        if user1 in self.graph and user2 in self.graph: 

            self.graph[user1].append(user2) 

 

    def pagerank(self, damping_factor=0.85, tolerance=1.0e-5): 

        N = len(self.graph) 

        if N == 0: 

            return {} 

 

        pagerank = {user: 1.0 / N for user in self.graph} 

 

        while True: 

            diff = 0 

            for user in self.graph: 

                old_pagerank = pagerank[user] 

                new_pagerank = (1 - damping_factor) / N 

                for neighbor in self.graph[user]: 

                    neighbor_out_links = len(self.graph[neighbor]) 

                    new_pagerank += damping_factor * (pagerank[neighbor] / 

neighbor_out_links) 

                pagerank[user] = new_pagerank 



                diff += abs(new_pagerank - old_pagerank) 

 

            if diff < tolerance: 

                break 

 

        return pagerank 

 

if __name__ == "__main__": 

    social_network = SocialNetworkGraph() 

 

    social_network.add_user("Alice") 

    social_network.add_user("Bob") 

    social_network.add_user("Charlie") 

    social_network.add_user("David") 

 

     

    social_network.add_connection("Alice", "Bob") 

    social_network.add_connection("Alice", "Charlie") 

    social_network.add_connection("Bob", "Charlie") 

    social_network.add_connection("Charlie", "David") 

 

     

    pagerank_scores = social_network.pagerank() 

 

    print("PageRank Scores:") 

    for user, score in sorted(pagerank_scores.items(), key=lambda x: x[1], 

reverse=True): 

        print(f"{user}: {score:.4f}") 



ANALYSIS: 

 

TIME COMPLEXITY:  O(N+K⋅M) 

SPACE COMPLEXITY:  O(N+M) 

OUTPUT:  

 

 

RESULT: ”the program executed sucessfully” 

 

TASK-3: 

Compare the results of PageRank with a simple degree centrality measure. 

 

AIM: The aim is to compare the results of the PageRank algorithm with a 

simple degree centrality measure to identify the most influential users in a social 

network. Degree centrality measures the number of connections a user has, 

while PageRank considers the influence of connected nodes. 

 



PROCEDURE:  

· Calculate Degree Centrality: 

 Compute the degree centrality for each user by counting the number of 

connections (edges) each user has. 

· Calculate PageRank: 

 Compute the PageRank for each user using the PageRank algorithm. 

· Compare Results: 

 Compare the results of PageRank and degree centrality to analyze the 

differences in identifying influential users 

 

PSEUDO CODE: 

function DegreeCentrality(graph): 

    degree_centrality := {} 

    for each user in graph: 

        degree_centrality[user] := count(graph[user]) 

    return degree_centrality 

 

function PageRank(graph, damping_factor, tolerance): 

    initialize PageRank scores for each user 

    repeat until convergence: 

        for each user in graph: 

            update PageRank score based on neighbors 

    return PageRank scores 

 

function CompareCentralityAndPageRank(graph): 

    degree_centrality := DegreeCentrality(graph) 

    pagerank_scores := PageRank(graph, damping_factor, tolerance) 



    return degree_centrality, pagerank_scores 

 

graph := create_graph() 

add_users_and_connections(graph) 

degree_centrality, pagerank_scores := CompareCentralityAndPageRank(graph) 

print(degree_centrality) 

print(pagerank_scores) 

 

CODING:   

class SocialNetworkGraph: 

    def __init__(self): 

        self.graph = {} 

        self.reverse_graph = {} 

 

    def add_user(self, user): 

        if user not in self.graph: 

            self.graph[user] = [] 

        if user not in self.reverse_graph: 

            self.reverse_graph[user] = [] 

 

    def add_connection(self, user1, user2): 

        if user1 in self.graph and user2 in self.graph: 

            self.graph[user1].append(user2) 

            self.reverse_graph[user2].append(user1) 

 

    def degree_centrality(self): 

        centrality = {user: len(connections) for user, connections in 

self.graph.items()} 



        return centrality 

 

    def pagerank(self, damping_factor=0.85, tolerance=1.0e-5): 

        N = len(self.graph) 

        if N == 0: 

            return {} 

 

        pagerank = {user: 1.0 / N for user in self.graph} 

 

        while True: 

            diff = 0 

            new_pagerank = {} 

            for user in self.graph: 

                new_pagerank[user] = (1 - damping_factor) / N 

                for neighbor in self.reverse_graph[user]: 

                    neighbor_out_links = len(self.graph[neighbor]) 

                    if neighbor_out_links > 0: 

                        new_pagerank[user] += damping_factor * (pagerank[neighbor] / 

neighbor_out_links) 

                diff += abs(new_pagerank[user] - pagerank[user]) 

 

            pagerank = new_pagerank 

            if diff < tolerance: 

                break 

 

        return pagerank 

 

# Example usage: 



if __name__ == "__main__": 

    social_network = SocialNetworkGraph() 

 

    social_network.add_user("Alice") 

    social_network.add_user("Bob") 

    social_network.add_user("Charlie") 

    social_network.add_user("David") 

 

    social_network.add_connection("Alice", "Bob") 

    social_network.add_connection("Alice", "Charlie") 

    social_network.add_connection("Bob", "Charlie") 

    social_network.add_connection("Charlie", "David") 

 

    degree_centrality = social_network.degree_centrality() 

    pagerank_scores = social_network.pagerank() 

 

    print("Degree Centrality:") 

    for user, centrality in degree_centrality.items(): 

        print(f"{user}: {centrality}") 

 

    print("\nPageRank Scores:") 

    for user, score in sorted(pagerank_scores.items(), key=lambda x: x[1], 

reverse=True): 

        print(f"{user}: {score:.4f}") 

ANALYSIS: 



 

TIME COMPLEXITY:O(N+M) 

SPACE COMPLEXITY:  O(N) 

OUTPUT: 

 

RESULT:”the program executed sucesfully” 

 

 

PROBLEM-4: Fraud Detection in Financial Transactions 

 

TASK-1: 

Design a greedy algorithm to flag potentially fraudulent transactions based 

on a set of predefined rules (e.g., unusually large transactions, transactions 

from multiple locations in a short time). 



 

AIM: 

To detect and flag potentially fraudulent transactions based on predefined 

criteria such as transaction amount and occurrence across multiple locations. 

 

PROCEDURE: 

Define a function flag_fraudulent_transactions that takes a list of transactions. 

Within this function, iterate over each transaction. 

Flag a transaction if its amount exceeds a specified threshold (e.g., $10,000). 

Additionally, flag a transaction if it involves multiple locations, determined by 

the check_multiple_locations function. 

Define the check_multiple_locations function to implement the logic for 

detecting transactions from multiple locations. 

Return a list of flagged transactions. 

Define a Transaction class to represent individual transactions with properties 

like amount and location. 

Create a list of transactions and use the flag_fraudulent_transactions function to 

identify fraudulent ones. 

Print the amounts of the flagged transactions. 

 

PSEUDO CODE: 

Define Transaction Class: 

Attributes: amount, location 

Methods: __init__(self, amount, location) 

Define check_multiple_locations Function: 

Input: transaction 

Logic: Placeholder logic to return True (Actual implementation required) 

Define flag_fraudulent_transactions Function: 

Input: transactions (List of Transaction objects) 



Process: 

Initialize an empty list flagged_transactions 

Iterate over each transaction in transactions: 

If transaction.amount > 10,000, add transaction to flagged_transactions 

Else, if check_multiple_locations(transaction) is True, add transaction to 

flagged_transactions 

Output: Return flagged_transactions 

 

CODING: 

def flag_fraudulent_transactions(transactions): 

    flagged_transactions = [] 

    for transaction in transactions: 

        if transaction.amount > 10000: 

            flagged_transactions.append(transaction) 

        elif check_multiple_locations(transaction): 

            flagged_transactions.append(transaction) 

    return flagged_transactions 

def check_multiple_locations(transaction): 

    return True   

 

class Transaction: 

    def __init__(self, amount, location): 

        self.amount = amount 

        self.location = location 

 

transactions = [Transaction(15000, "New York"), Transaction(8000, "Los 

Angeles")] 

fraudulent_transactions = flag_fraudulent_transactions(transactions) 



print([t.amount for t in fraudulent_transactions]) 

 

ANALYSIS: 

 

TIME COMPLEXITY: O(n) 

SPACE COMPLEXITY: O(n) 

OUTPUT:  

 

RESULT: The program was executed sucessfully 

 

 

 

TASK-2: 

Evaluate the algorithm’s performance using historical transaction data and 

calculate metrics such as precision, recall, and F1 score. 

 



AIM: To evaluate the performance of an algorithm designed to flag potentially 

fraudulent transactions by calculating precision, recall, and F1 score using 

historical transaction data. 

 

PROCEDURE: 

1. Define the Transaction class with attributes: amount, location, and 

is_fraudulent. 

2. Define the check_multiple_locations function to identify transactions 

from multiple locations (simplified logic). 

3. Define the flag_fraudulent_transactions function to flag transactions 

based on amount and multiple locations criteria. 

4. Prepare historical transaction data with known labels indicating whether 

each transaction is fraudulent. 

5. Apply the algorithm to flag potentially fraudulent transactions. 

6. Evaluate performance by comparing flagged transactions against known 

labels: 

 Count True Positives (TP), False Positives (FP), True Negatives 

(TN), and False Negatives (FN). 

7. Calculate precision, recall, and F1 score based on TP, FP, and FN. 

8. Print the performance metrics. 

 

PSEUDO CODE: 

1. Define Transaction Class: 

 Attributes: amount, location, is_fraudulent 

 Methods: __init__(self, amount, location, is_fraudulent) 

2. Define check_multiple_locations Function: 

 Input: transaction 

 Logic: Placeholder logic to return True if the transaction location is 

"Multiple Locations" 

 Output: Boolean indicating if the transaction involves multiple 

locations 



3. Define flag_fraudulent_transactions Function: 

 Input: transactions (List of Transaction objects) 

 Process: 

 Initialize an empty list flagged_transactions 

 For each transaction in transactions: 

 If transaction.amount > 10000: 

 Add transaction to flagged_transactions 

 Else if check_multiple_locations(transaction) returns 

True: 

 Add transaction to flagged_transactions 

 Return flagged_transactions 

 

CODING: 

class Transaction: 

    def __init__(self, amount, location, is_fraudulent): 

        self.amount = amount 

        self.location = location 

        self.is_fraudulent = is_fraudulent 

 

def check_multiple_locations(transaction): 

     

    return transaction.location in {"Multiple Locations"} 

 

def flag_fraudulent_transactions(transactions): 

    flagged_transactions = [] 

    for transaction in transactions: 

        if transaction.amount > 10000: 

            flagged_transactions.append(transaction) 



        elif check_multiple_locations(transaction): 

            flagged_transactions.append(transaction) 

    return flagged_transactions 

 

transactions = [ 

    Transaction (15000, "New York", True), 

    Transaction (8000, "Los Angeles", False), 

    Transaction (12000, "Multiple Locations", True), 

    Transaction (5000, "New York", False), 

    Transaction (15000, "Chicago", True) 

] 

flagged_transactions = flag_fraudulent_transactions(transactions) 

TP = FP = TN = FN = 0 

for transaction in transactions: 

    if transaction in flagged_transactions: 

        if transaction.is_fraudulent: 

            TP += 1 

        else: 

            FP += 1 

    else: 

        if transaction.is_fraudulent: 

            FN += 1 

        else: 

            TN += 1 

precision = TP / (TP + FP) if (TP + FP) > 0 else 0 

recall = TP / (TP + FN) if (TP + FN) > 0 else 0 

f1_score = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 

else 0 



 

print(f"Precision: {precision:.2f}") 

print(f"Recall: {recall:.2f}") 

print(f"F1 Score: {f1_score:.2f}") 

ANALYSIS: 

 

TIME COMPLEXITY: O(n). 

SPACE COMPLEXITY:O(n). 

OUTPUT:  

 

RESULT: The code executed successfully. 

 

TASK-3: 

Suggest and implement potential improvements to the algorithm. 

 

AIM: 



to demonstrate the use of a Random Forest Classifier for fraud detection based 

on a synthetic dataset. 

PROCEDURE: 

1. Data Preparation: 

 A synthetic dataset (data) is created containing columns for 

transaction amount, merchant, hour of transaction, and a binary 

label indicating whether the transaction is fraudulent (is_fraud). 

 This dataset is converted into a pandas DataFrame (df). 

2. Data Splitting: 

 The dataset (df) is split into training (X_train, y_train) and testing 

(X_test, y_test) sets using train_test_split from 

sklearn.model_selection. The test set comprises 20% of the data, 

specified by test_size=0.2, and a random seed (random_state=42) 

is set for reproducibility. 

3. Model Initialization: 

 A Random Forest Classifier (RandomForestClassifier) is initialized 

with n_estimators=100 (indicating 100 decision trees in the forest) 

and random_state=42 for reproducibility. 

 

PSEUDO CODE: 

1. Import Libraries: Import necessary libraries like pandas for data handling, 

sklearn for model training and evaluation. 

2. Load and Preprocess Data: 

 load_data() function loads your dataset. 

 preprocess_data() function preprocesses the loaded dataset, 

preparing it for training. 

3. Split Data: 

 Split the preprocessed data into features (X) and the target variable 

(y). 

 Use train_test_split function to split data into training (X_train, 

y_train) and testing (X_test, y_test) sets. 

4. Initialize Random Forest Classifier: 



 Create an instance of RandomForestClassifier with 

n_estimators=100 and random_state=42. 

5. Train the Classifier: 

 Fit the classifier (clf) on the training data (X_train, y_train) using 

fit() method. 

6. Predict and Evaluate: 

 Use the trained classifier to predict on the test data (X_test) using 

predict() method. 

Evaluate the model's performance using metrics such as confusion matrix 

(confusion_matrix) and classification report (classification_report). 

 

CODING: 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import classification_report, confusion_matrix 

data = { 

    'amount': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000], 

    'merchant': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C', 'A'], 

    'hour': [10, 12, 14, 9, 11, 13, 15, 8, 10, 12], 

    'is_fraud': [0, 0, 1, 0, 1, 0, 0, 0, 1, 0] 

} 

df = pd.DataFrame(data) 

X_train, X_test, y_train, y_test = train_test_split(df.drop('is_fraud', axis=1), 

df['is_fraud'], test_size=0.2, random_state=42) 

clf = RandomForestClassifier(n_estimators=100, random_state=42) 

clf.fit(X_train, y_train) 

y_pred = clf.predict(X_test) 

print("Confusion Matrix:") 



print(confusion_matrix(y_test, y_pred)) 

print("\nClassification Report:") 

print(classification_report(y_test, y_pred)) 

 

ANALYSIS: 

 

TIME COMPLEXITY:O(m⋅nlogn) 

SPACE COMPLEXITY: 𝑂(𝑚) 

OUTPUT: 

 

RESULT: The code executed successfully 

 

 

PROBLEM-5: Real-Time Traffic Management System 

 

TASK-1: 



Design a backtracking algorithm to optimize the timing of traffic lights at 

major intersections. 

 

AIM:  

To create a class Traffic Light that represents a traffic light and provides 

methods to manage its color state, facilitating control and monitoring of traffic 

flow in a simulated or real-world traffic management system. 

 

PROCEDURE:  

Procedure for the Traffic Light class: 

Define the Traffic Light Class: 

Attributes: 

Color : Represents the current color of the traffic light. 

Methods: 

_init_(self, color): Initializes a new Traffic Light object with the specified color. 

change_color(self, new_color): Changes the current color of the traffic light to 

new_color 

 

PSEUDO CODE:  

Class TrafficLight: 

    // Constructor to initialize the TrafficLight object with a given color 

    Constructor init(self, color): 

        self.color = color 

    Method change_color(self, new_color): 

        self.color = new_color 

Create an instance of TrafficLight with initial color "red" 

traffic_light = TrafficLight("red") 

Output traffic_light.color  // Output: red 

traffic_light.change_color("green") 



 

CODING:  

class TrafficLight: 

    def _init_(self, color): 

        self.color = color 

    def change_color(self, new_color): 

        self.color = new_color 

traffic_light = TrafficLight("red") 

print(traffic_light.color)  

  

ANALYSIS: 

 

 

TIME COMPLEXITY: O(1) 

SPACE COMPLEXITY: O(1) 

OUTPUT: 

 



RESULT: code is successfully executed 

 

TASK-2: 

Simulate the algorithm on a model of the city's traffic network and 

measure its impact on traffic flow. 

 

AIM:  

The aim of this code is to demonstrate a basic simulation of traffic flow within a 

city represented by a city_map. The Traffic Management System class 

initializes with a city map and simulates traffic flow across various roads based 

on a random algorithm. The simulated traffic flow results are then printed for 

analysis or further processing. 

 

PROCEDURE: 

Define a city_map dictionary where keys represent road identifiers ('road1', 

'road2', 'road3') and values denote road directions or connections ('A -> B', 'C -> 

D', 'E -> F'). 

Create an instance of the TrafficManagementSystem class, passing the city_map 

as an argument to initialize the system with the predefined city road network. 

Call the simulate_traffic_flow() method of the traffic_system instance. 

This method internally generates simulated traffic flow data for each road 

defined in city_map based on a random algorithm. 

The results (traffic_flow_results) are a list of random integers representing 

traffic intensity or flow for each road. 

 

PSEUDO CODE:  

Class TrafficManagementSystem: 

    Constructor _init_(self, city_map): 

        self.city_map = city_map 

    Method simulate_traffic_flow(self): 



        traffic_flow_results = [] 

        For each road in self.city_map: 

            traffic_intensity = random.randint(0, 100 

            traffic_flow_results.append(traffic_intensity) 

        Return traffic_flow_results 

city_map = { 

    'road1': 'A -> B', 

    'road2': 'C -> D', 

    'road3': 'E -> F' 

} 

traffic_system = TrafficManagementSystem(city_map) 

traffic_flow_results = traffic_system.simulate_traffic_flow() 

Print traffic_flow_results  

 

CODING:  

import random 

class TrafficManagementSystem: 

    def _init_(self, city_map): 

        self.city_map = city_map 

    def simulate_traffic_flow(self): 

        traffic_flow = [random.randint(0, 100) for _ in range(len(self.city_map))] 

        return traffic_flow 

city_map = { 

    'road1': 'A -> B', 

    'road2': 'C -> D', 

'road3': 'E -> F' 

} 



traffic_system = TrafficManagementSystem(city_map) 

traffic_flow_results = traffic_system.simulate_traffic_flow() 

print(traffic_flow_results) 

 

ANALYSIS:\ 

 

 

TIME COMPLEXITY: O(1) 

OUTPUT: 

 

RESULT: code is successfully executed 

 

TASK-3: 

Compare the performance of your algorithm with a fixed-time traffic light 

system. 

 

AIM: 

The aim of the TrafficManagementSystem class and its methods is to provide a 

modular framework for optimizing traffic flow in a simulated or real-world 



traffic management system. It achieves this by allowing the selection of 

different traffic optimization algorithms (fixed-time or algorithm-based) based 

on specified traffic data parameters. 

 

PROCEDURE: 

Create an instance (traffic_system) of the TrafficManagementSystem class, 

specifying "algorithm-based" as the selected algorithm. 

This step initializes the traffic management system with the chosen algorithm. 

Call the optimize_traffic_flow method of traffic_system, passing traffic_data as 

an argument. 

This method dynamically selects and executes the appropriate traffic 

optimization algorithm ("algorithm-based" in this case) based on the provided 

data. 

 

PSEUDO CODE: 

    Method optimize_traffic_flow(self, traffic_data): 

        try: 

            // Select the appropriate traffic optimization algorithm based on 

self.algorithm 

            If self.algorithm == "fixed-time": 

                Call fixed_time_traffic_light_system(traffic_data) 

            Else if self.algorithm == "algorithm-based": 

                Call algorithm_based_traffic_light_system(traffic_data) 

            Else: 

                Raise ValueError("Invalid algorithm type. Choose 'fixed-time' or 

'algorithm-based'.") 

        Except ValueError as e: 

            Print("Error:", e) 

    Method fixed_time_traffic_light_system(self, traffic_data): 

        Print("Implementing fixed-time traffic light system...") 



    Method algorithm_based_traffic_light_system(self, traffic_data): 

        Print("Implementing algorithm-based traffic light system...") 

traffic_system = TrafficManagementSystem("algorithm-based") 

traffic_data = {"traffic_volume": 100, "weather_condition": "clear"} 

traffic_system.optimize_traffic_flow(traffic_data) 

 

CODING: 

class TrafficManagementSystem: 

    def __init__(self, algorithm): 

        self.algorithm = algorithm 

    def optimize_traffic_flow(self, traffic_data): 

        try: 

            if self.algorithm == "fixed-time": 

                self.fixed_time_traffic_light_system(traffic_data) 

            elif self.algorithm == "algorithm-based": 

                self.algorithm_based_traffic_light_system(traffic_data) 

            else: 

                raise ValueError("Invalid algorithm type. Choose 'fixed-time' or 

'algorithm-based'.") 

        except ValueError as e: 

            print(f"Error: {e}") 

 

    def fixed_time_traffic_light_system(self, traffic_data): 

        print("Implementing fixed-time traffic light system...") 

    def algorithm_based_traffic_light_system(self, traffic_data): 

        print("Implementing algorithm-based traffic light system...") 

traffic_system = TrafficManagementSystem("algorithm-based") 

traffic_data = {"traffic_volume": 100, "weather_condition": "clear"} 



traffic_system.optimize_traffic_flow(traffic_data) 

 

ANALYSIS: 

 

TIME COMPLEXITY: O(1) 

SPACE COMPLEXITY: O(1) 

OUTPUT:  

 

RESULT: code is successfully executed  

 

 

 

 

 

 

 

 


