Does the Antarctic Slope Current control ocean heat transport towards Antarctica?

with Wilton Aguiar, Taimoor Sohail, Ellie Ong, Paul Spence, Wilma Huneke, Fabio Dias, Matt England

Ocean heat transport controls Antarctic ice shelf melt.

Why would the Antarctic Slope Current control cross-slope heat transport?

- 1. It acts as a "barrier" i.e. warm offshore water can't cross the strong front.
- 2. Flattened isopycnals -> a) weaker slope current, and b) easier shelf access for warm water.

Warm shelf regime

ACCESS-OM2-01 has a good representation of the Antarctic Slope Current (Huneke et al. 2022).

Antarctic Slope Current strength is defined as along-slope velocity on 1000 m isobath.

Cross-slope heat transport is computed across the 1000 m isobath.

- defined relative to the freezing point temperature.
- zonal convergence is added to to remove the impact of the slope current crossing the isobath.

Density (σ_0)

No spatial correlation between time mean Antarctic Slope Current and heat transport.

Getz, $r^2 = 0.84$

Does the Antarctic Slope Current actually control cross-slope heat transport?

Or do both change concurrently in response to external forcing?

Totten, r² = 0.00

Does the Antarctic Slope Current control ocean heat transport towards Antarctica?

- Antarctic Slope Current may be less correlated with southward heat transport than assumed.
- What determines spatial variation in correlations?
- Does the Antarctic Slope Current control heat transport, or is it a passive response to lifted isopycnals?

