RoBorregos Soccer Open

Yair Reyes Coronado

Abstract—The RoBorregos Soccer Open project details the
design and development of autonomous soccer robots by a
Mexican robotics team, RoBorregos, for competitive participation
in international RoboCup events. The team, comprising elec-
tronics, software, and mechanical specialists, leverages advanced
technologies including hyperbolic mirrors, sophisticated vision
systems, and precision mechanical components. Key innovations
include a custom-designed Teensy 4.1 microcontroller integration
for enhanced processing, and novel approaches in dribbler and
kicker designs for optimal gameplay. The project’s comprehensive
development is documented from initial design challenges to final
implementations, encompassing detailed mechanical, electrical,
and software innovations tailored for robust performance in
competitive soccer robotics.
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I. Introduction to team
A. Team Background

We are RoBorregos, a Mexican robotics team estab-
lished in 2015 at Tecnolégico de Monterrey (ITESM).
Comprising approximately 40 undergraduate students,
we actively participate in various national and interna-
tional robotics competitions, including RoboCup Junior
and RoboCup Major.

This year’s soccer team includes Yair Reyes, our team
leader who manages the electronics; Jocelyn Velarde,
who is responsible for software development; and Mauri-
cio Degollado, who handles mechanical design.

Fig. 1. Photo of the team. From left to right. Mau, Jocelyn and Yair

RoBorregos is participating in the Soccer Open cat-
egory for the second time, with our first participation
being in Canada in 2018. This new generation of the
team drew inspiration from that experience to design
this year’s robots. Since January, we have been diligently
working on our robots, focusing our research and devel-
opment efforts in all the areas.

B. Project management

To organize all of our tasks we decided to use all
of GitHub’s capabilities. We started by placing all the



Fig. 2. Issue registration on GitHub

Fig. 3. Milestones and Gantt board
Fig. 4. Exploded View

Prices in dollars and for each one

1) Hyperbolic Mirror - 20 usd
2) BNO Gyroscope - 35 usd

issues, writing a description, title and corresponding tag. 3) Pixy 2 Cam - 70 usd
As shown in figure 2. This issues are linked to specific 4) Pgwer PCB - 12 usd
milestones to keep everything organized on the Project 5) Kicker PCB - 20 usd

tab for our Kanban board. 6) Open MV Cam - 65 usd
7) Teensy 4.1 - 35 usd

8) Main PCB - 8 usd
9) Dribbler - 20 usd
10) ESC - 10 usd
11) Lipo batteries (Kicker PCB) - 8 usd
12) Main Lipo Batteries - 20 usd
II. Overview of the robot 13) 4.4 HP Pololu Motor - 49 usd
14) Line detection PCB - 8 usd
15) Kicker - 8 usd

B. Materials:
A. Design, Capabilities Strategies « 3D printed PLA or ABS pieces for battery holders
and outer covers.
e Main chassis is laser-cut MDF, painted black.
e Aluminum brackets for motor mounts.

This year, we had two significant iterations of our o Aluminum dribbler holder.
robots: one for the Torneo Mexicano de Robotica (TMR) o 3D printed silicone molds for components requiring
and another for the final competition in Eindhoven. In friction, such as the dribbler and kicker.
this overview, we will discuss the final version of the o Assembly is secured with brass hex spacers.

robot. e Brass rods
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Fig. 5. Descriptive circuit diagram

Fig. 6. Goalkeeper logic

Fig. 7. Direct Approach

Fig. 8. Adjust Angle

III. Mechanical
A. Mirror Design

Initially, we attempted to thermoform our mirror shape
but had to abandon this approach due to the unavailabil-
ity of a suitable material supplier. In our eagerness to
commence testing, we experimented with folding mirror
sheets into conical shapes, which yielded unsatisfactory
results. Ultimately, we designed a precise model in
SolidWorks and collaborated with METALWORK AND
STAMPING to access advanced manufacturing machin-
ery. This partnership enabled us to fabricate the mirror
from steel and achieve a high-quality chrome finish.

The code linked here was utilized to approximate the
visual field achieved by a chromed mirror, considering
minor variations due to the chroming process’s thickness.
The mirror’s shape is defined by the equation:

y = 1/0.045 + 0.452

Derivative:

y = % £0.92 - (0.045 + 0.4522) 2

Given the height and distance from the camera to the
mirror, the code employs the derivative of the mirror
shape to calculate the angles and subsequently determine
the distance visible at every 0.1 cm increment.

To refine the accuracy beyond theoretical calculations,
a linear regression model was employed to correct for
potential calculation discrepancies. This dual approach
leverages both the geometrical properties of the mirror
surface and empirical adjustments, ensuring a more
precise estimation of the visual range.
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Fig. 9. Mirror Calculation
This is the graph showed by the code comparing
centimeters of visibility and ”x” axis distance on
mirror hyperbola.


https://drive.google.com/file/d/1xPxY0O3N4mVcW92x26ON2kiqP58Zdyke/view?usp=sharing
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Fig. 10. Calculation at specific distance
We used this graphing calculator to confirm our data
from our code at a specific distance of the mirror.

Fig. 11. Mirror simulation in blender

Fig. 12. Test View from mirror sheets

B. Dribbler

1) First design: The initial dribbler was built using
a 3D-printed mold, incorporating centering lines, 3D-
printed pulleys, and rubber bands. However, due to
the insufficient precision of the mold, the self-centering
mechanism was discarded.

2) TMR competition dribbler: Our updated dribbler,
constructed with aluminum, custom 3D-printed pulleys,
and molded dark silicone for optimal grip, maximized
the available space efficiently. The design utilized springs
to maintain contact pressure with the ball. However, the
potential for displacement beyond the allowed diameter
remained a concern.

Fig. 13. TMR Dribbler

3) Final version: We decided to reposition the rota-
tion axis of our dribbler to a lower location to ensure
compliance with the permitted diameter constraints. Ad-
ditionally, we upgraded to a more powerful brushless
motor, and encased it in a custom 3D-printed cover for
enhanced protection and durability.

C. Vision

1) First design: At this stage, we successfully con-
figured the mirror, allowing our camera to capture the
entire field without any issues.

2) TMR Vision: Despite achieving full field visibility,
we faced challenges with fluctuating lighting conditions,
which adversely affected our camera’s capability to
accurately track the ball in motion.

3) Final Version: Our final version addresses all the
camera’s visibility issues, resolving the lighting prob-
lems. It features two cameras for improved precision and
a heavier, more robust design.

D. Kicker

While the core design of our kicker remained largely
unchanged, we enhanced our final design by integrating
a silicone-molded tip. This modification leverages the
frictional properties of silicone to effectively counteract
the ball’s backspin, resulting in greater kicking distances
and higher velocities.

E. General Design Over Time

Fig. 14. V1 Idea



Fig. 16. Final Version

IV. Electrical

For our robots, the following PCBs were designed in
EasyEda Pro:

e Main board (MCU board)

o Kicker board

o Line detection board

o Power board

Throughout our journey, we encountered various chal-
lenges that had to be overcome to achieve a stable
version of the robot:

A. Choosing our main micro controller

For the first iteration of our robot the design started
when we selected our MCU, in order to do this we made
a research with the main micro controllers that most of
the teams use at the international competition. By this
we got:

o Teensy (4.0 and 4.1 version)

« ATMEGA2560

o STM32F4 (Different versions)

While the Teensy was the best approach thanks to the
integration to Arduino and be the fastest, it was an
expensive MCU for the first iteration, meanwhile the
STM32F4 were cheaper, we couldn’t get a development
board in a fastest time.

In search of other MCUSs superior to the Arduino
(ATMEGA2560) we discovered with a new mexican de-
velopment board based on the ESP32 and RP2040 micro

controllers named DualMCU ESP32+RP2040 microcon-
troller board [1f]. The dual integration of these MCUs
caught us for choosing this as our main development
board for our project.

Fig. 17. DualMCU development board

With the microcontroller chosen we started the first
version of the main board that had integrated sockets
(JST SH and XH), driver for the motors (TB6612FNG)
and our new development board, the DualMCU, all
embedded in a 4 layer PCB.

Fig. 18. DualMCU - Main PCB

While this development board worked fine in certain
scenarios, in the software we encountered significant
software issues with MCU communication, while in the
hardware the board was big, needed to be in the edge
of the robot due to push some buttons when uploading
the code. Moreover, there were inconsistencies in board
stability; some units functioned correctly while others
did not. Taking these challenges into account, we opted
to switch to the Teensy 4.1 as our main MCU. Its
compact size and enhanced processing speed offered a
more reliable solution for our robot.

With this in mind in the final version of the robot, our
main PCB includes a Teensy 4.1 microcontroller, along
with JST connectors (SH and XH) for easy integration
with other components, as shown in Figure 15. Addition-
ally, we use the TB6612FNG motor driver, with both
outputs connected in parallel to meet the current limit
requirements (see Figure 16).



Fig. 19. Teensy schematic for the main board
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Fig. 20. Motors schematic for the main board

Fig. 21. Teensy - Main PCB

B. Line detection

Be inside the field is one of the main part in order to
compete in all the RoboCup’s soccer leagues. In order to
achieve this most of the teams use three types of sensors:

« Photodiodes

« Phototransistors

« LDR

With all of them been an analog signal output, and just
changing the type of connection and led that they choose,
however photo transistors are more reliable and are often
use as light sensors. Specifically, we opted for the Vishay
Semiconductor TEPT5700 due to their reliability and
current availability in stock.

1) Choosing the best resistance: The circuit for this
type of devices consists in a light source combined with
the photo transistors emmisor connected to a current

limiter resistance(seen in fig). Crucial to the circuit is
the selection of the R2 resistor.
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Fig. 22. Photo transistors typical circuit

In our initial robot iteration, we assumed that R2
did not require precise calculation and opted for an
experimental value of 10K ohms—a decision that nearly
jeopardized our qualification for the world competition.
This experimental R2 led to a minimal differentiation
between the detected values for the field and white
lines, resulting in instability of the robot under different
lighting conditions.

Fig. 23. Photo transistors - Line detection PCB V1

After the almost failure of the TMR we started to
calculate R2 getting into an average value of 82K ohms,
with the following results, for the white lines a value
around 1.77 V, while for the field a value of 0.98 V,
values that are easy recognizable for our logic (3.3V)
and with a big gap.

We integrated a multiplexer in order to optimize the
use of analog pins in the MCU. Also we want to use
a Schmitt trigger circuit connected to any interrupt pin
making the robot 100 percent reliable thus all the analog
signals are proccessed before hand

Vout MCU

Fig. 24. Photo transistors - Schmitt trigger circuit



. e Phototransistors

Fig. 25. Photo transistors - Line detection PCB V2

Fig. 26. Photo transistors schematic

C. Kicker

In this category the most popular kicker is an elec-
tromechanical one, more specific, a push pull solenoid
powered by a lot of voltage and triggered via any circuit
or device that has 3.3 V logic. The first iteration of our
circuit powered by a 48V capacitors (charged via two
boost converter of 24 V connected in series) triggered
via a relay. [2]

Fig. 27. Kicker board with relay

After conducting further research, we opted to opti-
mize board space by designing a custom boost converter
capable of delivering 48V. This PCB includes integrated
PMOS circuit protection and an NMOS trigger device,
both controlled via optocouplers to enhance stability. We
simulate this circuit in LTSPICE for a more controlled
testing.

Fig. 28. Kicker circuit

Fig. 29. Kicker board with Mosfet

V. Software
A. Communication

As we started working with a Dual Microcontroller,
we had to establish our communication protocols for
data transmission. The initial diagram is shown below.
Please note that for each channel, we had a specific serial
number for sending and receiving data packages.
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Fig. 30. Communication protocols for dual microcontroller

For the OpenMV camera, we decided to use UART
protocol via Serial, sending a String of two decimal fig-
ures separated by a comma. Our first approach included
parsing the string while we had serial data available.
Still, we were facing some unexpected issues, where data
was not being sent and received at the same time, even
if we had the same baud rate on both ends. We decided
that dealing with Strings was not so efficient, as data was
slowly processed. To resolve this, we implemented a new



type of logic. Once the data has reached the ESP32 it is
processed through the Receive (uint8_t signal)
method, the algorithm logic is shown below.

Convert the 4 bytes of the
serial port into a floating point
number ug g aunion

Receive data from W Read by[e and save
OpenMV camas a Send signal Wallfor data to @nler |y niatize a temp array [ them on diferent i
parameter 2 memory allocations

Fig. 31.

Data reception on ESP32

We decided to use the union structure as it provides
us with an efficient data conversion, allowing direct
access to the received bytes without needing explicit
bit manipulation. After testing it for a while, everything
was working great, but once we incorporated more
data variables from our camera, de data packages were
to large, and the union was experiencing unexpected
bottlenecks.The issue can be seen in the following figure.
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Fig. 32. Issues with data reception and mismatch in time spent

Our approach for debugging this issue consisted on
counting the milliseconds spent on every task, with this
we were able to find out where our bottleneck of data
was forming. And it was getting stuck on the union,
to solve this we decided to take an easier approach, as
we only had a few weeks before the TMR competition,
and there were plenty of tasks to get done, other than
just focusing on the serial communication. At last, we
implemented the following logic shown below.

float m1 = cos(((45 + degree) * PI / 188))

float m2 = cos(((135 + degree) * PI / 188));
float m3 = cos(((225 + degree) * PI / 188));
float m4 = cos(((315 + degree) * PI / 180));

Fig. 35. Kinematic equations

Check if serial data
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Fig. 33. Final data handling over serial on ESP32
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As for receiving this data package on the Raspberry Pi
Pico over serial, we used the following algorithm logic
shown below.

Apointer is used to
iterate tmugh each
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Check f serial data Infialize array of 5 Parse smng using
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Fig. 34. Data handling on Raspberry Pi Pico

Note that to reach this smooth data transmission, we
had to go over 2 different approaches for data handling.
For the TMR we used the final logic explained above,
and for Eindhoven we are keeping the same logic, as we
have reached its optimal implementation.

B. Control

To make the robot work we used two linear controllers
of type PID one for the control of the angular velocity
and the other for linear velocity. Each of these controllers
were determined empirically trough different iterations,
and according to the best performances the constants
were tuned. For the angular velocity controller it was
prioritized that the robot was able to fetch the ball even
if there was overshoot, that is why we gave more weight
on making our response time so that the robot will be
able to fetch the ball independently of its position.

In order to make our robot to move holonomically we
implemented the following inverse kinematic equations.

See the figure below to show the diagram of our robot.

We also implemented our own library for class cre-
ation. Utilizing the yaw position we were able to calcu-
late setpoint and error for out PID controller, below is
the logic followed to match angles on the robot frame



Fig. 36. Robot diagram for wheels

Fig. 37. BNO diagram direction for movement

and the real world. Note that yaw is calculated using the
Euler vector for x.

C. Logic

For the algorithm design, which is the main logic, we
utilized two main files. One for the esp32 and another
one for the Raspberry Pi Pico. Our logic hierarchy
follows this structure.

Goalkeeper

» ESP32_Goalkeeper
» Pico_Goalkeeper
Striker
» ESP32_striker
e Pico_Striker
Fig. 38. Main scripts organization
For the goalkeeper logic we started with a simple
approach, using a Bang Bang controller, which consists

of tracking the ball using our camera and adjusting
position to maintain its centered view. We started by

defining an arbitrary bang_bang_threshold, which
means that the robot will move ’x’ degrees from the
center. The algorithm is shown on the following code
chunk.

if(cam_angle < (0 - bang_bang_threshold)){
myMotors.moveMotorsImu(270, 190, speed_w);
Serial.println("LEFT");

else if(cam_angle > (0 + bang_bang_threshold)){
myMotors.moveMotorsImu(90, 190, speed_w);
Serial.println("RIGHT");

} else {
myMotors.moveMotorsImu(0, 0, speed_w);
Serial.println("STOP");

Fig. 39. Algorithm for Bang Bang controller

This algorithm allowed us to always center our robot
in relation to the ball, still we were excluding some
variables. For a second approach, we used our camera to
find the center of the goal, then assign an error margin
goal_threshold to determine how close the robot
needs to be to the center of the goal before it stops
moving. So this basically means the following.

1) If the goal is to the LEFT that means (angle ; 185
- threshold), the robot moves left to center itself.

2) If the goal is to the RIGHT that means (angle ¢
185 + threshold), the robot moves right to center
itself.

3) If the goal is within the threshold range, the robot
STOPS moving translationally.

As an overview, the Goalkeeper algorithm follows the
logic on the diagram below.



If ball_angle == 0 then
bal_found = false
Se"jra'f Logic for ball Center robot
coordinate found ingoal [
plane
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——

Calculate
ponderated
angle

Fig. 40. Goalkeeper algorithm

Observe how is the adjust angle and ponderated angle
used to determine the robot’s actions, shown in the
diagram below.

D. Vision

For the vision system we started developing using
Micropython on our OpenMV IDE. For detection we first
had to set some constants using VAD values to detect
the orange blob, we also added a brightness, saturation
and contrast filter to make the image obtained from the
camera more clear. The first step when using the camera
includes reducing the vision field by placing a black blob
to reduce image noise. As shown below.

Fig. 41. Robot POV to reduce noise

Still, we were getting a lot of light coming in to the
camera from the outsides of the frame, to solve this we
applied even more black image filtering as shown below,
to only leave the mirror vision.

Fig. 42. Enter Caption

center of
such as

We
the

the
constants

located
using

also
frame

FRAME_HETIGHT, FRAME_WIDTH, FRAME_ROBOT
to find each exact position of our 3 blobs (yellow goal,
blue goal, orange ball).

We created the locate_blob method that used
find_blobs from the OpenMYV IDE to locate blobs in
the image snapshot for each specific threshold value set
and returns a list of blob objects for each set. In the case
of the ball we have set the area_threshold to 1, this
small value means that even when a small area of this
color is detected it will be marked as an orange ball to
increase the amount of inclusivity in our vision field. For
the case of the goals the area_threshold is set to
1000 because goals are much more larger in size. Once
we have our different blobs detected we can calculate the
distance to the blob using the hypotenuse. First we need
to calculate the relative center in x and y axis, then find
the magnitude distance and finally using an exponential
regression model to calculate the real distance with pixel
comparison. Note that the expression was obtained by
running measurements comparing cm and pixels using a
proportion and data modeling on Excel, the procedure is
shown below.

Fig. 43. Pixel regression to calculate distance in cm



magnitude_distance = math.sqrt(relative_cx**2 + relative_cy**2)
total_distance = 1 * math.exp((0.0245) * magnitude_distance)

Fig. 44. Pixel expression

Fig. 45. Line limitations from robot’s POV

At first we tried to use the function obtained from the
manufactured of the mirror, but we where getting a lot
of outliers, that is why we decided to trial and test our
own regression model. The final expression calculation
is shown below.

For the goal_distance we needed to calculate the
opposite distance, using sine. To calculate the angle we
used the inverse tangent and then just convert to degree
measurement. Finally, depending on the blob that is
being detecting for each image snapshot we perform the
corresponding methods and sent the data package using
a format of two floating points divided by commas.

For the implementation of the light ring we encoun-
tered some issues before the TMR, as a quick fix,
days before the competition we decided to implement
an approach using vision. The first approach consisted
on implementing a barrier outside our robot to move
depending on which front the lines were detected. See
the diagram below. After testing this approach we were
encountering issues especially on the goal area, we had
to think on an easier approach. For this we decided to
calculate the distance of our robot towards the goal, with
this we were able to limit the robot movement only for
the goal areas.

For Eindhoven we implemented a second camera,
now using Pixy camera as our mirror camera, and the
OpenMV up on the front. This allows us to know exactly

Fig. 46. Goal Distance Logic

when we have the ball, instead of assuming we possess
it as explained in the logic section.

VI. Reflection

As we approach RoboCup 2024, our team, RoBorre-
gos, reflects on a year of innovation, collaboration, and
project management excellence.

We refined our robot’s design and functionality by:

o Improving the mirror design with precise Solid-

Works models.

« Enhancing the dribbler system with robust brushless

motors.

o Developing advanced line detection and multi-agent

coordination.

Collaboration was key, with strategic partnerships and
teamwork accelerating our development timeline. We
utilized GitHub and Kanban boards to stay organized
and focused.

Our technical expertise shone through in our compo-
nent selection, custom PCB design, and troubleshooting.
We’re proud of our progress and strategic vision, which
positions us for success in the competition.
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