
qjit function execution occurs asynchronously

Mohamed Hassan

July 1, 2024

1 Introduction

The goal of this challenge is to parallelize an interpreted programming model through asynchronous tasks. The
dispatched asynchronous task returns immediately with a future data structure that will hold the result of the
task’s computation upon completion. A major concern for such an approach is data dependencies that may
break functional correctness if not carefully maneuvered. The scenarios provided in this response implement
the asynchronous tasks techniques safeguarded against data hazards.

2 Background

The implemented functions include both classical and quantum computation (hybrid functions) as requested.
The functions include some rotation, CNOT, and Toffeli quantum gates in addition to matrix multiply oper-
ations to simulate longer execution times. The implemented scenarios test for various execution conditions
and analyzes theoretical and actual speedup. All scenarios start by profiling a serial version of the function
to evaluate the baseline performance. Serial function profiling is done by running the function 10 times, then
dividing the total time by 10. This is to ensure a more accurate capture of performance eliminating the
overhead of the first cold run.

3 Scenario A

This scenario tests running two parallel functions back to back with no data dependency between the two
functions. The serial function’s execution time is multiplied by 2 to account for running two functions.
Theoretically this test should yield 2X speedup in parallel execution. The observed speedup is ∼1.4X, which
could be attributed to the fact that I am running on one device and the overhead of context switching is not
insignificant.

4 Scenario B

This scenario runs the function four times, one serial function and three parallel functions. Since the serial func-
tion utilizes the main thread while the parallel ones are dispatched to separate threads, theoretically this should
lead to a 4X improvement in performance. However, there is the added caveat that "parallel_func_2" uses
the value returned from "parallel_matmul". Hence this data dependence will have an impact on performance.
The later "parallel_func_2" is preceded by "future2.result()" that blocks execution in the main thread until
the result is ready to ensure the RAW data dependency hazard is resolved before invoking "parallel_func_2".
This scenario yields an actual speedup ∼1.6X.

5 Scenario C

(I realize this test case was not in the code challenge, but it seemed like an opportunity to enhance performance
in a safe way)

It was observed in the previous scenario that the main thread is blocked waiting to resolve a data depen-
dency. However, what if downstream from that point in time there are other functions that could be run in
parallel without any data dependence. This exposes another parallelism opportunity, where we only block the
data-dependent parallel asynchronous task and go ahead with execution downstream. This is done using "con-
current.futures.add_done_callback" which creates a call back for the data-dependent function until the data
it needs is ready. This approach will not block the main execution thread, continuing execution downstream

1



as long as there is no other data dependency. Since the test functions use multiple arguments (not just the
future), "functools.partial" is used to pass more arguments to the call back function. This approach achieved
∼1.8X improvement in performance although it is running eight tasks instead of Scenario B’s four tasks.

6 Comments

Two versions of each scenario are implemented, one with qjit and one without qjit. The reason for that is,
upon testing, using qjit seems to always have a significant impact on performance. The performance results
show that without qjit there is enhancement in performance, while with qjit there is a consistent degradation
in performance. For the purposes of this coding challenge, I opted to implement non-qjitted versions of the
scenarios to illustrate the parallel execution capabilities and pitfalls. The reported performance results are from
the non-qjitted version of the code.

• For the non-jitted version, I created a decorative wrapper to conveniently call asynchronous parallel
tasks. This wrapper didn’t work with qjitted functions returning an error that the future is not a valid
Jax type. This could be resolved by defining the wrapper in a way that conforms with PennyLane and
Catalyst. Perhaps future work.

• I am running Apple M1 silicon, I am not sure if that hardware setup has any support issues (I remember
seeing in Catalyst code some tests that include comments about Apple silicon not supported for some
functions)

• It should be noted that if I had multiple devices available, a more significant speedup would have been
observed for parallel execution.

• Sometime as the scenarios are run, the following error emerges:

"pennylane.QuantumFunctionError: All measurements must be returned in the order they are measured."

The measurements are in fact returned in order, simply running the script again will yield a successful
execution. (Albeit it may take two or three runs to get through)

2


	Introduction
	Background
	Scenario A
	Scenario B
	Scenario C
	Comments

