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Abstract. Making evolutionary algorithms greener implies tackling im-
plementation issues from different angles. Practitioners need to focus on
those that can be more easily leveraged, such as the choice of the lan-
guage that is going to be used; high-level (interpreted), mid-level (based
on multi-platform virtual machines), and low-level (native) languages
will need power in different ways, and choosing one or the other will
have an impact on energy consumption. We will be looking at the im-
plementation of key evolutionary algorithm functions, in three languages
at three different levels: the high-level JavaScript, the mid-level Kotlin,
which runs on the Java Virtual Machine, and the low-level Zig. Looking
beyond the obvious, as the lower the level, the less energy consumption
should be expected, we will try to have a more holistic view of the imple-
mentation of the algorithms in order to extract best practices regarding
its green implementation.
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1 INTRODUCTION

The interest in greener computing has grown in the last decades. In part this has
been fueled by the Millennium Development Goals3 that advocate for a lower
carbon footprint in human activity, but also due to the fact that performance
improvements brought by faster hardware are not coming with the same speed
as they used to [19].

There are, however, no universal solutions, so we need to focus on specific
field; the general field of artificial intelligence has received a lot of attention
lately; we are, however, interested in evolutionary algorithms [3], which, broadly
speaking, fall within that field, but, unlike it, is not targeted by specific hardware
processors relying on general CPU power (and its consumption). In the general
sense, there are many different ways to lower the carbon footprint of computing
3 Described in https://www.un.org/millenniumgoals/bkgd.shtml, for instance

https://www.un.org/millenniumgoals/bkgd.shtml
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workloads, however: as Hidalgo et al. affirm [7], there are four different levels
for the evaluation and eventual improvement of energy consumption in AI (in-
cluding, as in this paper, metaheuristics): just above the hardware level there is
the programming language level, which includes not only the language itself, but
also libraries and compilers or interpreters (inclusively named the toolchain. The
latter was the topic of [15], where our focus was to work on different JavaScript
interpreters in order to discover which one used system energy more efficiently.

However, there are many user cases in which the language used by all or
part of the metaheuristic implementation can also be chosen. A simple choice
of language will greatly impact energy consumption, as shown in [17] or [12].
In [16], we looked at the performance of different languages when implementing
an evolutionary algorithm; in this paper, we will focus on the language level,
before delving into specific language characteristics. Languages can be classified
along many different axes: compiled vs. interpreted (or compiled natively vs.
complied to bytecode, as is the case with Java and Kotlin), low vs. high-level,
functional vs. procedural vs. object-oriented, for instance. In most cases, it is
not a dichotomy, but a continuum; most interpreted languages, for instance, use
Just-In-Time (JIT) compilers before actually running a script; most languages
are also, nowadays, multi-paradigm, using procedural and functional as well as
object-oriented features. Interpreted vs. compiled, low-level vs. high-level are
still useful distinctions, however, from the point of view of performance as well
as what interests us most in this line of research, energy consumption.

Thus, for this paper, we will work with languages that occupy different posi-
tions along those two axes. We will work with a high-level language, JavaScript,
using the fastest implementation available, bun; this is also an interpreted lan-
guage, a mid-level (that is, high-level from the point of view of language design,
low-level in the sense that it is compiled to bytecode), compiled language, Kotlin,
that compiles to bytecode of the Java virtual machine (JVM) and a low-level
language, Zig, a relatively new language that is still not reached production, but
is however used for bun itself4. All these languages have toolchains that are free
software and thus can be used without any kind of limitation.

These languages can also be divided along two different axes that impact on
their energy consumption:

– Memory management: it is done automatically in high-level languages, like
JavaScript and Kotlin5, while it involves a series of choices in the case of
Zig. Inasmuch as allocating and releasing memory consumes energy, there
is going to be a difference between having a runtime or interpreter make
heuristic choices, or the developers making those decisions themselves.

– Compilation: JavaScript is interpreted, Kotlin is compiled to bytecode and
then interpreted by the JVM, and Zig is compiled to native code, but this
also implies what happens with optimization: high-level languages take all

4 Please note that there are no languages that are considered low-level and interpreted,
although there are minimalist interpreted languages like Lua [9]

5 Which, for the purposes of this paper, is considered mid-level, since it compiles to
bytecode
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decisions, while Zig will allow you to choose between different optimization
levels; it also means that a different kind of overhead will be incurred when
running a program: JavaScript will load the interpreter in memory, and then
parse and run the program; Kotlin will actually use the Java virtual machine
to run, and it will be loaded and then the bytecode parsed and run; finally,
Zig creates executables, which will have some overhead due to standard
linked libraries.

In general, this implies that although a priori we can assume that a low-
level language, being closer to the iron, will consume fewer resources, the fact
that high- or mid-level languages apply heuristics and best practices to those
decisions might eventually mean that, on the default case, the balance might be
tipped towards high-level languages; this is going to be the main focus of this
paper.

Making comparisons of energy spent by different implementations needs, first,
a methodology to make choices that are comparable across all three platforms;
then what exactly is going to be measured needs to be established, and how
to make those measurements so that they make differences stand out. As in
previous papers, we will focus on two critical evolutionary algorithm functions
[1]: the fitness function, as well as genetic operators. However, we will use a
heavier fitness function in this case: Hierarchical If and only IF (HIFF) [21]
for independent measurement, as well as combine mutation and crossover when
solving the OneMax optimization problem. In general, we are going for combined,
or more complex, operations in this paper so that we can implicitly evaluate
more features for every language, such as function calling or argument passing,
which will have a different implementation, and thus energy overhead, in every
language.

The rest of the paper is organized as follows: next, we present the state of the
art in software engineering and its analysis of energy consumption of different
software platforms, to be followed by the methodology we are going to apply in
this paper, mainly concerned with evolutionary algorithms in 3. Then we will
present the results of the experiments in 4, and finally, we will discuss the results
and draw some conclusions in 5.

2 State of the art

The "shade of green" of different languages has been repeatedly examined in
the literature, at least since it actually became a concern in software engineer-
ing [18], very recently, indeed. This concern has been systematized in what are
called the GREENER principles [11], which try to provide a foundation for En-
vironmentally Sustainable Computer Science (ESCS), and are placed at different
functional and pragmatic levels, from governance to education (that would be
the last E). In this paper, we are mainly concerned with two other Es, estimation
and "Energy and embodied impact," as well as the second R, Research. These
principles seek to monitor and then minimize the energy needs of computations;
the Research principle, in turn, encourages investigating those topics. We will
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call these principles EER, for short. The GREENER principles try to kick-start
a feedback loop that allows researchers, and then developers in turn, to keep
making decisions so that the same wallclock performance can be obtained with
a lesser amount of energy.

The enunciation of these principles is very recent; however, they have been
applied to different areas, in different forms in the case of evolutionary algo-
rithms, these have been studied for some time [20] following the EER principles’
point of view; however, it is interesting to note what these studies have focused
in: population size [4], hardware platform [20], the kind of algorithm [6] or the
specific interpreter chosen to run the algorithm written in a specific language,
JavaScript [15]. Although in this last case, in specific situations, energy savings
of 90% can be achieved, there are other possible choices that, in principle, might
have a more significant impact without sacrificing performance (as would be the
case when working with different hardware platforms).

One of the ways of applying these EER principles is researching the pro-
gramming language where we are going to implement the workload itself. A
comprehensive and recent study [17], that measures energy consumption on a
general workload (the so-called CLBG corpus) shows that low-level languages
like C, Rust or C++ are consistently coming on top. Mid-level languages like
Java are placed 5th on the overall energy ranking, with almost double energy
consumption. Interpreted languages like JavaScript (probably using the main-
stream interpreter, node.js) are placed 17th, spending energy at four times the
rate of C. The last language in the ranking, Perl, spends two orders of magnitude
more than the baseline; Python is next to last, with a less significant difference.
Choosing the right platform is not everything, however, [12] shows that the same
algorithm implemented using different data structures might yield different lev-
els of consumption; a similar problem is approached in [2], that shows that using
the visitor pattern has a big impact in the energy profile of any program; how-
ever, the achieved reductions are very different depending on the language: while
there is a slight reduction in the case of Java, the reduction achieved is dramatic
in the case of C++. This probably shows that when we are comparing platforms
we need to include the evaluation of higher-level components, that is, we need
to go beyond the analysis of single functions.

In this paper, however, we will focus on the choice of programming languages
based on how much energy they consume when applying the main operators
of evolutionary algorithms. We also consider the role of higher-level language
elements in its energy consumption. How we will be doing this work is presented
next.

3 Methodology

An energy profiling methodology will start with selecting a tool to perform
measurements, then present the workload that is going to be used, proceed to
the different systems that are going to be measured, and end with the specific
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versions of the instruments and systems to be used; after this, the circumstances
under which the measurement is going to take place need to be presented.

The measuring instrument was already chosen in a previous paper [15]. In
general, there are system-wide as well as per-process measuring tools. We settled
for pinpoint [10], a command line tool under active development that takes per-
process measures that are more accurate than other system-wide tools; it is also
able to work with different sensor APIs across different operating systems, giving
us an uniform tool to measure energy consumption.

In that paper, we selected a single integer arithmetic fitness function, MAX-
ONES, and the crossover operation. However, in this paper we are taking a wider
view of the problem so we will try to work with fundamental building blocks,
but with ones that involve a bigger range of runtime system of the language. We
will thus use two functions:

– The Hierarchical If and only IF (HIFF) [21] is an integer arithmetic function
that works recursively, reducing a Boolean string of 0 and 1s by splitting it
and applying the function to the halves; the final result will depend on the
organization of 0s and 1s in the initial string, but will anyway involve many
recursive function calls that will have to make use of the heap.

– The other function will apply crossover to randomly selected pairs of binary
strings, followed by mutation to every member of the resulting pair, and
evaluate the ONEMAX function on that result. These are essentially five
function calls, not as complicated as before, but it is a fundamental opera-
tion in evolutionary algorithms and will essentially test the ability to access
random elements in a string, as well as the creation of new ones (or the
cloning of them, depending on the implementation)

We will use a workload of the same size as in the previous paper, 40K chro-
mosomes, with chromosomes of different sizes: 512, 1024, and 2048 bits. This
is a difference with respect to the previous paper, where we did not use 512
bits, using 4096 instead. We consider that the bigger size is not as realistic, and
is relatively unlikely to be found in real problems; besides, the amount of time
needed to compute HIFF was extremely high for the high-level JavaScript, so we
decided to drop it so that experiments can take place in a relatively reasonable
amount of time.

The languages have been chosen using a specific criterion:

– JavaScript is, as shown in the state of the art, one of the languages that
consume the least energy as proved in [17]; in our previous paper, we have
also found that using the bun interpreter can results in savings as high as
90% [15]. It is a high-level, object-oriented language that is, indeed, quite
popular; popularity is the main criterion we have used to choose languages
used. It has been preferred over other languages that might have a higher
popularity in metaheuristics, such as Python, since the above-mentioned
paper includes it as one of the languages that consume the most energy in
a general payload; metaheuristics need not be an exception. At any rate,
this paper is about choosing among kinds of languages, so any result that is
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obtained might be extended to languages of the same kind; at the same kind,
we propose a methodology for choosing the right system for metaheuristics,
so more precise measurements would have to be performed on whatever
alternative to JavaScript we want to introduce. The implementation of the
above-mentioned function is open source and hosted at https://github.com/
JJ/energy-ga-icsoft2023 with a free license. The actual code is the same used
in the above mentioned paper.

– Kotlin is a language that compiles to the JVM, and in that sense, it would
be comparable to Java in terms of energy consumption. However, data struc-
tures and other runtime characteristics might differ, as well as the workload
used to compare it with other languages, so what we obtain in terms of rank-
ing might be different from what [17] shows. As we mentioned above, and on
a first approximation, results obtained here might be extended to other lan-
guages such as Java, Scala, or Clojure that also target the JVM. Kotlin has
not been the target of any popular EA library as far as we can tell, although
it is mentioned in this context in works such as [8]. The implementation that
has been used is also included in the same repository and has been adapted
from the one used in [13,14]. In that study, Kotlin was one of the fastest,
even faster than Java in one of the versions. Being the main language used
to create Android apps, its popularity makes it meet the main criterion used
to choose languages in this paper.

– Finally, we use Zig as the low-level language instead of the more popular
in EA circles C++, or, in general terms, Rust. We chose it mainly because
the interpreter we use for JS is written using it; so we should expect less
energy consumption when we lower the level of abstraction. On the other
hand, it would be a totally new implementation of evolutionary algorithms,
so this work could serve to introduce the language (and its possibilities) to
practitioners. Again, the implementation is hosted in the same repository as
the others used for this paper. This language cannot exactly be said to be
as popular as the other two in this study; however, since it is the language
used to implement the JavaScript interpreter bun, it was precisely the lowest
level of the chosen high-level language, so we were interested to see how that
would translate to differences in energy consumption. Another criterion used
to choose this specific one is that, being an emergent language, there are no
studies that we know of that work out its energy consumption.

All experiments for this paper have been carried out in a Linux machine
5.15.0-94-generic #104 20.04.1-Ubuntu SMP using AMD Ryzen 9 3950X
16-Core Processor. These are the versions used for every tool and language:

– pinpoint does not have a version, but it has been compiled from commit
1578db07b1ee30318966d7a2097ee1bb219a9dc8, October 26 2023.

– bun uses version 1.0.7.6

6 Please note that at the time of writing this, many other versions have been published;
we have used this one to be able to compare with previous papers. These same papers
show that its performance and energy consumption have important improvements,

https://github.com/JJ/energy-ga-icsoft2023
https://github.com/JJ/energy-ga-icsoft2023
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– zig uses version 0.11.0. This version, released by August 3, 2023, is the last
one at the time of writing this paper.

– Kotlin version string is 1.9.22-release-704; this includes the JVM version,
OpenJDK 11.0.21.

All programs are run through a Perl script that captures and processes out-
put, generating CSV data files that are committed to this repository, and avail-
able under a free license. Instructions to compile and run it are also included
in the repository; in general, all that is needed to reproduce the results of this
paper. All the code is automatically tested and tagged so that the exact version
used in this paper can be retrieved.

Implementing an algorithm will always imply some choices in the specifics
used to program it. In general, we opted for the default implementation (as
suggested by tutorials), but explicitly, these are the decisions we took:

– bun uses the same implementation as previously used, namely, mutable
strings, to represent the chromosome.

– zig, being a low-level language, needs a bigger set of choices. We have used
DefaultPrng as random number generator, page_allocator as allocator,
and arrays of byte-size integers (u8) for the chromosomes. This is the de-
fault implementation of integers in the language. The executable has been
generated with default options too (optimize for optimization).

– Kotlin uses again the same implementation as [13], a BooleanArray for every
chromosome.

All results shown below are averages for 15 runs for every configuration.
Please note that no sort of energy-wise optimizations have been performed

on these implementations, since the main users of this work would be students
and scientists with no deep knowledge of specific programming languages who
want to create energy-efficient implementations of their algorithms. Every one of
the languages has different levers that could be used to optimize energy, but that
is not the focus of this paper. At any rate, if there is a close call in the results,
the reader should take it into account and again measure energy consumption
for specific workloads.

Previously, the experiment runner eliminated the baseline energy consump-
tion by subtracting the average consumption of an idle process during the av-
erage time the experiments took; however, that implied that the energy (and
time) measured included generation of the chromosomes, as well as the opera-
tions themselves.

In this paper, we will factor out that time, as well as the energy spent. Since
the operation of generating chromosomes is made just once at the beginning of
the run in evolutionary algorithms and is thus not very significant for evolu-
tionary algorithm as a whole7, subtracting it from the experiment run time will

so in case of close calls, we would recommend retaking measurements at the time of
running your experiments

7 We are not saying here that it is not an energy-consuming operation, even more so
here where we are generating all chromosomes we are using in a single loop; however,
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allow us to focus on the added energy consumption of the operations themselves;
the results published in the next section will then subtract the average time and
energy consumption of this operation, which is shown in Figure 1.
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Fig. 1. Average running time and PKG (CPUs and memory) energy consumption gen-
erating 40K chromosomes for the three languages (represented with different colors);
dot size is proportional to the logarithm of the chromosome size.

This Figure 1 shows average energy consumed (PKG, by CPU and memory
mean.pkg, GPU use is negligible for this problem) vs. time taken (mean.seconds),
already allows us at least an initial comparison of the orders of magnitude of
the difference we should expect. Clearly, Kotlin is the fastest and also the one
that consumes the least energy; it is followed by zig, although time as well as
energy consumption grow very fast with the size of the chromosomes (here rep-
resented logarithmically as the dot size). bun is the slowest, as well as the one
that consumes the most energy, although we should note that for the bigger size
(2048 bits) zig takes almost the same amount of time, although with a lower
consumption of energy8.

while the initial population is generated only once in an EA, every other operation
used here is going to be repeated every generation; thus, in terms of either time
of energy consumption, the proportion employed by chromosome generation will be
one vs. number of generations needed to find the solution

8 zig will greatly vary the amount of energy needed depending on relatively irrelevant
choices such as using constant or mutable pointers; in a previous experiment run,
included in the repository, that used mutable pointers, energy consumption was
almost 10% higher.
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We will proceed to the experiments on an evolutionary algorithm workload,
which will use this as a baseline.

4 Results

The first experiment will perform 40K crossover + mutation + onemax opera-
tions on chromosomes of size 512, 1024 and 2048.

0

40

80

120

0.5 1.0
diff.seconds

di
ff.

P
K

G

colour

bun

kotlin

zig

size

512

1024

2048

Fig. 2. Running time and PKG energy consumption processing 40K chromosomes via
crossover, mutation and ONEMAX for the three languages (represented with different
colors); dot shape represents the chromosome size.

Figure 2, shows the difference in running time and PKG energy consumption
for the three languages examined. We have opted to show the results for every
experiment in a single plot, to reveal trends as well as some quirks that might
be explained more by language idiosyncrasies than by experimental errors. For
instance, we can see that there are several cases where the Kotlin experimenta-
tion takes a long time, even for 1024 bits and 512 bits. One of the issues that
the JVM has is garbage recollection; if there is a garbage recollection cycle it
can clearly impact performance. The fact that it has hit a percentage of the
experiments reveals that specific behaviors need to be taken into account and,
to the extent that it is possible, mitigated.

Another quirk is the lower-than-0 energy consumption for zig, simply reveal-
ing that the difference in energy consumption is so low that it falls below the
average for the generation of the chromosomes. zig’s energy consumption is never
higher than 60 Joules, anyway.
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The trends need to be pondered, too. In general, bun is going to take longer
and consume more energy than the rest for every size; Kotlin is the fastest
and boasts the lower consumption of energy overall for smaller sizes. zig, on
the other hand, is faster than bun, and its speed is quite consistent; not so for
consumption of energy, which can go from very low, to even less than Kotlin
in some experiments (and virtually zero), to relatively high, with a maximum
closer to the average for bun.

Table 1. Average operations per Joule in the combined operations experiment for the
three languages.

Language Size PKG average PKG SD Ops/Joule average
bun 512 22.26 7.58 1796.68
bun 1024 52.72 17.12 758.79
bun 2048 66.51 20.57 601.40
zig 512 20.01 8.34 1998.67
zig 1024 21.35 15.52 1873.42
zig 2048 30.82 22.36 1298.06
kotlin 512 12.00 12.02 3334.26
kotlin 1024 29.67 26.88 1348.22
kotlin 2048 23.71 5.10 1686.72

What we see in Table 1 is a complicated scenario, where Kotlin has a very high
number of operations per Joule, with a power consumption as low as 12 Joules
for the smallest size, although the trend is slightly different for the middle size of
1024 bits, where zig obtains the lowest energy consumption and operations per
Joule, mainly due to the fact that the standard deviation for Kotlin, probably
due to garbage recollection operations, is very high. Remarkably, the energy
consumption for Kotlin can be as low as 1/3 of what bun requires; zig requires
half (although they can be very close for the smallest value, where Kotlin excels).

We need to check the speed and consumption of the selected fitness function,
HIFF, for the three languages, so we can have a more complete picture of the
energy profile for the three languages. This is a heavy-weight function, involving
function calls in the order of one thousand. Even if it is going to take much more
time than generating the chromosomes, we will still subtract the time needed
for that operation to compare different things uniformly.

The operation for these functions needed some tweaking, namely, conversion
to string in the case of Kotlin and to constant string in the case of zig. This adds
what is essentially a copying operation to the fitness itself, but we decided to do
that in order to have HIFF defined in the most similar way possible (working
with strings of 0s and 1s).

The results for time and energy consumption are represented in Figure 3. We
can already observe that the consumption is more than one order of magnitude
higher than before, and since the number of function calls is dependent on the
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Fig. 3. Running time and PKG energy consumption computing the HIFF fitness func-
tion for 40K chromosomes for the three languages (represented with different colors);
dot shape represents the chromosome size.

chromosome size, it grows more or less linearly with size. We can also observe
that, as usual, bun is the slowest and the one that consumes the most energy.

However, the situation with zig and Kotlin is different. Kotlin is in most cases
slightly slower, but also more energy-saving, thus more green than zig. We rep-
resent a boxplot comparing them in Figure 4.

Differences are significant for all three languages, for all sizes involved; in the
case of the biggest size, there is indeed a considerable difference, with Kotlin
spending less than 1500 Joules on average.

Table 2. Average operations per Joule in the HIFF experiment for the three languages.

Language Size PKG average PKG SD Ops/Joule average
bun 512 425.91 41.91 93.92
bun 1024 987.69 64.54 40.50
bun 2048 2204.06 123.40 18.15
zig 512 349.66 15.60 114.40
zig 1024 747.59 37.19 53.51
zig 2048 1651.50 35.18 24.22
kotlin 512 305.29 20.93 131.02
kotlin 1024 648.83 22.88 61.65
kotlin 2048 1386.58 38.43 28.85
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Fig. 4. Boxplot of the energy consumption of the HIFF fitness function for 40K chro-
mosomes for Kotlin and zig

What we see in Table 2 is the number of operations per Joule all three
languages are able to perform.

5 Discussion, conclusion and future work

In this paper, we have performed a series of experiments running an evolutionary
algorithm workload using three different languages with different levels (different
ways of running the –possibly compiled– code), which translate to different ways
of running the algorithms. Focusing on a set of operations allows us to create spe-
cific energy profiles for the algorithm implementations, as well as the languages.
The methodology followed enables to benchmark the energy consumption of the
different languages, as well as to differentiate them; it does not consume an ex-
cessive amount of time. Showing the results as operations per Joule focuses the
the attention on how "green" every language is, by showing precisely how many
operations can be performed with a certain amount of energy.

In this work, we compared the performance regarding power consumption of
three languages, JavaScript (using the bun high-performance interpreter), Kotlin
(using a free JVM), and zig, when implementing certain important operations in
evolutionary algorithms. We have used two workloads, one with a combination of
genetic operators and the OneMax fitness function (which would be a lightweight,
although widely used, combination), and another with the HIFF fitness function,
which is not only heavier in terms of operations, but also recursive, thus involving
specific language overheads.
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In all cases (that include also the generation of the chromosomes measured,
used as baseline) we have found that the combination of Kotlin and the JVM is
the most energy-efficient language (as well as the faster, although that was not
the main focus of the experiment), followed by zig, and finally JavaScript using
bun as interpreter. The difference is bigger for core-only operations, where Kotlin
can be twice as fast as bun, than in other operations that involve the overhead
of function calls, like HIFF, where the difference is much smaller, around 5% for
zig and Kotlin in the chromosomes with the biggest size. The fact that zig can
be slightly faster than Kotlin in this last case is not relevant from the point of
view of the energy efficiency; Kotlin still needs less energy even if it takes a bit
longer; you can trade off easily energy efficiency for speed in this case, since the
average difference is just a few percentage points.

The relatively small difference between Kotlin and zig might imply that with
some engineering and optimizations, zig energy efficiency might be on a par with
Kotlin. Low-level languages have many different ways of optimizing its design
and tooling, and we did not create the zig program at an expert level. However,
this level is consistent with the use case we are giving the application, those
of a scientist acting as a developer, not an expert developer of system software
(which is the most common use case for zig). We cannot then affirm that Kotlin
is the most efficient across the board, but we can definitely propose it as the
greener technology for the specific case of evolutionary algorithms that do not
have an extensive amount of GPU use; this would include mainly tests for new
operators or, in general, new methodologies for evolutionary algorithms that use
common fitness functions.

The interesting thing about modern experimental setup is that different lan-
guages can be easily mixed in a single application. As we can see in the exper-
iments above, energy expenses of fitness functions can be twice as high as the
rest of the operations; using green languages exclusively in this case, leaving the
rest of the application to easier-to-use interpreted languages will not have a big
impact in the energy profile, while simplifying the development as well as the
integration within current frameworks such as DEAP [5].

As future lines of work, we plan to extend this study to other languages
and workloads, especially those that use different kind of virtual machines like
Haskell or Elixir. On the algorithmic side, another research venue is to analyze
the energy consumption of languages implementing different concurrency mod-
els, implemented either by language constructs or through specialized virtual
machines. We also plan to analyze the energy consumption of different hard-
ware platforms (including virtualized cloud platforms), and to develop a tool to
help researchers and developers to choose the most energy-efficient language for
their needs. Different fitness functions will also present a different energy pro-
file, so including them in the investigation might help us have a more complete
dashboard to be able to minimize resource consumption of EA implementations.
Fitness function that employ floating-point arithmetic would need to use the
GPU, with a totally different energy profile, so that will need to be taken into
account.
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An investigation focused on zig would also help understand how low-level
languages can be made greener and to what extent energy efficiency can be
improved.
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