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Abstract—Predictive modeling of sea ice conditions in the
Arctic region is important task for environmental monitoring,
climate change issue and offshore oil production. The exist-
ing physics-based and data-driven solutions for ice forecasting
are usually not flexible enough to satisfy the domain-specific
requirements. Therefore, we propose the lightweight adaptive
modeling approach named LANE-SI (Lightweight Automated
Neural Ensembling for Sea Ice). It use ensemble of simple
encoder-decoder architecture deep learning models with differ-
ent loss functions for forecasting of spatial distribution for sea
ice concentration in the specified water area.

Experimental studies confirm the quality of a long-term fore-
cast based on a deep learning model fitted to the specific water
area is comparable to resource-intensive physical modeling, and
for some periods of the year, it is superior. We achieved a 20%
improvement against the state-of-the-art physics-based forecast
system SEAS5 for the Kara Sea.

Index Terms—sea ice forecasting, sea ice concentration, Arctic,
CNN, ensembling

I. INTRODUCTION

In recent years, Arctic modeling has become a focus of
increased interest for researchers in various scientific fields.
The sea ice melting process, in conjunction with global warm-
ing, determines the ecological state of the region, including
biodiversity conservation.

Predictive modeling of ice conditions in the Arctic is con-
sidered in different time scales. Short-term forecasts involve
the assimilation of operational information and reproducing
accurate data for decision-making. This type of forecasting
is limited to intervals from several hours to several months.
Long-term forecasting is carried out one or several seasons
in advance to enable advance planning, which is essential in
the industrial sector [1]. In predicting the timing of opening
and freezing of the water area, statistical modeling is carried
out based on retrospective observational data [2].

Physical modeling became the classical approach to the
simulation of natural environments because of advantages on
the spatial and temporal scales and the ability to predict and
analyze different scenarios [3]. It utilizes complex numerical
methods to solve the equations of motion, thermodynamics,
and radiation [4]. Despite the robustness and explainability
of physical modeling, its application is often complicated by
high computational cost, the need for boundary and initial
conditions for many variables, and complex parameterization
for a specific territory. Years of active development of earth

remote sensing have contributed to the accumulation of spa-
tiotemporal datasets for environmental systems, which can
be used to train various data-driven models, including deep
neural networks. While deep learning models can provide
high-quality environmental forecasts [5], the computational
cost for models’ training to satisfy the task-specific require-
ments (water area, time and spatial resolution, forecast length,
objective function) can be excessive. For this reason, we
aimed to provide a more lightweight surrogate alternative to
existing solutions for sea ice forecasting.

This paper presents a deep learning approach LANE-SI that
uses an ensemble of convolutional neural networks (CNN)
for long-term predictive modeling of sea ice concentration.
Satellite data with post-correction - OSI SAF Global Sea
Ice Concentration (SSMIS) product [6] was taken as training
data. Results are presented for the Kara Sea and part of the
Barents Sea region of the Arctic. This territory was chosen
since it is a key area of Arctic sea ice shift [7].The developed
model is lightweight due to its simple architecture and is
also undemanding in input data - only the pre-history of the
target parameter is required. A comparison was made with the
ECMWF’s fifth-generation physics-based seasonal forecast
system - SEAS5 [8]. The comparison results demonstrate
that the surrogate model reproduces the absolute values of
ice concentration and their spatial distribution with a quality
comparable to the SEAS5 forecast. The surrogate model
reproduces the position of the ice edge better than the SEAS5
forecast, both on average contour points position and the
position of each point separately.

The source code and sample datasets are available on
GitHub to reproduce experimental results. The link is pro-
vided in [9]. The paper is structured as follows: Section 2
reviews the key related work, Section 3 describes the proposed
method for the design of surrogate sea ice forecasting models
named LANE-SI, Section 4 contains the experimental results,
and Section 5 presents concluding remarks for the proposed
methods.

II. RELATED WORK

The classic method for modeling sea ice parameters is nu-
merical modeling based on systems of differential equations.
Over the years of technological development, a large number
of both specific solutions that reproduce local ice dynamics



[10] and general methods of numerical hydrometeorological
forecasting [11], [12] have been developed. State-of-the-art
physical models like NEMO-SEAICE [13] make it possible
to reproduce ice conditions both at the global [14] and
regional [15] levels. Considering the universality of numerical
models, it should be noted that their adaptation to a specific
territory requires significant effort from a subject specialist
and considerable computing resources, as well as setting
boundary and initial conditions, which raises the need for
high-quality initial data, which is not always available for the
water area interest.

There has been a rapid development of data-driven ap-
proaches in recent years. Model complexity varies from linear
relationship searches [16] and regression models [17] to deep
learning networks [18]. Regression models are limited in their
applicability due to the enormously increasing complexity
when moving to grid calculations. Using neural networks
based on simple convolutional [19] and more complex U-
Net [20] architectures provide high-resolution output images
and allow a more detailed forecast.

However, most high-quality existing solutions require a
large amount of additional input data and computing power
[20], [21] for training and network prediction, significantly
limiting their applicability for specific water areas.

Strong solution for ice concentration prediction task is
IceNet model [19] based on ensemble of U-Net models. It
provides 6 month forecast at any start point at the year.
The quality of mid-term forecast is quite high. However, this
system requires 11 climate variables, which greatly limits
its applicability in an operational mode independent of other
systems. Also for each of 25 ensemble members pre-training
takes around one day which makes the system heavy and
poorly adaptable.

The work [19] used a simple encoder-decoder convolutional
neural network architecture which requires less computing
resources than U-Net. But it also required 8 input parameters,
including information about anomalies and the state of the
atmosphere. The limitations of this approach also include the
applicability of the method only during the period of ice
melting.

It is known that combining a set of simple models into
ensembles makes it possible to achieve higher quality fore-
casting, including in the subject area of hydrometeorology [7],
[22]. We assume that ensembling of simple neural networks
can lead us to better quality at lower computational costs [23].
Our aim is to find a balance between the complexity of the
model and the quality of the forecast.

III. LANE-SI

To achieve a better quality of high-resolution long-term
sea ice forecasting in a computationally cheap way, we
developed the LANE-SI approach that allows designing the
predictive model for sea ice in specific water areas. We used
the convolutional neural network for a non-standard task -
time-spatial forecasting. In contrast to LSTM architectures,
which allow the extraction of features only from time series

[24], convolution emphasizes the spatial distribution of the
parameter and reduces the risk of stagnation over time. The
surrogate model was implemented to carry out long-term
forecasting with a forecast horizon of one year. We aimed
to make the model as flexible as possible to adapt to specific
water areas to reduce the computational cost against neural
surrogate models that cover the entire Arctic region [21].

In LANE-SI, the dataset for training a surrogate data-driven
predictive model for ice concentration is prepared similarly to
the lagged transformation applied to time series. Previous k
steps are used to predict n steps ahead using the pre-history of
sea ice. Each time step is characterized by an image describing
the concentration in each cell.

The surrogate model is represented by an ensemble that
aggregates two CNNs trained with different loss functions
and an inertial forecast - concentration values averaged for
each day of the year over the previous five years.

A. CNN for sea ice forecasting

The basic structure of the deep neural networks used in
LANE-SI include five convolution layers with ReLU activation
functions [25]. Postprocessing with cutting to the range was
used due to the inconsistency of using the sigmoid activation
function to ensure that the output image values range from
0 to 1 [26]. The structural scheme of CNN is presented
in Figure 1. The specific size of layers is configured in an
automated way.

In the modeling of spatiotemporal data, it is important not
only to reproduce the absolute values but also to measure
the proximity of the spatial distribution of values to the
distribution in the target image. Therefore, CNNs were trained
on two loss functions:

• Mean Absolute Error (MAE, L1Loss) - represents the
closeness of the absolute values of each pixel of each
prediction element with the target image;

• Structural Similarity Index (SSIM) - represents the
similarity local patterns of pixel intensities [27] and
shows similarity in the spatial distribution of the param-
eter at predicted and target images.

The CNN accepts multi-channel images with several years
of ice concentration pre-history. At the output, the CNN
provides images of the same spatial resolution as the input
ones, but the number of channels is 52. It corresponds to a
one-year forecast with a time sampling of seven days.

B. Neural ensembling of forecasts

The multi-model ensemble was used to improve the quality
of the surrogate model in LANE-SI. The first CNN reflects the
spatial distribution of the parameter (SSIM), and the second
reproduces the parameter’s absolute values (MAE). Also, a
naive forecast in the form of repeating the average values for
five years for each day of the year was added to reproduce
long-term dynamics not represented in pre-history.

Three types of ensembling methods were tested by quality
comparison with the same metrics (MAE, SSIM):
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Fig. 1. Architecture of deep learning model and processing steps for sea ice concentration forecasting. The specific values of layer shape are described for
the experimental domain (125x125) used in Section V.

• Simple weighted ensemble, based on linear regression:
each pixel in a predicted multi-channel image is con-
sidered an independent variable. Predicted values for
each pixel of three separated models are summed with
coefficients that provide less error on the delayed part of
train data;

• CNN trained with MAE loss function uniting the el-
ements of the ensemble in the form of multi-channel
images into one prediction;

• CNN trained with SSIM loss function unites the ensem-
ble’s elements in the form of multi-channel images into
one prediction.

The general scheme for an approach that combines single
models into using neural ensembling is presented in Figure 2.

Of the three described ensemble approaches, CNN trained
with SSIM loss function performed best quality in visual
and numerical assessment. The regression model, despite the
physical-realistic patterns in forecasts, showed low quality due
to its inability to generalize spatial relationships. CNN trained
with MAE loss function showed good numerical estimates,
but was prone to physically unnatural artifacts in the images.

As an alternative to ensembling two separate convolutional
networks with different loss functions, using of combined

loss was tested. However, when optimizing the weighted sum
of the SSIM and L1 loss during CNN training, we faced
convergence problems. Due to the fact that the metrics have
completely different natures and are not linearly interrelated,
one model is not able to generalize the data in such a way as to
ensure convergence on two metrics simultaneously. Therefore,
the optimizer is inclined to improve only one component of
the loss and cannot find the optimum in the given search
space.

IV. EXPERIMENTS AND RESULTS

A. Dataset

We use OSI SAF Global Sea Ice Concentration (SSMIS)
product as training data for sea ice concentration forecasting
in specific water areas. The time resolution of the product
is one day; however, for the problem of long-term forecast-
ing, such discretization is redundant, and therefore the time
resolution was sparsed to weekly. Data were normalized to a
regular grid with a spatial resolution of 14 km using bilinear
interpolation. An area with the Kara Sea and part of the
Barents Sea was chosen as a test domain (as presented in
Figure 3). Laptev and Barents seas separately in same with
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Fig. 2. The structure of the proposed ensemble model (first layer - predictive model, second layer - neural ensembling model).

Kara sea experiment statement was chosen as an additional
areas of interest for metrics estimation.

Fig. 3. Spatial extent of testing domain with OSI SAF ice concentration data
sample on 2006/01/01.

We conduct the experimental evaluation of LANE-SI using
SSMIS for 1996 to 2022 years. Primary forecasting models
were trained on the data time range from 1996 to 2009. The
ensembling model was trained on predictions of single models
from 2010 to 2015. They were additionally re-trained on the
entire training set from 1996 to 2015 to obtain better forecasts
using single models. Validation was made as an out-of-sample
one-year-ahead forecast for 2006-2022 compared with naive
forecast and actual data.

The training time for LANI-SI in the described setting on
a local machine with an NVIDIA GeForce RTX 4080 video
card and an AMD Ryzen 9 5950X processor (16 x 3.4 GHz)
was approximately 450 minutes.

B. LANE-SI against separate data-driven models

The quality of the surrogate model (design with LANE-SI)
for the Kara Sea was analyzed compared to the naive forecast
for both the final ensemble model and individual ensemble
components. Table I presents numerical estimates of metrics
averaged over the years.

As the table shows, the surrogate ensemble model achieves
a higher forecast quality than single models according to the
SSIM metric for all years and almost all years according to
the MAE metric.

Figure 4 presents an example of a spatial comparison of
different data-driven forecasts (LANE-SI-designed ensemble
and separate neural models) with actual data for a single
forecast step.

This example shows the shortcomings of single models.
The CNN with the L1 loss function reproduces the ice field
with large granularity despite its good fit into the absolute
values on average over the image. CNN with SSIM loss
function and naive forecast tends to over-smooth the image
and underestimate the absolute values of the parameter. Thus,
the ensemble model combines single models while avoiding
their inherent disadvantages.



TABLE I
COMPARISON OF SURROGATE ENSEMBLE MODEL AND SINGLE CNN MODELS BY MAE AND SSIM METRIC MEAN FOR EACH YEAR

Metric Mean Absolute Error (MAE) Structural Similarity Index (SSIM)

Year Surrogate CNN
L1Loss

CNN
SSIM loss

Naive
forecast Surrogate CNN

L1Loss
CNN

SSIM loss
Naive

forecast
2016 0,064 0,044 0,048 0,086 0,807 0,726 0,796 0,723
2017 0,056 0,059 0,056 0,064 0,810 0,701 0,784 0,758
2018 0,052 0,061 0,052 0,06 0,808 0,690 0,776 0,768
2019 0,045 0,061 0,056 0,055 0,823 0,689 0,782 0,780
2020 0,085 0,064 0,079 0,104 0,509 0,595 0,522 0,469
2021 0,07 0,089 0,079 0,087 0,526 0,525 0,500 0,496
2022 0,064 0,074 0,082 0,085 0,532 0,552 0,492 0,494

CNN L1Loss CNN SSIM loss

Naive forecast Surrogate model

MAE=0.076
SSIM=0.693

MAE=0.078
SSIM=0.754

MAE=0.058
SSIM=0.764

MAE=0.043
SSIM=0.831

2018/05/31

Fig. 4. Comparison of the spatial distribution of forecasted ice concentration by ensemble surrogate model and separate models with real data for 31.05.2018

C. LANE-SI against physics-based forecast

To objectively assess the quality of the surrogate model, it
was compared with the state-of-the-art (SOTA) model based
on differentiation equations - the predictive model SEAS5.

The maximum forecast horizon of the SEAS5 model is nine
months (against 12 months for the design surrogate model).
Therefore, we configured both forecasts to start on January
1 of each year. The error was calculated on average for each
season (three months) out of three fully predicted. To confirm
the adaptability of the approach, a comparison was also made
of the Barents and Laptev seas.

Table II presents the comparison results for the entire
SEAS5’s available archives (2020-2022).

As the table shows, forecasting using a surrogate model
designed by LANE-SI is comparable in quality to the physics-
based forecast and, in some cases, can even surpass it due to

the better adaptation to specific water areas.
In addition to the metrics used for training (SSIM, MAE),

a metric for comparing the similarity of the ice edge was
used to assess the quality. The ice edge is the contour of the
spatial position of ice with a concentration of more than 0.8.
An expert can choose the threshold for switching to binary
data (it depends on the scenario of the forecast usage). In
this case, the ice edge’s position is represented by a set of
points with coordinates of a fixed length. The distance metric
is calculated as a mean of the signed distance between each
point of one contour and the nearest contour edge of the
second contour [28]. This metric was introduced because it
is more indicative for assessing the spatial distribution of ice
concentration values critical for navigation.

Figure 5 shows an example of the result of edge identifi-
cation as 100 points with the distance metric calculation.
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Fig. 5. Visualization of the identified ice edge on real data (green points) in comparison with forecasts of SEAS5 and a surrogate model (red points)

The distance values were displayed as boxplots for each
prediction step to assess the range of agreement between the
ice edge contour points. Figure 6 provides a visualization for
the 2021 ice melt period.

The LANE-SI-designed surrogate model provides a predic-
tion close to SEAS5 by the average value of edge distance
criteria. Also, the edge distance criteria variance for each point
is lower for the proposed surrogate model.

V. CONCLUSION

This paper proposes an approach to predictive modeling
of sea ice concentration named LANE-SI. It is based on an
ensemble of convolutional neural networks with different loss
functions and naive forecast (that represent the average over
the last several years).

Quality assessment was conducted using several objectives:
(1) the coincidence of the absolute values of the parameter
with actual data (MAE), (2) the coincidence of the spatial
distribution of the parameter (SSIM), and (3) the distance
between ice edges The results of experiments for Kara sea
confirms that, according to the SSIM metric, an ensemble
always gives better quality than single models; according to

the MAE metric, in most cases, an ensemble always gives
better quality.

The comparison results for the average distance between
actual and predicted ice edges indicate that, on average,
over the contour and taking into account the scatter of the
metric for each contour point, the surrogate model based
on a convolutional network performs better in predicting the
ice edge. Also, the developed model was compared with
a physics-based forecast SEAS5. Experiments have shown
that the LANE-SI approach allows forecasting with a quality
close to the physics-based SOTA model. While we used the
Kara Sea for validation, LANE-SI can be used to design the
forecasting model with a specified resolution and forecast
horizon for any water area in the Arctic.

The implemented approach has high performance in terms
of computational costs for training and prediction. The time
spent is limited to hours, in contrast to the days and weeks
required for physical modeling and complex systems based
on deep learning. This advantage makes LANE-SI flexible
for use in local water areas, and also suitable for operational
additional training.

The future research development will be aimed at apply-



TABLE II
COMPARISON OF SURROGATE ENSEMBLE MODEL AND SEAS5 FORECAST

FOR FIRST THREE QUARTERS OF EACH YEAR

Metric Mean Absolute
Error (MAE)

Structural Similarity
Index (SSIM)

Year
and quater SEAS5 Surrogate

model SEAS5 Surrogate
model

Kara sea
2020Q1 0,097 0,103 0,602 0,516
2020Q2 0,113 0,108 0,542 0,474
2020Q3 0,082 0,021 0,583 0,571
2021Q1 0,099 0,103 0,630 0,521
2021Q2 0,078 0,094 0,610 0,490
2021Q3 0,063 0,029 0,626 0,560
2022Q1 0,103 0,092 0,587 0,540
2022Q2 0,095 0,081 0,546 0,508
2022Q3 0,074 0,025 0,576 0,563

Laptev sea
2020Q1 0,046 0,122 0,857 0,808
2020Q2 0,083 0,060 0,753 0,803
2020Q3 0,208 0,107 0,472 0,491
2021Q1 0,044 0,149 0,852 0,722
2021Q2 0,090 0,102 0,743 0,684
2021Q3 0,229 0,146 0,447 0,401
2022Q1 0,048 0,131 0,857 0,816
2022Q2 0,074 0,069 0,771 0,813
2022Q3 0,131 0,139 0,533 0,439

Barents sea
2020Q1 0,079 0,078 0,676 0,648
2020Q2 0,087 0,076 0,621 0,639
2020Q3 0,073 0,052 0,560 0,639
2021Q1 0,083 0,087 0,671 0,630
2021Q2 0,064 0,071 0,670 0,620
2021Q3 0,062 0,046 0,568 0,636
2022Q1 0,079 0,082 0,693 0,655
2022Q2 0,077 0,074 0,654 0,627
2022Q3 0,071 0,036 0,569 0,644

ing automated machine learning to automate the design of
surrogate ensemble models for new conditions. Also, we will
consider the applicability of LANE-SI to other environmental
processes (e.g., weather forecasting).

VI. DISCUSSION

Tests in various Arctic waters with SOTA validation will
be produced to confirm the effectiveness of the approach.
An initial assessment of the modeling results of the Barents
Sea and the Laptev Sea confirms the generalizability of the
approach to other waters besides the Kara Sea. Studying the
applicability of the model without additional training over
long forecasting horizons should be provided. The modeling
quality is expected to be improved by introducing other types
of input data (e.g., ocean temperature and salinity levels)
into the model. However, with the current implementation, no
increase in quality was observed, and the speed of calculations
significantly decreased. It is necessary to reconsider the model
architecture to assimilate additional predictors efficiently. The
main limitation of the LANE-SI is a assumption of pure
auto-regressive nature of ice forecast. However, the high
uncertainty in sea ice reanalysis data [29] and complex and
stochastics nature of sea-ice dynamic makes it impossible
to reproduce the anomalous events efficiently. To achieve

Fig. 6. Boxplots of distance criteria for each point of ice edge - comparison
of SEAS5 and surrogate model prediction

better quality, we should involve of exogenous predictors to
the modelling process and take into account the large-scale
climatic processes.
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Thierry Fichefet, and Vincent Legat, “A new modeling framework
for sea-ice mechanics based on elasto-brittle rheology,” Annals of
Glaciology, vol. 52, no. 57, pp. 123–132, 2011.

[11] Wanqiu Wang, Mingyue Chen, and Arun Kumar, “Seasonal prediction
of arctic sea ice extent from a coupled dynamical forecast system,”
Monthly Weather Review, vol. 141, no. 4, pp. 1375–1394, 2013.

[12] Jinlun Zhang and D Andrew Rothrock, “Modeling global sea ice with
a thickness and enthalpy distribution model in generalized curvilinear
coordinates,” Monthly Weather Review, vol. 131, no. 5, pp. 845–861,
2003.

[13] Gurvan Madec, Romain Bourdallé-Badie, Pierre-Antoine Bouttier,
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