Licensed Materials - Property of IBM

"Restricted Materials of IBM"

#

IBM SDK, Java(tm) Technology Edition, v8

(C) Copyright IBM Corp. 2010, 2022. All Rights Reserved

#

US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This is the "master security properties file".

#

An alternate java.security properties file may be specified

from the command line via the system property

#

-Djava.security.properties=<URL>

#

This properties file appends to the master security properties file.
If both properties files specify values for the same key, the value
from the command-line properties file is selected, as it is the last
one loaded.

#

Also, if you specify

#

-Djava.security.properties==<URL> (2 equals),
#

then that properties file completely overrides the master security
properties file.

#

To disable the ability to specify an additional properties file from
the command line, set the key security.overridePropertiesFile

to false in the master security properties file. It is set to true

by default.

In this file, various security properties are set for use by

java.security classes. This is where users can statically register

Cryptography Package Providers ("providers" for short). The term
"provider" refers to a package or set of packages that supply a

concrete implementation of a subset of the cryptography aspects of

the Java Security API. A provider may, for example, implement one or
more digital signature algorithms or message digest algorithms.

#

Each provider must implement a subclass of the Provider class.

To register a provider in this master security properties file,

specify the Provider subclass name and priority in the format

#

security.provider.<n>=<className>

#

This declares a provider, and specifies its preference

order n. The preference order is the order in which providers are

searched for requested algorithms (when no specific provider is

requested). The order is 1-based; 1 is the most preferred, followed
by 2, and so on.

#

<className> must specify the subclass of the Provider class whose
constructor sets the values of various properties that are required

for the Java Security API to look up the algorithms or other

facilities implemented by the provider.

#

There must be at least one provider specification in java.security.

There is a default provider that comes standard with the JDK. It

is called the "SUN" provider, and its Provider subclass

named Sun appears in the sun.security.provider package. Thus, the
"SUN" provider is registered via the following:

#
security.provider.1=sun.security.provider.Sun
#
(The number 1 is used for the default provider.)
#

Note: Providers can be dynamically registered instead by calls to
either the addProvider or insertProviderAt method in the Security
class.

#

List of providers and their preference orders (see above):

#

security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.plus.provider.|BMJCEPIus
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL
security.provider.7=com.ibm.xml.crypto.IBMXMLCryptoProvider

security.provider.8=com.ibm.xml.enc.IBMXMLEncProvider
security.provider.9=com.ibm.security.jgss.mech.spnego.IBMSPNEGO
security.provider.10=sun.security.provider.Sun
security.provider.11=com.ibm.i50s.jsse.JSSEProvider

#
IBMJCE and IBMSecureRandom SecureRandom seed source.
#
Select the primary source of seed data for the "SHATPRNG" and
"NativePRNG" SecureRandom implementations in the "IBMJCE"
provider and the "SHATPRNG" SecureRandom implementation
in the "IBMSecureRandom" provider.
(Other SecureRandom implementations might also use this property.)
#
On Unix-like systems (for example, Solaris/Linux/MacOS), the
"NativePRNG" and "SHA1PRNG" implementations obtains seed data from
special device files such as file:/dev/random.
#
On Windows systems, specifying the URLs "file:/dev/random" or
"file:/dev/urandom” will enable the native Microsoft CryptoAPI seeding
mechanism for SHA1TPRNG.
#
By default, an attempt is made to use the entropy gathering device
specified by the "securerandom.source" Security property. If an
exception occurs while accessing the specified URL:
#
SHA1PRNG:
the traditional system/thread activity algorithm will be used.

#
#
#
NativePRNG:

a default value of /dev/random will be used. If neither
are available, the implementation will be disabled.

"file" is the only currently supported protocol type.

#

The entropy gathering device can also be specified with the System

property "java.security.egd". For example:

#

% java -Djava.security.egd=file:/dev/random MainClass

#

Specifying this System property will override the

"securerandom.source" Security property.

#

In addition, if "file:/dev/random" or "file:/dev/urandom" is

specified, the "NativePRNG" implementation will be more preferred than

SHA1PRNG in the IBMJCE provider.
#
securerandom.source=file:/dev/urandom

#

A list of known strong SecureRandom implementations.

#

To help guide applications in selecting a suitable strong

java.security.SecureRandom implementation, Java distributions should
indicate a list of known strong implementations using the property.

#

This is a comma-separated list of algorithm and/or algorithm:provider
entries.

#

securerandom.strongAlgorithms=SHA2DRBG:IBMJCE

#

Class to instantiate as the javax.security.auth.login.Configuration
provider.

#
login.configuration.provider=com.ibm.security.auth.login.ConfigFile

#

Default login configuration file

#
#login.config.url.1=file:${user.home}/.java.login.config

#

Class to instantiate as the system Policy. This is the name of the class
that will be used as the Policy object.

#

policy.provider=sun.security.provider.PolicyFile

The default is to have a single system-wide policy file,
and a policy file in the user's home directory.
policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${java.home}/lib/security/java.pol
policy.url.3=file:///${user.nome}/.java.policy

whether or not we expand properties in the policy file

if this is set to false, properties (${...}) will not be expanded in policy
files.

policy.expandProperties=true

whether or not we allow an extra policy to be passed on the command line
with -Djava.security.policy=somefile. Comment out this line to disable

this feature.

policy.allowSystemProperty=true

whether or not we look into the IdentityScope for trusted Identities
when encountering a 1.1 signed JAR file. If the identity is found

and is trusted, we grant it AllPermission.
policy.ignoreldentityScope=false

#

Default keystore type.
#

keystore.type=jks

#

Controls compatibility mode for the JKS keystore type.

#

When set to 'true’, the JKS keystore type supports loading

keystore files in either JKS or PKCS12 format. When set to 'false’
it supports loading only JKS keystore files.

#

keystore.type.compat=true

#
List of comma-separated packages that start with or equal this string
will cause a security exception to be thrown when
passed to checkPackageAccess unless the
corresponding RuntimePermission ("accessClassIinPackage."+package) has
been granted.
package.access=sun.,\
com.ibm.oti.,\
openj9.internal.,\
com.intel.fortress.,\
com.sun.xml.internal.,\
com.sun.imageio.,\
com.sun.istack.internal.,\
com.sun.jmx.,\
com.sun.media.sound. \
com.sun.naming.internal.,\
com.sun.proxy.,\
com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\

com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal. \
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils. \
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline.,\
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmlns.internal.,\
com.oracle.webservices.internal.,\
com.ibm.stax.,\

com.ibm.xml.jaxp.datatype.,\
com.ibm.xml.resolver.,\
com.ibm.xml.xIxp.api.event.,\
com.ibm.xml.xIxp.api.jaxp.impl.\
com.ibm.xml.xIxp.api.sax.impl.,\
com.ibm.xml.xIxp.api.stax.events.,\
com.ibm.xml.xIxp.api.stax.msg.,\
com.ibm.xml.xIxp.api.stax.serializer.,\
com.ibm.xml.xIxp.api.util.,\
com.ibm.xml.xIxp.scan.msg.,\
com.ibm.xml.xIxp.scan.util.,\
com.ibm.xtqg.ast.parsers.xpath.,\
com.ibm.xtqg.ast.parsers.xslt.,\
com.ibm.xtqg.ast.res.,\

com.ibm.xtg.ast.visit.,\

com.ibm.xtqg.bcel.,\
com.ibm.xtq.common.utils.,\
com.ibm.xtq.utils.,\
com.ibm.xtg.xml.datamodel.,\
com.ibm.xtg.xml.dtm.ref.sax2dtm.,\
com.ibm.xtg.xml.dtm.utils.,\
com.ibm.xtg.xml.experimental.,\
com.ibm.xtg.xml.res.,\
com.ibm.xtg.xml.types.,\

com.ibm.xtg.xml.unicode.normalize.,\
com.ibm.xtg.xml.utils.,\
com.ibm.xtg.xml.xdm.dom. \
com.ibm.xtg.xml.xdm.ref.,\
com.ibm.xtg.xml.xdm.res.,\
com.ibm.xtg.xpath.jaxp.,\
com.ibm.xtg.xslt.cmdline.\
com.ibm.xtqg.xslt.jaxp.interpreter.,\
com.ibm.xtqg.xslt.res.,\
com.ibm.xtqg.xslt.runtime.debug.,\
com.ibm.xtqg.xslt.runtime.output.\
com.ibm.xtg.xslt.runtime.res.,\
com.ibm.xtqg.xslt.runtime.v2.,\
com.ibm.xtqg.xslt.translator.v1.\
com.ibm.xtqg.xslt.translator.v2.\
com.ibm.xtqg.xslt.typechecker.,\
com.ibm.xtqg.xslt.xylem.autof. \
com.ibm.xtqg.xslt.xylem.codegen.,\
com.ibm.xtqg.xslt.xylem.interpreter.,\
com.ibm.xtqg.xslt.xylem.optimizers.,\
com.ibm.xtqg.xslt.xylem.parser.,\
com.ibm.xtqg.xslt.xylem.partialeval. \
com.ibm.xtqg.xslt.xylem.types.,\
com.ibm.xtqg.xslt.xylem.xpath20.analysis.,\
com.ibm.xtqg.xslt.xylem.xpath20.parser.,\
com.ibm.xtqg.xslt.xylem.xpath20.typesystem.,\
com.ibm.xylem.annot.meta.,\
com.ibm.xylem.builders.,\
com.ibm.xylem.codegen.,\
com.ibm.xylem.commandline. \
com.ibm.xylem.config.,\
com.ibm.xylem.drivers.,\
com.ibm.xylem.interpreter.,\
com.ibm.xylem.parser.,\
com.ibm.xylem.res.,\
com.ibm.xylem.types.,\
com.ibm.xylem.utils.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xerces.internal.dom.,\
com.sun.org.apache.xerces.internal.jaxp.,\
com.sun.org.apache.xerces.internal.parsers.,\
com.sun.org.apache.xpath.internal jaxp.,\
com.sun.xml.internal.stream.,\
org.apache.html.dom. \

org.apache.wml.\
org.apache.xalan.client.,\
org.apache.xalan.extensions.,\
org.apache.xalan.lib.sql.,\
org.apache.xalan.res.,\
org.apache.xalan.serialize. \
org.apache.xalan.templates.,\
org.apache.xalan.trace.,\
org.apache.xalan.transformer.,\
org.apache.xalan.xslt.,\
org.apache.xalan.xsltc.cmdline.,\
org.apache.xerces.dom.events.,\
org.apache.xerces.dom3.as.,\
org.apache.xerces.impl.dtd.,\
org.apache.xerces.impl.dv.util.,\
org.apache.xerces.impl.io.,\
org.apache.xerces.impl.msg.,\
org.apache.xerces.impl.validation. \
org.apache.xerces.impl.xpath.,\
org.apache.xerces.impl.xs.,\
org.apache.xerces.util.,\
org.apache.xerces.xinclude.,\
org.apache.xerces.xni.grammars.,\
org.apache.xerces.xpointer.,\
org.apache.xerces.xs.datatypes.,\
org.apache.xml.dtm.ref.dom2dtm. \
org.apache.xml.dtm.ref.sax2dtm.,\
org.apache.xml.res.,\
org.apache.xml.serializer.charmap.,\
org.apache.xml.serializer.dom3.\
org.apache.xml.serializer.unicode. \
org.apache.xml.serializer.utils.,\
org.apache.xml.utils.,\
org.apache.xmlcommons.,\
org.apache.xpath.axes.,\
org.apache.xpath.compiler.,\
org.apache.xpath.functions.,\
org.apache.xpath.objects.,\
org.apache.xpath.operations.,\
org.apache.xpath.patterns.,\
org.apache.xpath.res.,\
oracle.jrockit.jfr.,\
org.jcp.xml.dsig.internal. \
com.ibm.rmi.channel.,\

com.ibm.rmi.corba.,\
com.ibm.rmi.iiop.,\
com.ibm.rmi.io.\
com.ibm.rmi.pi.,\
com.ibm.rmi.poa.,\
com.ibm.rmi.ras.,\
com.ibm.rmi.transport.\
com.ibm.rmi.util.,\
com.ibm.CORBA.channel.orb.,\
com.ibm.CORBA.iiop.,\
com.ibm.CORBA.nio.,\
com.ibm.CORBA.poa.,\
com.ibm.CORBA.transport.,\
jdk.internal.,\
jdk.nashorn.internal.,\
jdk.nashorn.tools. \
jdk.xml.internal.,\
com.sun.activation.registries.,\
com.sun.browser. \
com.sun.glass.,\
com.sun.javafx.,\
com.sun.media.,\
com.sun.openpisces.,\
com.sun.prism.,\
com.sun.scenario.,\
com.sun.t2k.,\
com.sun.pisces.,\
com.sun.webkit.,\
jdk.management.resource.internal.

#
List of comma-separated packages that start with or equal this string
will cause a security exception to be thrown when
passed to checkPackageDefinition unless the
corresponding RuntimePermission ("defineClassIinPackage."+package) has
been granted.
#
by default, none of the class loaders supplied with the JDK call
checkPackageDefinition.
#
package.definition=sun.,\
com.sun.xml.internal.\
com.sun.imageio.,\
com.sun.istack.internal. \

com.sun.jmx.,\

com.sun.media.sound.,\
com.sun.naming.internal.,\

com.sun.proxy.,\

com.sun.corba.se.,\
com.sun.org.apache.bcel.internal.,\
com.sun.org.apache.regexp.internal.,\
com.sun.org.apache.xerces.internal.,\
com.sun.org.apache.xpath.internal.,\
com.sun.org.apache.xalan.internal.extensions.,\
com.sun.org.apache.xalan.internal.lib.,\
com.sun.org.apache.xalan.internal.res.,\
com.sun.org.apache.xalan.internal.templates.,\
com.sun.org.apache.xalan.internal.utils.,\
com.sun.org.apache.xalan.internal.xslt.,\
com.sun.org.apache.xalan.internal.xsltc.cmdline. \
com.sun.org.apache.xalan.internal.xsltc.compiler.,\
com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xalan.internal.xsltc.util.,\
com.sun.org.apache.xml.internal.res.,\
com.sun.org.apache.xml.internal.security.,\
com.sun.org.apache.xml.internal.serializer.utils.,\
com.sun.org.apache.xml.internal.utils.,\
com.sun.org.glassfish.,\
com.oracle.xmins.internal.,\
com.oracle.webservices.internal.,\
com.ibm.stax.,\

com.ibm.xml.jaxp.datatype.,\
com.ibm.xml.resolver.,\
com.ibm.xml.xIxp.api.event.\
com.ibm.xml.xIxp.api.jaxp.impl.,\
com.ibm.xml.xIxp.api.sax.impl.,\
com.ibm.xml.xIxp.api.stax.events.,\
com.ibm.xml.xIxp.api.stax.msg.,\
com.ibm.xml.xIxp.api.stax.serializer.,\
com.ibm.xml.xIxp.api.util.,\
com.ibm.xml.xIxp.scan.msg.,\
com.ibm.xml.xIxp.scan.util. \
com.ibm.xtqg.ast.parsers.xpath.,\
com.ibm.xtqg.ast.parsers.xslt.,\
com.ibm.xtqg.ast.res.,\

com.ibm.xtg.ast.visit.,\

com.ibm.xtqg.bcel.,\
com.ibm.xtg.common.utils.,\

com.ibm.xtq.utils.,\
com.ibm.xtg.xml.datamodel. \
com.ibm.xtg.xml.dtm.ref.sax2dtm.\
com.ibm.xtg.xml.dtm.utils.,\
com.ibm.xtg.xml.experimental.,\
com.ibm.xtg.xml.res.,\
com.ibm.xtg.xml.types.,\
com.ibm.xtg.xml.unicode.normalize.,\
com.ibm.xtg.xml.utils.,\
com.ibm.xtg.xml.xdm.dom. \
com.ibm.xtg.xml.xdm.ref. \
com.ibm.xtg.xml.xdm.res. \
com.ibm.xtg.xpath.jaxp.,\
com.ibm.xtg.xslt.cmdline.,\
com.ibm.xtqg.xslt.jaxp.interpreter.,\
com.ibm.xtqg.xslt.res.,\
com.ibm.xtqg.xslt.runtime.debug.,\
com.ibm.xtqg.xslt.runtime.output.\
com.ibm.xtqg.xslt.runtime.res.,\
com.ibm.xtg.xslt.runtime.v2.,\
com.ibm.xtqg.xslt.translator.v1.,\
com.ibm.xtqg.xslt.translator.v2.\
com.ibm.xtq.xslt.typechecker.,\
com.ibm.xtqg.xslt.xylem.autof. \
com.ibm.xtqg.xslt.xylem.codegen.,\
com.ibm.xtqg.xslt.xylem.interpreter.,\
com.ibm.xtqg.xslt.xylem.optimizers.,\
com.ibm.xtqg.xslt.xylem.parser.,\
com.ibm.xtqg.xslt.xylem.partialeval. \
com.ibm.xtqg.xslt.xylem.types.,\
com.ibm.xtqg.xslt.xylem.xpath20.analysis.,\
com.ibm.xtqg.xslt.xylem.xpath20.parser.,\
com.ibm.xtqg.xslt.xylem.xpath20.typesystem.,\
com.ibm.xylem.annot.meta.,\
com.ibm.xylem.builders.,\
com.ibm.xylem.codegen.,\
com.ibm.xylem.commandline.,\
com.ibm.xylem.config.,\
com.ibm.xylem.drivers.,\
com.ibm.xylem.interpreter.,\
com.ibm.xylem.parser.,\
com.ibm.xylem.res.,\
com.ibm.xylem.types.,\
com.ibm.xylem.utils.,\

com.sun.org.apache.xalan.internal.xsltc.trax.,\
com.sun.org.apache.xerces.internal.dom.,\
com.sun.org.apache.xerces.internal.jaxp.,\
com.sun.org.apache.xerces.internal.parsers.,\
com.sun.org.apache.xpath.internal.jaxp.,\
com.sun.xml.internal.stream.,\
org.apache.html.dom.\
org.apache.wml.\
org.apache.xalan.client.,\
org.apache.xalan.extensions.,\
org.apache.xalan.lib.sql.\
org.apache.xalan.res.,\
org.apache.xalan.serialize.,\
org.apache.xalan.templates.,\
org.apache.xalan.trace.,\
org.apache.xalan.transformer.,\
org.apache.xalan.xslt.,\
org.apache.xalan.xsltc.cmdline.,\
org.apache.xerces.dom.events.,\
org.apache.xerces.dom3.as.,\
org.apache.xerces.impl.dtd.,\
org.apache.xerces.impl.dv.util. \
org.apache.xerces.impl.io.,\
org.apache.xerces.impl.msg.,\
org.apache.xerces.impl.validation. \
org.apache.xerces.impl.xpath.,\
org.apache.xerces.impl.xs.,\
org.apache.xerces.util.,\
org.apache.xerces.xinclude.,\
org.apache.xerces.xni.grammars.,\
org.apache.xerces.xpointer.,\
org.apache.xerces.xs.datatypes.,\
org.apache.xml.dtm.ref.dom2dtm. \
org.apache.xml.dtm.ref.sax2dtm.,\
org.apache.xml.res.,\
org.apache.xml.serializer.charmap.,\
org.apache.xml.serializer.dom3.\
org.apache.xml.serializer.unicode. \
org.apache.xml.serializer.utils.,\
org.apache.xml.utils.,\
org.apache.xmlcommons.,\
org.apache.xpath.axes.,\
org.apache.xpath.compiler.,\
org.apache.xpath.functions.,\

org.apache.xpath.objects.,\
org.apache.xpath.operations.,\
org.apache.xpath.patterns.,\
org.apache.xpath.res.,\
oracle.jrockit.jfr.,\
org.jcp.xml.dsig.internal.,\
jdk.internal. \
jdk.nashorn.internal.,\
jdk.nashorn.tools.,\
jdk.xml.internal.,\
com.sun.activation.registries.,\
com.sun.browser.,\
com.sun.glass.,\
com.sun.javafx.,\
com.sun.media.,\
com.sun.openpisces.,\
com.sun.prism.,\
com.sun.scenario.,\
com.sun.t2k.,\
com.sun.pisces.,\
com.sun.webkit.,\
jdk.management.resource.internal.

#

Determines whether this properties file can be appended to

or overridden on the command line via -Djava.security.properties
#

security.overridePropertiesFile=true

#

Determines the default key and trust manager factory algorithms for
the javax.net.ssl package.

#

ssl.KeyManagerFactory.algorithm=lbmX509
ssl.TrustManagerFactory.algorithm=PKIX

#

Other key and trust manager factory providers.

#

IBM i5/0OS key and trust manager factory

ssl.KeyManagerFactory.algorithm=IbmISeriesX509
ssl.TrustManagerFactory.algorithm=lbmISeriesX509

IBM i5/0S SSL socket factory and SSL server socket factory providers

ssl.SocketFactory.provider=com.ibm.i50s.jsse.JSSESocketFactory
ssl.ServerSocketFactory.provider=com.ibm.i50s.jsse.JSSEServerSocketFactory

#

The Java-level namelookup cache policy for successful lookups:

#

any negative value: caching forever

any positive value: the number of seconds to cache an address for
zero: do not cache

#

default value is forever (FOREVER). For security reasons, this

caching is made forever when a security manager is set. When a security
manager is not set, the default behavior in this implementation

is to cache for 30 seconds.

#

NOTE: setting this to anything other than the default value can have
serious security implications. Do not set it unless

you are sure you are not exposed to DNS spoofing attack.

#

#networkaddress.cache.ttl=-1

The Java-level namelookup cache policy for failed lookups:

#

any negative value: cache forever

any positive value: the number of seconds to cache negative lookup results
zero: do not cache

#

In some Microsoft Windows networking environments that employ

the WINS name service in addition to DNS, name service lookups

that fail may take a noticeably long time to return (approx. 5 seconds).
For this reason the default caching policy is to maintain these

results for 10 seconds.

#

#

networkaddress.cache.negative.ttl=10

#
Properties to configure OCSP for certificate revocation checking
#

Enable OCSP

#

By default, OCSP is not used for certificate revocation checking.

This property enables the use of OCSP when set to the value "true".

#

NOTE: SocketPermission is required to connect to an OCSP responder.
#

Example,

ocsp.enable=true

#

Location of the OCSP responder

#

By default, the location of the OCSP responder is determined implicitly
from the certificate being validated. This property explicitly specifies

the location of the OCSP responder. The property is used when the

Authority Information Access extension (defined in RFC 3280) is absent
from the certificate or when it requires overriding.

#

Example,

ocsp.responderURL=http://ocsp.example.net:80

#

Subject name of the OCSP responder's certificate

#

By default, the certificate of the OCSP responder is that of the issuer

of the certificate being validated. This property identifies the certificate

of the OCSP responder when the default does not apply. Its value is a string
distinguished name (defined in RFC 2253) which identifies a certificate in

the set of certificates supplied during cert path validation. In cases where

the subject name alone is not sufficient to uniquely identify the certificate

then both the "ocsp.responderCertlssuerName" and

"ocsp.responderCertSerialNumber" properties must be used instead. When this
property is set then those two properties are ignored.

#

Example,

ocsp.responderCertSubjectName="CN=0CSP Responder, O=XYZ Corp"

#

Issuer name of the OCSP responder's certificate

#

By default, the certificate of the OCSP responder is that of the issuer

of the certificate being validated. This property identifies the certificate

of the OCSP responder when the default does not apply. Its value is a string

distinguished name (defined in RFC 2253) which identifies a certificate in

the set of certificates supplied during cert path validation. When this

property is set then the "ocsp.responderCertSerialNumber" property must also
be set. When the "ocsp.responderCertSubjectName" property is set then this

property is ignored.

#

Example,

ocsp.responderCertlssuerName="CN=Enterprise CA, O=XYZ Corp"

#

Serial number of the OCSP responder's certificate

#

By default, the certificate of the OCSP responder is that of the issuer

of the certificate being validated. This property identifies the certificate

of the OCSP responder when the default does not apply. Its value is a string

of hexadecimal digits (colon or space separators may be present) which

identifies a certificate in the set of certificates supplied during cert path

validation. When this property is set then the "ocsp.responderCertlssuerName"
property must also be set. When the "ocsp.responderCertSubjectName" property
is set then this property is ignored.

#

Example,

ocsp.responderCertSerialNumber=2A:FF:00

#

Policy for failed Kerberos KDC lookups:

#

When a KDC is unavailable (network error, service failure, etc), it is

put inside a blacklist and accessed less often for future requests. The
value (case-insensitive) for this policy can be:

#

tryLast

KDCs in the blacklist are always tried after those not on the list.

#

tryLess[:max_retries,timeout]

KDCs in the blacklist are still tried by their order in the configuration,

but with smaller max_retries and timeout values. max_retries and timeout
are optional numerical parameters (default 1 and 5000, which means once
and 5 seconds). Please notes that if any of the values defined here is

more than what is defined in krb5.conf, it will be ignored.

#

Whenever a KDC is detected as available, it is removed from the blacklist.
The blacklist is reset when krb5.conf is reloaded. You can add

refreshKrb5Config=true to a JAAS configuration file so that krb5.conf is

reloaded whenever a JAAS authentication is attempted.

#

Example,

krb5.kdc.bad.policy = tryLast

krb5.kdc.bad.policy = tryLess:2,2000
krb5.kdc.bad.policy = tryLast

#

This property contains a list of disabled EC Named Curves that can be included

in the jdk.[tls|certpath]|jar].disabledAlgorithms properties. To include this

list in any of the disabledAlgorithms properties, add the property name as

an entry.

jdk.disabled.namedCurves = secp112r1, secp112r2, secp128r1, secp128r2, \
secp160k1, secp160r1, secp160r2, secp192k1, secp192r1, secp224k1, \
secp224r1, secp256k1, sect113r1, sect113r2, sect131r1, sect131r2, \
sect163k1, sect163r1, sect163r2, sect193r1, sect193r2, sect233k1, \
sect233r1, sect239k1, sect283k1, sect283r1, sect409k1, sect409r1, \
sect571k1, sect571r1, X9.62 c2tnb191v1, X9.62 c2tnb191v2, \
X9.62 c2tnb191v3, X9.62 c2tnb239v1, X9.62 c2tnb239v2, X9.62 c2tnb239v3, \
X9.62 c2tnb359v1, X9.62 c2tnb431r1, X9.62 prime192v2, X9.62 prime192v3, \
X9.62 prime239v1, X9.62 prime239v2, X9.62 prime239v3, brainpoolP256r1, \
brainpoolP320r1, brainpoolP384r1, brainpoolP512r1

Algorithm restrictions for certification path (CertPath) processing

#

In some environments, certain algorithms or key lengths may be undesirable
for certification path building and validation. For example, "MD2" is

generally no longer considered to be a secure hash algorithm. This section

describes the mechanism for disabling algorithms based on algorithm name
and/or key length. This includes algorithms used in certificates, as well

as revocation information such as CRLs and signed OCSP Responses.

The syntax of the disabled algorithm string is described as follows:

DisabledAlgorithms:

" DisabledAlgorithm {, DisabledAlgorithm } "

DisabledAlgorithm:
AlgorithmName [Constraint] { '& Constraint } | IncludeProperty

AlgorithmName:
(see below)

Constraint:
KeySizeConstraint | CAConstraint | DenyAfterConstraint |
UsageConstraint

KeySizeConstraint:
keySize Operator KeyLength

H o H HHHHHHHHEHH

Operator:
<=|<|==|!:|>:|>

KeyLength:
Integer value of the algorithm's key length in bits

CAConstraint:
jdkCA

DenyAfterConstraint:
denyAfter YYYY-MM-DD

UsageConstraint:
usage [TLSServer] [TLSClient] [SignedJAR]

IncludeProperty:
include <security property>

H HHFHHHFHFHHHFHHHFH TR

#

The "AlgorithmName" is the standard algorithm name of the disabled

algorithm. See "Java Cryptography Architecture Standard Algorithm Name

Documentation” for information about Standard Algorithm Names. Matching
is performed using a case-insensitive sub-element matching rule. (For

example, in "SHA1withECDSA" the sub-elements are "SHA1" for hashing and
"ECDSA" for signatures.) If the assertion "AlgorithmName" is a

sub-element of the certificate algorithm name, the algorithm will be

rejected during certification path building and validation. For example,

the assertion algorithm name "DSA" will disable all certificate algorithms

that rely on DSA, such as NONEwithDSA, SHA1withDSA. However, the assertion
will not disable algorithms related to "ECDSA".

#

The "IncludeProperty" allows a implementation-defined security property that
can be included in the disabledAlgorithms properties. These properties are
to help manage common actions easier across multiple disabledAlgorithm

properties.

There is one defined security property: jdk.disabled.NamedCurves

See the property for more specific details.

#

#

A "Constraint" defines restrictions on the keys and/or certificates for

a specified AlgorithmName:

#

KeySizeConstraint:

keySize Operator KeyLength

The constraint requires a key of a valid size range if the

HHFEHHFHAFAHFHFTHHFTHRAFAHFHEAFHFEHAFTHFHAFHFRHFAFTFRHFFTHRHFEHEFEHFEHFHF S H A HHH

"AlgorithmName" is of a key algorithm. The "KeyLength" indicates

the key size specified in number of bits. For example,

"RSA keySize <= 1024" indicates that any RSA key with key size less
than or equal to 1024 bits should be disabled, and

"RSA keySize < 1024, RSA keySize > 2048" indicates that any RSA key
with key size less than 1024 or greater than 2048 should be disabled.
This constraint is only used on algorithms that have a key size.

CAConstraint:
jdkCA

This constraint prohibits the specified algorithm only if the
algorithm is used in a certificate chain that terminates at a marked
trust anchor in the lib/security/cacerts keystore. If the jdkCA
constraint is not set, then all chains using the specified algorithm
are restricted. jdkCA may only be used once in a DisabledAlgorithm
expression.
Example: To apply this constraint to SHA-1 certificates, include
the following: "SHA1 jdkCA"

DenyAfterConstraint:
denyAfter YYYY-MM-DD

This constraint prohibits a certificate with the specified algorithm
from being used after the date regardless of the certificate's
validity. JAR files that are signed and timestamped before the
constraint date with certificates containing the disabled algorithm
will not be restricted. The date is processed in the UTC timezone.
This constraint can only be used once in a DisabledAlgorithm
expression.
Example: To deny usage of RSA 2048 bit certificates after Feb 3 2020,
use the following: "RSA keySize == 2048 & denyAfter 2020-02-03"

UsageConstraint:
usage [TLSServer] [TLSClient] [SignedJAR]
This constraint prohibits the specified algorithm for
a specified usage. This should be used when disabling an algorithm
for all usages is not practical. 'TLSServer' restricts the algorithm
in TLS server certificate chains when server authentication is
performed. 'TLSClient' restricts the algorithm in TLS client
certificate chains when client authentication is performed.
'SignedJAR' constrains use of certificates in signed jar files.
The usage type follows the keyword and more than one usage type can
be specified with a whitespace delimiter.
Example: "SHA1 usage TLSServer TLSClient"

When an algorithm must satisfy more than one constraint, it must be

delimited by an ampersand '&'. For example, to restrict certificates in a

chain that terminate at a distribution provided trust anchor and contain

RSA keys that are less than or equal to 1024 bits, add the following

constraint: "RSA keySize <= 1024 & jdkCA".

#

All DisabledAlgorithms expressions are processed in the order defined in the

property. This requires lower keysize constraints to be specified

before larger keysize constraints of the same algorithm. For example:

"RSA keySize < 1024 & jdkCA, RSA keySize < 2048".

#

Note: The algorithm restrictions do not apply to trust anchors or

self-signed certificates.

#

Note: This property is currently used by Oracle's PKIX implementation. It

is not guaranteed to be examined and used by other implementations.

#

Example:

jdk.certpath.disabledAlgorithms=MD2, DSA, RSA keySize < 2048

#

#

jdk.certpath.disabledAlgorithms=MD2, MD5, SHA1 jdkCA & usage TLSServer, \
RSA keySize < 1024, DSA keySize < 1024, EC keySize < 224, \
include jdk.disabled.namedCurves

#

Legacy algorithms for certification path (CertPath) processing and

signed JAR files.

#

In some environments, a certain algorithm or key length may be undesirable
but is not yet disabled.

#

Tools such as keytool and jarsigner may emit warnings when these legacy
algorithms are used. See the man pages for those tools for more information.
#

The syntax is the same as the "jdk.certpath.disabledAlgorithms" and

"jdk.jar.disabledAlgorithms" security properties.

#

Note: This property is currently used by the JDK Reference

implementation. It is not guaranteed to be examined and used by other

implementations.

jdk.security.legacyAlgorithms=SHA1, \
RSA keySize < 2048, DSA keySize < 2048

#

Algorithm restrictions for signed JAR files

#

In some environments, certain algorithms or key lengths may be undesirable
for signed JAR validation. For example, "MD2" is generally no longer

considered to be a secure hash algorithm. This section describes the

mechanism for disabling algorithms based on algorithm name and/or key length.
JARs signed with any of the disabled algorithms or key sizes will be treated
as unsigned.

#

The syntax of the disabled algorithm string is described as follows:

DisabledAlgorithms:

" DisabledAlgorithm { , DisabledAlgorithm } "

DisabledAlgorithm:
AlgorithmName [Constraint] { '&" Constraint }

AlgorithmName:
(see below)

Constraint:
KeySizeConstraint | DenyAfterConstraint

KeySizeConstraint:
keySize Operator KeylLength

DenyAfterConstraint:
denyAfter YYYY-MM-DD

Operator:
<=|<|==|!:|>=|>

KeyLength:
Integer value of the algorithm's key length in bits

H HHHHHHFHHHFHHHEHFHHFHHHEHH A

#
Note: This property is currently used by the JDK Reference
implementation. It is not guaranteed to be examined and used by other
implementations.
#
See "jdk.certpath.disabledAlgorithms" for syntax descriptions.
#
jdk.jar.disabledAlgorithms=MD2, MD5, RSA keySize < 1024, \
DSA keySize < 1024, include jdk.disabled.namedCurves

#
Algorithm restrictions for Secure Socket Layer/Transport Layer Security
(SSL/TLS) processing
#
In some environments, certain algorithms or key lengths may be undesirable
when using SSL/TLS. This section describes the mechanism for disabling
algorithms during SSL/TLS security parameters negotiation, including
protocol version negotiation, cipher suites selection, signature schemes
selection, peer authentication and key exchange mechanisms.
#
Disabled algorithms will not be negotiated for SSL/TLS connections, even
if they are enabled explicitly in an application.
#
For PKIl-based peer authentication and key exchange mechanisms, this list
of disabled algorithms will also be checked during certification path
building and validation, including algorithms used in certificates, as
well as revocation information such as CRLs and signed OCSP Responses.
This is in addition to the jdk.certpath.disabledAlgorithms property above.
#
See the specification of "jdk.certpath.disabledAlgorithms" for the
syntax of the disabled algorithm string.
#
Note: The algorithm restrictions do not apply to trust anchors or
self-signed certificates.
#
Note: This property is currently used by the JDK Reference implementation.
It is not guaranteed to be examined and used by other implementations.
#
Example:
jdk.tls.disabledAlgorithms=MD5, SSLv3, DSA, RSA keySize < 2048, \
rsa_pkcs1_sha1
jdk.tls.disabledAlgorithms=SSLv3, TLSv1, TLSv1.1, RC4, DES, MD5withRSA, DH keySize <
1024, DESede, \

EC keySize < 224, 3DES_EDE_CBC, anon, NULL, DES_CBC, \

include jdk.disabled.namedCurves

Legacy algorithms for Secure Socket Layer/Transport Layer Security (SSL/TLS)
processing in JSSE implementation.

#

In some environments, a certain algorithm may be undesirable but it

cannot be disabled because of its use in legacy applications. Legacy

algorithms may still be supported, but applications should not use them

as the security strength of legacy algorithms are usually not strong enough
in practice.

#

During SSL/TLS security parameters negotiation, legacy algorithms will

not be negotiated unless there are no other candidates.

#

The syntax of the legacy algorithms string is described as this Java

BNF-style:

LegacyAlgorithms:

" LegacyAlgorithm {, LegacyAlgorithm } "

#

LegacyAlgorithm:

AlgorithmName (standard JSSE algorithm name)

#

See the specification of security property "jdk.certpath.disabledAlgorithms"
for the syntax and description of the "AlgorithmName" notation.

#

Cipher suites have the form:

SSL_KeyExchangeAlg_WITH_CipherAlg_MacAlg

#

For example, the cipher suite SSL_RSA WITH_AES 128 CBC_SHA uses RSA as the
key exchange algorithm, AES_128 CBC (128 bits AES cipher algorithm in CBC
mode) as the cipher (encryption) algorithm, and SHA-1 as the message digest
algorithm for HMAC.

#

The LegacyAlgorithm can be one of the following standard algorithm names:
1. JSSE cipher suite name, e.g., SSL_RSA WITH_AES_ 128 CBC_SHA
2. JSSE key exchange algorithm name, e.g., RSA

3. JSSE cipher (encryption) algorithm name, e.g., AES 128 CBC

4. JSSE message digest algorithm name, e.g., SHA

#

See SSL/TLS specifications and "Java Cryptography Architecture Standard
Algorithm Name Documentation" for information about the algorithm names.
#

Note: This property is currently used by the JDK Reference implementation.
It is not guaranteed to be examined and used by other implementations.

There is no guarantee the property will continue to exist or be of the

same syntax in future releases.

#

Example:

jdk.tls.legacyAlgorithms=DH_anon, DES_CBC, SSL_RSA_WITH_RC4_128 MD5
#

jdk.tls.legacyAlgorithms=\

K_NULL, C_NULL, M_NULL,\
DH_anon, ECDH_anon, \
RC4 128, RC4_40, DES_CBC, DES40 _CBC

The pre-defined default finite field Diffie-Hellman ephemeral (DHE)
parameters for Transport Layer Security (SSL/TLS/DTLS) processing.
#
In traditional SSL/TLS/DTLS connections where finite field DHE parameters
negotiation mechanism is not used, the server offers the client group
parameters, base generator g and prime modulus p, for DHE key exchange.
It is recommended to use dynamic group parameters. This property defines
a mechanism that allows you to specify custom group parameters.
#
The syntax of this property string is described as this Java BNF-style:
DefaultDHEParameters:

DefinedDHEParameters { , DefinedDHEParameters }

H*

DefinedDHEParameters:
"{" DHEPrimeModulus , DHEBaseGenerator "}"

DHEPrimeModulus:
HexadecimalDigits

DHEBaseGenerator:
HexadecimalDigits

HexadecimalDigits:
HexadecimalDigit { HexadecimalDigit }

HexadecimalDigit: one of
0123456789ABCDEFabcdef

H HHHEHHFHHHHHHHHHH

#

Whitespace characters are ignored.

#

The "DefinedDHEParameters" defines the custom group parameters, prime
modulus p and base generator g, for a particular size of prime modulus p.

The "DHEPrimeModulus" defines the hexadecimal prime modulus p, and the
"DHEBaseGenerator" defines the hexadecimal base generator g of a group
parameter. It is recommended to use safe primes for the custom group

parameters.

#

If this property is not defined or the value is empty, the underlying JSSE

provider's default group parameter is used for each connection.

#

If the property value does not follow the grammar, or a particular group

parameter is not valid, the connection will fall back and use the

underlying JSSE provider's default group parameter.

#

Note: This property is currently used by OpenJDK's JSSE implementation. It
is not guaranteed to be examined and used by other implementations.

#

Example:

jdk.tls.server.defaultDHEParameters=

{\

FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1\
29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD \
EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245 \
E485B576 625E7EC6 F44C42E9 A637ED6B OBFF5CB6 F406B7ED \
EE386BFB 5A899FA5 AE9F2411 7C4B1FEG6 49286651 ECE65381 \
FFFFFFFF FFFFFFFF, 2}

H o HF H H H*

Cryptographic Jurisdiction Policy defaults

#

Import and export control rules on cryptographic software vary from
country to country. By default, the JDK provides two different sets of
cryptographic policy files:

#

unlimited: These policy files contain no restrictions on cryptographic
strengths or algorithms.

#

limited: These policy files contain more restricted cryptographic

strengths, and are still available if your country or

usage requires the traditional restrictive policy.

#

The JDK JCE framework uses the unlimited policy files by default.

However the user may explicitly choose a set either by defining the

"crypto.policy" Security property or by installing valid JCE policy

jar files into the traditional JDK installation location. To better

support older JDK Update releases, the "crypto.policy" property is not
defined by default. See below for more information.

#

The following logic determines which policy files are used:

#

<java-home> refers to the directory where the JRE was

installed and may be determined using the "java.home"

System property.
#
#

1. If the Security property "crypto.policy" has been defined,

then the following mechanism is used:

#

The policy files are stored as jar files in subdirectories of

<java-home>/lib/security/policy. Each directory contains a complete
set of policy files.

#

The "crypto.policy" Security property controls the directory

selection, and thus the effective cryptographic policy.

#

The default set of directories is:
#

limited | unlimited

#

2. If the "crypto.policy" property is not set and the traditional

US_export_policy.jar and local_policy.jar files

(e.g. limited/unlimited) are found in the legacy

<java-home>/lib/security directory, then the rules embedded within

those jar files will be used. This helps preserve compatibility

for users upgrading from an older installation.

#

3. If the jar files are not present in the legacy location

and the "crypto.policy" Security property is not defined,

then the JDK will use the unlimited settings (equivalent to

crypto.policy=unlimited)

#

Please see the JCA documentation for additional information on these

files and formats.

#

YOU ARE ADVISED TO CONSULT YOUR EXPORT/IMPORT CONTROL COUNSEL OR
ATTORNEY

TO DETERMINE THE EXACT REQUIREMENTS.

#

Please note that the JCE for Java SE, including the JCE framework,

cryptographic policy files, and standard JCE providers provided with

the Java SE, have been reviewed and approved for export as mass market
encryption item by the US Bureau of Industry and Security.

#

Note: This property is currently used by the JDK Reference implementation.
It is not guaranteed to be examined and used by other implementations.

#

#crypto.policy=unlimited

CORBA ORBIlorTypeCheckRegistryFilter
Type check enhancement for ORB::string_to_object processing

#

An IOR type check filter, if configured, is used by an ORB during

an ORB::string_to_object invocation to check the veracity of the type encoded
in the ior string.

#

The filter pattern consists of a semi-colon separated list of class hames.

The configured list contains the binary class names of the IDL interface types
corresponding to the IDL stub class to be instantiated.

As such, a filter specifies a list of IDL stub classes that will be

allowed by an ORB when an ORB::string_to_obiject is invoked.

It is used to specify a white list configuration of acceptable

IDL stub types which may be contained in a stringified IOR

parameter passed as input to an ORB::string_to_object method.

#

Note: This property is currently used by the JDK Reference implementation.

It is not guaranteed to be examined and used by other implementations.

#
#com.sun.CORBA.ORBIlorTypeCheckRegistryFilter=binary_class_name;binary_class_name

#

JCEKS Encrypted Key Serial Filter

#

This filter, if configured, is used by the JCEKS KeyStore during the

deserialization of the encrypted Key object stored inside a key entry.

If not configured or the filter result is UNDECIDED (i.e. none of the patterns

matches), the filter configured by jdk.serialFilter will be consulted.

#

If the system property jceks.key.serialFilter is also specified, it supersedes

the security property value defined here.

#

The filter pattern uses the same format as jdk.serialFilter. The default

pattern allows javax.crypto.spec.SecretKeySpec, javax.security.auth.kerberos.”,

com.ibm.crypto.provider.*, com.ibm.crypto.fips.provider.*, com.ibm.crypto.plus.provider.*,

com.ibm.security.x509.*, java.math.BiglInteger;,

and java.lang.Number and rejects all the others.

jceks.key.serialFilter = javax.crypto.spec.SecretKeySpec;\
javax.security.auth.kerberos.*;com.ibm.crypto.provider.*;\
com.ibm.crypto.fips.provider.*;com.ibm.crypto.plus.provider.*;\
com.ibm.security.x509.*;java.math.BigInteger;java.lang.Number;\
java.lang.Enum;java.security.KeyRep;java.security.KeyRep$ Type;!*

#

Disabled mechanisms for the Simple Authentication and Security Layer (SASL)

#

Disabled mechanisms will not be negotiated by both SASL clients and servers.

These mechanisms will be ignored if they are specified in the "mechanisms"
argument of "Sasl.createSaslIClient" or the "mechanism" argument of

"Sasl.createSaslServer".

#

The value of this property is a comma-separated list of SASL mechanisms.
The mechanisms are case-sensitive. Whitespaces around the commas are ignored.
#

Note: This property is currently used by the JDK Reference implementation.
It is not guaranteed to be examined and used by other implementations.

#

Example:

jdk.sasl.disabledMechanisms=PLAIN, CRAM-MD5, DIGEST-MD5
jdk.sasl.disabledMechanisms=

#

Policies for distrusting Certificate Authorities (CAs).

#

This is a comma separated value of one or more case-sensitive strings, each
of which represents a policy for determining if a CA should be distrusted.

The supported values are:

#

SYMANTEC_TLS : Distrust TLS Server certificates anchored by a Symantec
root CA and issued after April 16, 2019 unless issued by one of the

following subordinate CAs which have a later distrust date:

1. Apple IST CA 2 - G1, SHA-256 fingerprint:

AC2B922ECFD5E01711772FEASED372DE9D1E2245FCE3F57A9CDBEC77296A424B
Distrust after December 31, 2019.

2. Apple IST CA 8 - G1, SHA-256 fingerprint:

A4FE7C7F15155F3FOAEF7AAA83CF6EO6DEB97CA3F909DF920AC1490882D488ED
Distrust after December 31, 2019.

#

Leading and trailing whitespace surrounding each value are ignored.

Unknown values are ignored. If the property is commented out or set to the

empty String, no policies are enforced.

#

Note: This property is currently used by the JDK Reference implementation.

It is not guaranteed to be supported by other SE implementations. Also, this

property does not override other security properties which can restrict

certificates such as jdk.tls.disabledAlgorithms or

jdk.certpath.disabledAlgorithms; those restrictions are still enforced even

if this property is not enabled.

#

jdk.security.caDistrustPolicies=SYMANTEC_TLS

#
Policies for the proxy_impersonator Kerberos ccache configuration entry
#
The proxy_impersonator ccache configuration entry indicates that the ccache
is a synthetic delegated credential for use with S4U2Proxy by an intermediate
server. The ccache file should also contain the TGT of this server and
an evidence ticket from the default principal of the ccache to this server.
#
This security property determines how Java uses this configuration entry.
There are 3 possible values:
#

no-impersonate - Ignore this configuration entry, and always act as

the owner of the TGT (if it exists).

#

#

#

try-impersonate - Try impersonation when this configuration entry exists.
If no matching TGT or evidence ticket is found,

fallback to no-impersonate.
#
#
#
#
#

always-impersonate - Always impersonate when this configuration entry exists.
If no matching TGT or evidence ticket is found,
no initial credential is read from the ccache.

The default value is "always-impersonate".

#

If a system property of the same name is also specified, it supersedes the
security property value defined here.

#

#jdk.security.krb5.default.initiate.credential=always-impersonate

#

JNDI Object Factories Filter

#

This filter is used by the JNDI runtime to control the set of object factory classes
which will be allowed to instantiate objects from object references returned by

naming/directory systems. The factory class named by the reference instance will be
matched against this filter. The filter property supports pattern-based filter syntax
with the same format as jdk.serialFilter.

#

Each pattern is matched against the factory class name to allow or disallow it's
instantiation. The access to a factory class is allowed unless the filter returns

REJECTED.

#

Note: This property is currently used by the JDK Reference implementation.

It is not guaranteed to be examined and used by other implementations.

#

If the system property jdk.jndi.object.factoriesFilter is also specified, it supersedes
the security property value defined here. The default value of the property is "*".

#

The default pattern value allows any object factory class specified by the reference
instance to recreate the referenced object.

#jdk.jndi.object.factoriesFilter="

#
The default Character set name (java.nio.charset.Charset.forName())
for converting TLS ALPN values between byte arrays and Strings.
Prior versions of the JDK may use UTF-8 as the default charset. If
you experience interoperability issues, setting this property to UTF-8
may help.
#
jdk.tls.alpnCharset=UTF-8
jdk.tls.alpnCharset=1SO_8859 1
#
The policy for the XML Signature secure validation mode. The mode is
enabled by setting the property "org.jcp.xml.dsig.secureValidation" to
true with the javax.xml.crypto.XMLCryptoContext.setProperty() method,
or by running the code with a SecurityManager.
#
Policy:
Constraint {"," Constraint }
Constraint:
AlgConstraint | MaxTransformsConstraint | MaxReferencesConstraint |
ReferenceUriSchemeConstraint | KeySizeConstraint | OtherConstraint
AlgConstraint
"disallowAlg" Uri
MaxTransformsConstraint:
"maxTransforms" Integer
MaxReferencesConstraint:
"maxReferences" Integer
ReferenceUriSchemeConstraint:
"disallowReferenceUriSchemes" String { String }
KeySizeConstraint:
"minKeySize" KeyAlg Integer
OtherConstraint:
"noDuplicatelds" | "noRetrievalMethodLoops"

H HHFHHHHFHHHFHHHEH R H

#

For AlgConstraint, Uri is the algorithm URI String that is not allowed.

See the XML Signature Recommendation for more information on algorithm
URI Identifiers. For KeySizeConstraint, KeyAlg is the standard algorithm

name of the key type (ex: "RSA"). If the MaxTransformsConstraint,
MaxReferencesConstraint or KeySizeConstraint (for the same key type) is
specified more than once, only the last entry is enforced.
#
Note: This property is currently used by the JDK Reference implementation. It
is not guaranteed to be examined and used by other implementations.
#
jdk.xml.dsig.secureValidationPolicy=\
disallowAlg http://www.w3.0rg/TR/1999/REC-xslt-19991116,\
disallowAlg http://www.w3.0rg/2001/04/xmldsig-more#rsa-md5,\
disallowAlg http://www.w3.0rg/2001/04/xmldsig-more#hmac-md5,\
disallowAlg http://www.w3.0rg/2001/04/xmldsig-more#md>5,\
maxTransforms 5,\
maxReferences 30,\
disallowReferenceUriSchemes file http https,\
minKeySize RSA 1024\
minKeySize DSA 1024\
minKeySize EC 224\
noDuplicatelds,\
noRetrievalMethodLoops

#

Deserialization system-wide filter factory

#

A filter factory class name is used to configure the system-wide filter factory.
The filter factory selects the sun.misc.ObjectinputFilter to use for each

ObjectinputStream when invoked with a current and a requested filter.

The class must be public, must have a public zero-argument constructor, implement the
java.util.function.BinaryOperator<sun.misc.ObjectInputFilter> interface,

provide its implementation and be accessible via the application class loader.
See the release notes for more details.

#

If the system property jdk.serialFilterFactory is also specified, it supersedes
the security property value defined here.

#

#jdk.serialFilterFactory=<classname>

#

Serialization process-wide filter

#

A filter, if configured, is used by java.io.ObjectIinputStream during

deserialization to check the contents of the stream.

A filter is configured as a sequence of patterns, each pattern is either
matched against the name of a class in the stream or defines a limit.

Patterns are separated by ";" (semicolon).

Whitespace is significant and is considered part of the pattern.

#

If the system property jdk.serialFilter is also specified on the command
line, it supersedes the security property value defined here.

#

If a pattern includes a "=", it sets a limit.

If a limit appears more than once the last value is used.

Limits are checked before classes regardless of the order in the sequence of patterns.
If any of the limits are exceeded, the filter status is REJECTED.

#

maxdepth=value - the maximum depth of a graph

maxrefs=value - the maximum number of internal references
maxbytes=value - the maximum number of bytes in the input stream
maxarray=value - the maximum array length allowed

H H HH

#

Other patterns, from left to right, match the class or package name as

returned from Class.getName.

If the class is an array type, the class or package to be matched is the element type.
Arrays of any number of dimensions are treated the same as the element type.

For example, a pattern of "lexample.Foo", rejects creation of any instance or

array of example.Foo.

#

If the pattern starts with "!", the status is REJECTED if the remaining pattern

is matched; otherwise the status is ALLOWED if the pattern matches.

If the pattern ends with ".**" it matches any class in the package and all subpackages.
If the pattern ends with ".*" it matches any class in the package.

If the pattern ends with "*", it matches any class with the pattern as a prefix.

If the pattern is equal to the class name, it matches.

Otherwise, the status is UNDECIDED.

#

Primitive types are not configurable with this filter.

#

#jdk.serialFilter=pattern;pattern

#

RMI Registry Serial Filter

#

The filter pattern uses the same format as jdk.serialFilter.

This filter can override the builtin filter if additional types need to be

allowed or rejected from the RMI Registry or to decrease limits but not

to increase limits.

If the limits (maxdepth, maxrefs, or maxbytes) are exceeded, the object is rejected.
#

The maxdepth of any array passed to the RMI Registry is set to

10000. The maximum depth of the graph is set to 20.

These limits can be reduced via the maxarray, maxdepth limits.

#

sun.rmi.registry.registryFilter=javax.rmi. CORBA.Stub

Each non-array type is allowed or rejected if it matches one of the patterns,
evaluated from left to right, and is otherwise allowed. Arrays of any

component type, including subarrays and arrays of primitives, are allowed.
#

Array construction of any component type, including subarrays and arrays of
primitives, are allowed unless the length is greater than the maxarray limit.
The filter is applied to each array element.

#

The built-in filter allows subclasses of allowed classes and

can approximately be represented as the pattern:

#

#sun.rmi.registry.registryFilter=\

maxarray=1000000;\

maxdepth=20;\

java.lang.String;\

java.lang.Number;\

java.lang.reflect.Proxy;\

java.rmi.Remote;\

sun.rmi.server.UnicastRef;\

sun.rmi.server.RMIClientSocketFactory;\
sun.rmi.server.RMIServerSocketFactory;\
java.rmi.activation.ActivationID;\

java.rmi.server.UID

H o HF H H HFH HHHH

RMI Distributed Garbage Collector (DGC) Serial Filter

#

The filter pattern uses the same format as jdk.serialFilter.

This filter can override the builtin filter if additional types need to be
allowed or rejected from the RMI DGC.

#

The builtin DGC filter can approximately be represented as the filter pattern:
#

#sun.rmi.transport.dgcFilter=\

java.rmi.server.ObjlD;\

java.rmi.server.UID;\

java.rmi.dgc.VMID;\

java.rmi.dgc.Lease;\

maxdepth=5;maxarray=10000

#
TLS key limits on symmetric cryptographic algorithms
#
This security property sets limits on algorithms key usage in TLS 1.3.
When the amount of data encrypted exceeds the algorithm value listed below,
a KeyUpdate message will trigger a key change. This is for symmetric ciphers
with TLS 1.3 only.
#
The syntax for the property is described below:
KeyLimits:
" KeyLimit { , KeyLimit } "

WeakKeyLimit:
AlgorithmName Action Length

AlgorithmName:
A full algorithm transformation.

KeyUpdate

Length:
The amount of encrypted data in a session before the Action occurs
This value may be an integer value in bytes, or as a power of two, 2*29.

#

#

#

#

#

#

#

#

Action:
#

#

#

#

#

#

KeyUpdate:

The TLS 1.3 KeyUpdate handshake process begins when the Length amount
is fulfilled.

#

Note: This property is currently used by OpenJDK's JSSE implementation. It
is not guaranteed to be examined and used by other implementations.

#

jdk.tls.keyLimits=AES/GCM/NoPadding KeyUpdate 2737

