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On-device Learning represents a significant innovation for embedded and edge IoT devices, enabling
models to train and update directly on small local devices. This contrasts with traditional methods, where
models are trained on expansive cloud computing resources before deployment. With On-Device Learning,
devices like smart speakers, wearables, and industrial sensors can refine models in real-time based on local
data without needing to transmit data externally. For example, a voice-enabled smart speaker could learn
and adapt to its owner’s speech patterns and vocabulary right on the device. However, there is no such
thing as a free lunch; therefore, in this chapter, we will discuss both the benefits and the limitations of on-
device learning.

Understand on-device learning and how it differs from cloud-based training

Recognize the benefits and limitations of on-device learning

Examine strategies to adapt models through complexity reduction, optimization, and data compression

Understand related concepts like federated learning and transfer learning

Analyze the security implications of on-device learning and mitigation strategies

12.1 Introduction

On-device Learning refers to training ML models directly on the device where they are deployed, as
opposed to traditional methods where models are trained on powerful servers and then deployed to
devices. This method is particularly relevant to TinyML, where ML systems are integrated into tiny,
resource-constrained devices.

An example of On-Device Learning can be seen in a smart thermostat that adapts to user behavior over
time. Initially, the thermostat may have a generic model that understands basic usage patterns. However,
as it is exposed to more data, such as the times the user is home or away, preferred temperatures, and
external weather conditions, the thermostat can refine its model directly on the device to provide a
personalized experience. This is all done without sending data back to a central server for processing.

Another example is in predictive text on smartphones. As users type, the phone learns from the user’s
language patterns and suggests words or phrases that are likely to be used next. This learning happens
directly on the device, and the model updates in real-time as more data is collected. A widely used real-
world example of on-device learning is Gboard. On an Android phone, Gboard learns from typing and
dictation patterns to enhance the experience for all users. On-device learning is also called federated
learning. Figure 12.1 shows the cycle of federated learning on mobile devices: A. the device learns from
user patterns; B. local model updates are communicated to the cloud; C. the cloud server updates the
global model and sends the new model to all the devices.
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12.2 Advantages and Limitations

On-device learning provides several advantages over traditional cloud-based ML. By keeping data and
models on the device, it eliminates the need for costly data transmission and addresses privacy concerns.
This allows for more personalized, responsive experiences, as the model can adapt in real-time to user
behavior.

However, On-Device Learning also comes with tradeoffs. The limited computing resources on consumer
devices can make it challenging to run complex models locally. Datasets are also more restricted since they
consist only of user-generated data from a single device. Additionally, updating models requires pushing
out new versions rather than seamless cloud updates.

On-device learning opens up new capabilities by enabling offline AI while maintaining user privacy.
However, it requires carefully managing model and data complexity within the constraints of consumer
devices. Finding the right balance between localization and cloud offloading is key to optimizing on-device
experiences.

One of the significant advantages of on-device learning is the enhanced privacy and security of user data.
For instance, consider a smartwatch that monitors sensitive health metrics such as heart rate and blood
pressure. By processing data and adapting models directly on the device, the biometric data remains
localized, circumventing the need to transmit raw data to cloud servers where it could be susceptible to
breaches.

Server breaches are far from rare, with millions of records compromised annually. For example, the 2017
Equifax breach exposed the personal data of 147 million people. By keeping data on the device, the risk of
such exposures is drastically minimized. On-device learning eliminates reliance on centralized cloud storage
and safeguards against unauthorized access from various threats, including malicious actors, insider threats,
and accidental exposure.

Regulations like the Health Insurance Portability and Accountability Act (HIPAA) and the General Data
Protection Regulation (GDPR) mandate stringent data privacy requirements that on-device learning adeptly
addresses. By ensuring data remains localized and is not transferred to other systems, on-device learning
facilitates compliance with these regulations.

On-device learning is not just beneficial for individual users; it has significant implications for organizations
and sectors dealing with highly sensitive data. For instance, within the military, on-device learning
empowers frontline systems to adapt models and function independently of connections to central servers
that could potentially be compromised. Critical and sensitive information is staunchly protected by
localizing data processing and learning. However, this comes with the tradeoff that individual devices take
on more value and may incentivize theft or destruction as they become the sole carriers of specialized AI
models. Care must be taken to secure devices themselves when transitioning to on-device learning.

It is also important to preserve the privacy, security, and regulatory compliance of personal and sensitive
data. Instead of in the cloud, training and operating models locally substantially augment privacy measures,
ensuring that user data is safeguarded from potential threats.

However, this is only partially intuitive because on-device learning could instead open systems up to new
privacy attacks. With valuable data summaries and model updates permanently stored on individual
devices, it may be much harder to physically and digitally protect them than a large computing cluster.
While on-device learning reduces the amount of data compromised in any one breach, it could also
introduce new dangers by dispersing sensitive information across many decentralized endpoints. Careful
security practices are still essential for on-device systems.

On-device learning helps address major privacy regulations like (GDPR) and CCPA. These regulations
require data localization, restricting cross-border data transfers to approved countries with adequate
controls. GDPR also mandates privacy by design and consent requirements for data collection. By keeping
data processing and model training localized on-device, sensitive user data is not transferred across
borders. This avoids major compliance headaches for organizations.

For example, a healthcare provider monitoring patient vitals with wearables must ensure cross-border data
transfers comply with HIPAA and GDPR if using the cloud. Determining which country’s laws apply and

Figure 12.1: Federated learning cycle. Credit: Google Research.
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transfers comply with HIPAA and GDPR if using the cloud. Determining which country’s laws apply and
securing approvals for international data flows introduces legal and engineering burdens. With on-device
learning, no data leaves the device, simplifying compliance. The time and resources spent on compliance
are reduced significantly.

Industries like healthcare, finance, and government, which have highly regulated data, can benefit greatly
from on-device learning. By localizing data and learning, regulatory privacy and data sovereignty

requirements are more easily met. On-device solutions provide an efficient way to build compliant AI
applications.

Major privacy regulations impose restrictions on cross-border data movement that on-device learning
inherently addresses through localized processing. This reduces the compliance burden for organizations
working with regulated data.

One major advantage of on-device learning is the significant reduction in bandwidth usage and associated
cloud infrastructure costs. By keeping data localized for model training rather than transmitting raw data to
the cloud, on-device learning can result in substantial bandwidth savings. For instance, a network of
cameras analyzing video footage can achieve significant reductions in data transfer by training models on-
device rather than streaming all video footage to the cloud for processing.

This reduction in data transmission saves bandwidth and translates to lower costs for servers, networking,
and data storage in the cloud. Large organizations, which might spend millions on cloud infrastructure to
train models on-device data, can experience dramatic cost reductions through on-device learning. In the era
of Generative AI, where costs have been escalating significantly, finding ways to keep expenses down has
become increasingly important.

Furthermore, the energy and environmental costs of running large server farms are also diminished. Data
centers consume vast amounts of energy, contributing to greenhouse gas emissions. By reducing the need
for extensive cloud-based infrastructure, on-device learning plays a part in mitigating the environmental
impact of data processing (Wu et al. 2022).

Specifically for endpoint applications, on-device learning minimizes the number of network API calls
needed to run inference through a cloud provider. The cumulative costs associated with bandwidth and API
calls can quickly escalate for applications with millions of users. In contrast, performing training and
inferences locally is considerably more efficient and cost-effective. Under state-of-the-art optimizations,
on-device learning has been shown to reduce training memory requirements, drastically improve memory
efficiency, and reduce up to 20% in per-iteration latency (Dhar et al. 2021).

Another key benefit of on-device learning is the potential for IoT devices to continuously adapt their ML
model to new data for continuous, lifelong learning. On-device models can quickly become outdated as
user behavior, data patterns, and preferences change. Continuous learning enables the model to efficiently
adapt to new data and improvements and maintain high model performance over time.

While traditional cloud-based ML systems have access to nearly endless computing resources, on-device
learning is often restricted by the limitations in computational and storage power of the edge device that
the model is trained on. By definition, an edge device is a device with restrained computing, memory, and
energy resources that cannot be easily increased or decreased. Thus, the reliance on edge devices can
restrict the complexity, efficiency, and size of on-device ML models.

Traditional cloud-based ML systems utilize large servers with multiple high-end GPUs or TPUs, providing
nearly endless computational power and memory. For example, services like Amazon Web Services (AWS)
EC2 allow configuring clusters of GPU instances for massively parallel training.

In contrast, on-device learning is restricted by the hardware limitations of the edge device on which it runs.
Edge devices refer to endpoints like smartphones, embedded electronics, and IoT devices. By definition,
these devices have highly restrained computing, memory, and energy resources compared to the cloud.

For example, a typical smartphone or Raspberry Pi may only have a few CPU cores, a few GB of RAM, and
a small battery. Even more resource-constrained are TinyML microcontroller devices such as the Arduino
Nano BLE Sense. The resources are fixed on these devices and can’t easily be increased on demand, such
as scaling cloud infrastructure. This reliance on edge devices directly restricts the complexity, efficiency, and
size of models that can be deployed for on-device training:

Complexity: Limits on memory, computing, and power restrict model architecture design, constraining
the number of layers and parameters.
Efficiency: Models must be heavily optimized through methods like quantization and pruning to run
faster and consume less energy.
Size: Actual model files must be compressed as much as possible to fit within the storage limitations
of edge devices.

Thus, while the cloud offers endless scalability, on-device learning must operate within the tight resource
constraints of endpoint hardware. This requires careful codesign of streamlined models, training methods,
and optimizations tailored specifically for edge devices.

In addition to limited computing resources, on-device learning is also constrained by the dataset available
for training models.

In the cloud, models are trained on massive, diverse datasets like ImageNet or Common Crawl. For
example, ImageNet contains over 14 million images carefully categorized across thousands of classes.

On-device learning instead relies on smaller, decentralized data silos unique to each device. A smartphone
camera roll may contain only thousands of photos of users’ interests and environments.

Reduced Bandwidth, Costs, and Increased Efficiency
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camera roll may contain only thousands of photos of users’ interests and environments.

This decentralized data leads to a need for IID (independent and identically distributed) data. For instance,
two friends may take many photos of the same places and objects, meaning their data distributions are
highly correlated rather than independent.

Reasons data may be non-IID in on-device settings:

User heterogeneity: Different users have different interests and environments.
Device differences: Sensors, regions, and demographics affect data.
Temporal effects: time of day, seasonal impacts on data.

The effectiveness of ML relies heavily on large, diverse training data. With small, localized datasets, on-
device models may fail to generalize across different user populations and environments. For example, a
disease detection model trained only on images from a single hospital would not generalize well to other
patient demographics. Withel’s real-world performance would only improve with extensive, diverse
medical improvement. Thus, while cloud-based learning leverages massive datasets, on-device learning
relies on much smaller, decentralized data silos unique to each user.

The limited data and optimizations required for on-device learning can negatively impact model accuracy
and generalization:

Small datasets increase overfitting risk. For example, a fruit classifier trained on 100 images risks
overfitting compared to one trained on 1 million diverse images.
Noisy user-generated data reduces quality. Sensor noise or improper data labeling by non-experts may
degrade training.
Optimizations like pruning and quantization trade off accuracy for efficiency. An 8-bit quantized model
runs faster but less accurately than a 32-bit model.

So while cloud models achieve high accuracy with massive datasets and no constraints, on-device models
can struggle to generalize. Some studies show that on-device training matches cloud accuracy on select
tasks. However, performance on real-world workloads requires further study (Lin et al. 2022).

For instance, a cloud model can accurately detect pneumonia in chest X-rays from thousands of hospitals.
However, an on-device model trained only on a small local patient population may fail to generalize.

Unreliable accuracy limits the real-world applicability of on-device learning for mission-critical uses like
disease diagnosis or self-driving vehicles.

On-device training is also slower than the cloud due to limited resources. Even if each iteration is faster, the
overall training process takes longer.

For example, a real-time robotics application may require model updates within milliseconds. On-device
training on small embedded hardware may take seconds or minutes per update - too slow for real-time
use.

Accuracy, generalization, and speed challenges pose hurdles to adopting on-device learning for real-world
production systems, especially when reliability and low latency are critical.

12.3 On-device Adaptation

In an ML task, resource consumption mainly comes from three sources:

The ML model itself;
The optimization process during model learning
Storing and processing the dataset used for learning.

Correspondingly, there are three approaches to adapting existing ML algorithms onto resource-constrained
devices:

Reducing the complexity of the ML model
Modifying optimizations to reduce training resource requirements
Creating new storage-efficient data representations

In the following section, we will review these on-device learning adaptation methods. The Model
Optimizations chapter provides more details on model optimizations.

In this section, we will briefly discuss ways to reduce model complexity when adapting ML models on-
device. For details on reducing model complexity, please refer to the Model Optimization Chapter.

Due to edge devices’ computing and memory limitations, select traditional ML algorithms are great
candidates for on-device learning applications due to their lightweight nature. Some example algorithms
with low resource footprints include Naive Bayes Classifiers, Support Vector Machines (SVMs), Linear
Regression, Logistic Regression, and select Decision Tree algorithms.

With some refinements, these classical ML algorithms can be adapted to specific hardware architectures
and perform simple tasks. Their low-performance requirements make it easy to integrate continuous
learning even on edge devices.

Pruning is a technique for reducing the size and complexity of an ML model to improve its efficiency and
generalization performance. This is beneficial for training models on edge devices, where we want to
minimize resource usage while maintaining competitive accuracy.

The primary goal of pruning is to remove parts of the model that do not contribute significantly to its
predictive power while retaining the most informative aspects. In the context of decision trees, pruning
involves removing some branches (subtrees) from the tree, leading to a smaller and simpler tree. In the

12.3.1 Reducing Model Complexity

Traditional ML Algorithms
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involves removing some branches (subtrees) from the tree, leading to a smaller and simpler tree. In the
context of DNN, pruning is used to reduce the number of neurons (units) or connections in the network, as
shown in Figure 12.2.

Traditional cloud-based DNN frameworks have too much memory overhead to be used on-device. For
example, deep learning systems like PyTorch and TensorFlow require hundreds of megabytes of memory
overhead when training models such as MobilenetV2, and the overhead scales as the number of training
parameters increases.

Traditional cloud-based DNN frameworks have too much memory overhead to be used on-device. For
example, deep learning systems like PyTorch and TensorFlow require hundreds of megabytes of memory
overhead when training models such as MobilenetV2-w0.35, and the overhead scales as the number of
training parameters increases.

Current research for lightweight DNNs mostly explores CNN architectures. Several bare-metal frameworks
designed for running Neural Networks on MCUs by keeping computational overhead and memory footprint
low also exist. Some examples include MNN, TVM, and TensorFlow Lite. However, they can only perform
inference during forward passes and lack support for backpropagation. While these models are designed
for edge deployment, their reduction in model weights and architectural connections led to reduced
resource requirements for continuous learning.

The tradeoff between performance and model support is clear when adapting the most popular DNN
systems. How do we adapt existing DNN models to resource-constrained settings while maintaining
support for backpropagation and continuous learning? The latest research suggests algorithm and system
codesign techniques that help reduce the resource consumption of ML training on edge devices. Utilizing
techniques such as quantization-aware scaling (QAS), sparse updates, and other cutting-edge techniques,
on-device learning is possible on embedded systems with a few hundred kilobytes of RAM without
additional memory while maintaining high accuracy.

Choosing the right optimization strategy is important for DNN training on a device since this allows for
finding a good local minimum. Since training occurs on a device, this strategy must also consider limited
memory and power.

Quantization is a common method for reducing the memory footprint of DNN training. Although this could
introduce new errors, these errors can be mitigated by designing a model to characterize this statistical
error. For example, models could use stochastic rounding or introduce the quantization error into the
gradient updates.

A specific algorithmic technique is Quantization-Aware Scaling (QAS), which improves the performance of
neural networks on low-precision hardware, such as edge devices, mobile devices, or TinyML systems, by
adjusting the scale factors during the quantization process.

As we discussed in the Model Optimizations chapter, quantization is the process of mapping a continuous
range of values to a discrete set of values. In the context of neural networks, quantization often involves
reducing the precision of the weights and activations from 32-bit floating point to lower-precision formats
such as 8-bit integers. This reduction in precision can significantly reduce the computational cost and
memory footprint of the model, making it suitable for deployment on low-precision hardware. Figure 12.3 is
an example of float-to-integer quantization.

Figure 12.2: Network pruning.
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However, the quantization process can also introduce quantization errors that can degrade the model’s
performance. Quantization-aware scaling is a technique that aims to minimize these errors by adjusting the
scale factors used in the quantization process.

The QAS process involves two main steps:

Quantization-aware training: In this step, the neural network is trained with quantization in mind,
using simulated quantization to mimic the effects of quantization during the forward and backward
passes. This allows the model to learn to compensate for the quantization errors and improve its
performance on low-precision hardware. Refer to the QAT section in Model Optimizations for details.

Quantization and scaling: After training, the model is quantized to a low-precision format, and the
scale factors are adjusted to minimize the quantization errors. The scale factors are chosen based on
the distribution of the weights and activations in the model and are adjusted to ensure that the
quantized values are within the range of the low-precision format.

QAS is used to overcome the difficulties of optimizing models on tiny devices without needing
hyperparameter tuning; QAS automatically scales tensor gradients with various bit precisions. This
stabilizes the training process and matches the accuracy of floating-point precision.

Although QAS enables the optimization of a quantized model, it uses a large amount of memory, which is
unrealistic for on-device training. So, spare updates are used to reduce the memory footprint of full
backward computation. Instead of pruning weights for inference, sparse update prunes the gradient during
backward propagation to update the model sparsely. In other words, sparse update skips computing
gradients of less important layers and sub-tensors.

However, determining the optimal sparse update scheme given a constraining memory budget can be
challenging due to the large search space. For example, the MCUNet model has 43 convolutional layers
and a search space of approximately 1030. One technique to address this issue is contribution analysis.
Contribution analysis measures the accuracy improvement from biases (updating the last few biases
compared to only updating the classifier) and weights (updating the weight of one extra layer compared to
only having a bias update). By trying to maximize these improvements, contribution analysis automatically
derives an optimal sparse update scheme for enabling on-device training.

Other methods besides quantization can help optimize routines. One such method is layer-wise training. A
significant memory consumer of DNN training is end-to-end backpropagation, which requires all
intermediate feature maps to be stored so the model can calculate gradients. An alternative to this
approach that reduces the memory footprint of DNN training is sequential layer-by-layer training (T. Chen
et al. 2016). Instead of training end-to-end, training a single layer at a time helps avoid having to store
intermediate feature maps.

The strategy of trading computation for memory involves releasing some of the memory being used to
store intermediate results. Instead, these results can be recomputed as needed. Reducing memory in
exchange for more computation is shown to reduce the memory footprint of DNN training to fit into almost
any budget while also minimizing computational cost (Gruslys et al. 2016).

The dimensionality and volume of the training data can significantly impact on-device adaptation. So,
another technique for adapting models onto resource-constrained devices is to represent datasets more
efficiently.

The goal of data compression is to reach high accuracies while limiting the amount of training data. One
method to achieve this is prioritizing sample complexity: the amount of training data required for the
algorithm to reach a target accuracy (Dhar et al. 2021).

Other more common methods of data compression focus on reducing the dimensionality and the volume of
the training data. For example, an approach could take advantage of matrix sparsity to reduce the memory
footprint of storing training data. Training data can be transformed into a lower-dimensional embedding
and factorized into a dictionary matrix multiplied by a block-sparse coefficient matrix (Darvish Rouhani,
Mirhoseini, and Koushanfar 2017). Another example could involve representing words from a large
language training dataset in a more compressed vector format (Li et al. 2016).

12.4 Transfer Learning

Transfer learning is an ML technique in which a model developed for a particular task is reused as the
starting point for a model on a second task. In the context of on-device AI, transfer learning allows us to
leverage pre-trained models that have already learned useful representations from large datasets and
finetune them for specific tasks using smaller datasets directly on the device. This can significantly reduce
the computational resources and time required for training models from scratch.

Figure 12.3: Float to integer qunatization. Credit: Nvidia.
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Figure 12.4 includes some intuitive examples of transfer learning from the real world. For instance, if you
can ride a bicycle, you know how to balance yourself on two-wheel vehicles. Then, it would be easier for
you to learn how to ride a motorcycle than it would be for someone who cannot ride a bicycle.

Let’s take the example of a smart sensor application that uses on-device AI to recognize objects in images
captured by the device. Traditionally, this would require sending the image data to a server, where a large
neural network model processes the data and sends back the results. With on-device AI, the model is
stored and runs directly on-device, eliminating the need to send data to a server.

If we want to customize the model for the on-device characteristics, training a neural network model from
scratch on the device would be impractical due to the limited computational resources and battery life. This
is where transfer learning comes in. Instead of training a model from scratch, we can take a pre-trained
model, such as a convolutional neural network (CNN) or a transformer network trained on a large dataset
of images, and finetune it for our specific object recognition task. This finetuning can be done directly on the
device using a smaller dataset of images relevant to the task. By leveraging the pre-trained model, we can
reduce the computational resources and time required for training while still achieving high accuracy for the
object recognition task.

Transfer learning is important in making on-device AI practical by allowing us to leverage pre-trained
models and finetune them for specific tasks, thereby reducing the computational resources and time
required for training. The combination of on-device AI and transfer learning opens up new possibilities for
AI applications that are more privacy-conscious and responsive to user needs.

Transfer learning has revolutionized the way models are developed and deployed, both in the cloud and at
the edge. Transfer learning is being used in the real world. One such example is the use of transfer learning
to develop AI models that can detect and diagnose diseases from medical images, such as X-rays, MRI
scans, and CT scans. For example, researchers at Stanford University developed a transfer learning model
that can detect cancer in skin images with an accuracy of 97% (Esteva et al. 2017). This model was pre-
trained on 1.28 million images to classify a broad range of objects and then specialized for cancer detection
by training on a dermatologist-curated dataset of skin images.

Implementation in production scenarios can be broadly categorized into two stages: pre-deployment and
post-deployment.

In the pre-deployment stage, transfer learning acts as a catalyst to expedite the development process.
Here’s how it typically works: Imagine we are creating a system to recognize different breeds of dogs.
Rather than starting from scratch, we can utilize a pre-trained model that has already mastered the broader
task of recognizing animals in images.

This pre-trained model serves as a solid foundation and contains a wealth of knowledge acquired from
extensive data. We then finetune this model using a specialized dataset containing images of various dog
breeds. This finetuning process tailors the model to our specific need — precisely identifying dog breeds.
Once finetuned and validated to meet performance criteria, this specialized model is then ready for
deployment.

Here’s how it works in practice:

Start with a Pre-Trained Model: Begin by selecting a model that has already been trained on a
comprehensive dataset, usually related to a general task. This model serves as the foundation for the
task at hand.
Finetuning: The pre-trained model is then finetuned on a smaller, more specialized dataset specific to
the desired task. This step allows the model to adapt and specialize its knowledge to the specific
requirements of the application.
Validation: After finetuning, the model is validated to ensure it meets the performance criteria for the
specialized task.
Deployment: Once validated, the specialized model is then deployed into the production environment.

This method significantly reduces the time and computational resources required to train a model from
scratch (Pan and Yang 2010). By adopting transfer learning, embedded systems can achieve high accuracy
on specialized tasks without the need to gather extensive data or expend significant computational
resources on training from the ground up.

Deployment to a device need not mark the culmination of an ML model’s educational trajectory. With the
advent of transfer learning, we open the doors to the deployment of adaptive ML models in real-world
scenarios, catering to users’ personalized needs.

Consider a real-world application where a parent wishes to identify their child in a collection of images

Figure 12.4: Transferring knowledge between tasks. Credit: Zhuang et al. (2021).
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Consider a real-world application where a parent wishes to identify their child in a collection of images
from a school event on their smartphone. In this scenario, the parent is faced with the challenge of locating
their child amidst images of many other children. Transfer learning can be employed here to finetune an
embedded system’s model to this unique and specialized task. Initially, the system might use a generic
model trained to recognize faces in images. However, with transfer learning, the system can adapt this
model to recognize the specific features of the user’s child.

Here’s how it works:

1. Data Collection: The embedded system gathers images that include the child, ideally with the
parent’s input to ensure accuracy and relevance. This can be done directly on the device, maintaining
the user’s data privacy.

2. Model Finetuning: The pre-existing face recognition model, which has been trained on a large and

diverse dataset, is then finetuned using the newly collected images of the child. This process adapts
the model to recognize the child’s specific facial features, distinguishing them from other children in the
images.

3. Validation: The refined model is then validated to ensure it accurately recognizes the child in various
images. This can involve the parent verifying the model’s performance and providing feedback for
further improvements.

4. Deployment: Once validated, the adapted model is deployed on the device, enabling the parent to
easily identify their child in images without having to sift through them manually.

This on-the-fly customization enhances the model’s efficacy for the individual user, ensuring that they
benefit from ML personalization. This is, in part, how iPhotos or Google Photos works when they ask us to
recognize a face, and then, based on that information, they index all the photos by that face. Because the
learning and adaptation occur on the device itself, there are no risks to personal privacy. The parent’s
images are not uploaded to a cloud server or shared with third parties, protecting the family’s privacy while
still reaping the benefits of a personalized ML model. This approach represents a significant step forward in
the quest to provide users with tailored ML solutions that respect and uphold their privacy.

Transfer learning has become an important technique in ML and artificial intelligence, and it is particularly
valuable for several reasons.

1. Data Scarcity: In many real-world scenarios, acquiring a sufficiently large labeled dataset to train an
ML model from scratch is challenging. Transfer learning mitigates this issue by allowing the use of pre-
trained models that have already learned valuable features from a vast dataset.

2. Computational Expense: Training a model from scratch requires significant computational resources
and time, especially for complex models like deep neural networks. By using transfer learning, we can
leverage the computation that has already been done during the training of the source model, thereby
saving both time and computational power.

3. Limited Annotated Data: For some specific tasks, there might be ample raw data available, but the
process of labeling that data for supervised learning can be costly and time-consuming. Transfer
learning enables us to utilize pre-trained models that have been trained on a related task with labeled
data, hence requiring less annotated data for the new task.

There are advantages to reusing the features:

1. Hierarchical Feature Learning: Deep learning models, particularly Convolutional Neural Networks
(CNNs), can learn hierarchical features. Lower layers typically learn generic features like edges and
shapes, while higher layers learn more complex and task-specific features. Transfer learning allows us
to reuse the generic features learned by a model and finetune the higher layers for our specific task.

2. Boosting Performance: Transfer learning has been proven to boost the performance of models on
tasks with limited data. The knowledge gained from the source task can provide a valuable starting
point and lead to faster convergence and improved accuracy on the target task.

Understanding the core concepts of transfer learning is essential for effectively utilizing this powerful
approach in ML. Here, we’ll break down some of the main principles and components that underlie the
process of transfer learning.

In transfer learning, there are two main tasks involved: the source task and the target task. The source task
is the task for which the model has already been trained and has learned valuable information. The target
task is the new task we want the model to perform. The goal of transfer learning is to leverage the
knowledge gained from the source task to improve performance on the target task.

Suppose we have a model trained to recognize various fruits in images (source task), and we want to create
a new model to recognize different vegetables in images (target task). In that case, we can use transfer
learning to leverage the knowledge gained during the fruit recognition task to improve the performance of
the vegetable recognition model.

Representation transfer is about transferring the learned representations (features) from the source task to
the target task. There are three main types of representation transfer:

Instance Transfer: This involves reusing the data instances from the source task in the target task.
Feature-Representation Transfer: This involves transferring the learned feature representations from
the source task to the target task.
Parameter Transfer: This involves transferring the model’s learned parameters (weights) from the
source task to the target task.

In natural language processing, a model trained to understand the syntax and grammar of a language
(source task) can have its learned representations transferred to a new model designed to perform

12.4.3 Benefits
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(source task) can have its learned representations transferred to a new model designed to perform
sentiment analysis (target task).

Finetuning is the process of adjusting the parameters of a pre-trained model to adapt it to the target task.
This typically involves updating the weights of the model’s layers, especially the last few layers, to make
the model more relevant for the new task. In image classification, a model pre-trained on a general dataset
like ImageNet (source task) can be finetuned by adjusting the weights of its layers to perform well on a
specific classification task, like recognizing specific animal species (target task).

Feature extraction involves using a pre-trained model as a fixed feature extractor, where the output of the

model’s intermediate layers is used as features for the target task. This approach is particularly useful when
the target task has a small dataset, as the pre-trained model’s learned features can significantly enhance
performance. In medical image analysis, a model pre-trained on a large dataset of general medical images
(source task) can be used as a feature extractor to provide valuable features for a new model designed to
recognize specific types of tumors in X-ray images (target task).

Transfer learning can be classified into three main types based on the nature of the source and target tasks
and data. Let’s explore each type in detail:

In inductive transfer learning, the goal is to learn the target predictive function with the help of source data.
It typically involves finetuning a pre-trained model on the target task with available labeled data. A
common example of inductive transfer learning is image classification tasks. For instance, a model pre-
trained on the ImageNet dataset (source task) can be finetuned to classify specific types of birds (target
task) using a smaller labeled dataset of bird images.

Transductive transfer learning involves using source and target data, but only the source task. The main aim
is to transfer knowledge from the source domain to the target domain, even though the tasks remain the
same. Sentiment analysis for different languages can serve as an example of transductive transfer learning.
A model trained to perform sentiment analysis in English (source task) can be adapted to perform
sentiment analysis in another language, like French (target task), by leveraging parallel datasets of English
and French sentences with the same sentiments.

Unsupervised transfer learning is used when the source and target tasks are related, but there is no labeled
data available for the target task. The goal is to leverage the knowledge gained from the source task to
improve performance on the target task, even without labeled data. An example of unsupervised transfer
learning is topic modeling in text data. A model trained to extract topics from news articles (source task)
can be adapted to extract topics from social media posts (target task) without needing labeled data for the
social media posts.

By leveraging these different types of transfer learning, practitioners can choose the approach that best fits
the nature of their tasks and available data, ultimately leading to more effective and efficient ML models.
So, in summary:

Inductive: different source and target tasks, different domains
Transductive: different source and target tasks, same domain
Unsupervised: unlabeled source data, transfers feature representations

Table 12.1 presents a matrix that outlines in a bit more detail the similarities and differences between the
types of transfer learning:

When engaging in transfer learning, there are several factors that must be considered to ensure successful
knowledge transfer and model performance. Here’s a breakdown of some key factors:

Domain similarity refers to how closely related the source and target domains are. The more similar the
domains, the more likely the transfer learning will be successful. Transferring knowledge from a model

Finetuning

Feature Extractions

12.4.5 Types of Transfer Learning

Inductive Transfer Learning

Transductive Transfer Learning

Unsupervised Transfer Learning

Comparison and Tradeoffs

Table 12.1: Comparison of transfer learning types.

Inductive Transfer
Learning

Transductive Transfer
Learning

Unsupervised Transfer
Learning

Labeled Data for
Target Task

Required Not Required Not Required

Source Task Can be different Same Same or Different

Target Task Can be different Same Can be different

Objective Improve target task
performance with
source data

Transfer knowledge from
source to target domain

Leverage source task to
improve target task
performance without
labeled data

Example ImageNet to bird
classification

Sentiment analysis in
different languages

Topic modeling for
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domains, the more likely the transfer learning will be successful. Transferring knowledge from a model
trained on images of outdoor scenes (source domain) to a new task that involves recognizing objects in
indoor scenes (target domain) might be more successful than transferring knowledge from outdoor scenes
to a task involving text analysis, as the domains (images vs. text) are quite different.

Task similarity refers to how closely related the source and target tasks are. Similar tasks are likely to
benefit more from transfer learning. A model trained to recognize different breeds of dogs (source task) can
be more easily adapted to recognize different breeds of cats (target task) than it can be adapted to perform
a completely different task like language translation.

The quality and quantity of data available for the target task can significantly impact the success of transfer
learning. More high-quality data can result in better model performance. Suppose we have a large dataset
with clear, well-labeled images to recognize specific bird species. In that case, the transfer learning process
will likely be more successful than if we have a small, noisy dataset.

Feature space overlap refers to how well the features learned by the source model align with the features
needed for the target task. Greater overlap can lead to more successful transfer learning. A model trained
on high-resolution images (source task) may not transfer well to a target task that involves low-resolution
images, as the feature space (high-res vs. low-res) is different.

The complexity of the source model can also impact the success of transfer learning. Sometimes, a simpler
model might transfer better than a complex one, as it is less likely to overfit the source task. For example, a
simple convolutional neural network (CNN) model trained on image data (source task) may transfer more
successfully to a new image classification task (target task) than a complex CNN with many layers, as the
simpler model is less likely to overfit the source task.

By considering these factors, ML practitioners can make informed decisions about when and how to utilize
transfer learning, ultimately leading to more successful model performance on the target task. The success
of transfer learning hinges on the degree of similarity between the source and target domains. Overfitting is
risky, especially when finetuning occurs on a limited dataset. On the computational front, certain pre-
trained models, owing to their size, might not comfortably fit into the memory constraints of some devices
or may run prohibitively slowly. Over time, as data evolves, there is potential for model drift, indicating the
need for periodic re-training or ongoing adaptation.

Learn more about transfer learning in Video 12.1 below.

12.5 Federated Machine Learning

Federated Learning Overview

The modern internet is full of large networks of connected devices. Whether it’s cell phones, thermostats,
smart speakers, or other IOT products, countless edge devices are a goldmine for hyper-personalized, rich
data. However, with that rich data comes an assortment of problems with information transfer and privacy.
Constructing a training dataset in the cloud from these devices would involve high volumes of bandwidth,
cost-efficient data transfer, and violation of users’ privacy.

Federated learning offers a solution to these problems: train models partially on the edge devices and only
communicate model updates to the cloud. In 2016, a team from Google designed architecture for federated
learning that attempts to address these problems.

In their initial paper, Google outlines a principle federated learning algorithm called FederatedAveraging,
which is shown in Figure 12.5. Specifically, FederatedAveraging performs stochastic gradient descent
(SGD) over several different edge devices. In this process, each device calculates a gradient 
which is then applied to update the server-side weights as (with  as learning rate across  clients):

This summarizes the basic algorithm for federated learning on the right. For each round of training, the
server takes a random set of client devices and calls each client to train on its local batch using the most
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server takes a random set of client devices and calls each client to train on its local batch using the most
recent server-side weights. Those weights are then returned to the server, where they are collected
individually and averaged to update the global model weights.

With this proposed structure, there are a few key vectors for further optimizing federated learning. We will
outline each in the following subsections.

Video 12.2 gives an overview of federated learning.

One of the key bottlenecks in federated learning is communication. Every time a client trains the model,
they must communicate their updates back to the server. Similarly, once the server has averaged all the
updates, it must send them back to the client. This incurs huge bandwidth and resource costs on large
networks of millions of devices. As the field of federated learning advances, a few optimizations have been
developed to minimize this communication. To address the footprint of the model, researchers have
developed model compression techniques. In the client-server protocol, federated learning can also
minimize communication through the selective sharing of updates on clients. Finally, efficient aggregation
techniques can also streamline the communication process.

In standard federated learning, the server communicates the entire model to each client, and then the client
sends back all of the updated weights. This means that the easiest way to reduce the client’s memory and
communication footprint is to minimize the size of the model needed to be communicated. We can employ
all of the previously discussed model optimization strategies to do this.

In 2022, another team at Google proposed that each client communicates via a compressed format and
decompresses the model on the fly for training (Yang et al. 2023), allocating and deallocating the full
memory for the model only for a short period while training. The model is compressed through a range of

Figure 12.5: Google’s Proposed FederatedAverage Algorithm. Credit: McMahan et al. (2017).

Video 12.2: Transfer Learning
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memory for the model only for a short period while training. The model is compressed through a range of
various quantization strategies elaborated upon in their paper. Meanwhile, the server can update the
uncompressed model by decompressing and applying updates as they come in.

There are many methods for selectively sharing updates. The general principle is that reducing the portion
of the model that the clients are training on the edge reduces the memory necessary for training and the
size of communication to the server. In basic federated learning, the client trains the entire model. This
means that when a client sends an update to the server, it has gradients for every weight in the network.

However, we cannot just reduce communication by sending pieces of those gradients from each client to
the server because the gradients are part of an entire update required to improve the model. Instead, you
need to architecturally design the model such that each client trains only a small portion of the broader
model, reducing the total communication while still gaining the benefit of training on client data. A paper
(Shi and Radu 2022) from the University of Sheffield applies this concept to a CNN by splitting the global
model into two parts: an upper and a lower part, as shown in Z. Chen and Xu (2023).

The lower part is designed to focus on generic features in the dataset, while the upper part, trained on
those generic features, is designed to be more sensitive to the activation maps. This means that the lower
part of the model is trained through standard federated averaging across all of the clients. Meanwhile, the
upper part of the model is trained entirely on the server side from the activation maps generated by the
clients. This approach drastically reduces communication for the model while still making the network
robust to various types of input found in the data on the client devices.

In addition to reducing the communication overhead, optimizing the aggregation function can improve
model training speed and accuracy in certain federated learning use cases. While the standard for
aggregation is just averaging, various other approaches can improve model efficiency, accuracy, and
security. One alternative is clipped averaging, which clips the model updates within a specific range.
Another strategy to preserve security is differential privacy average aggregation. This approach integrates
differential privacy into the aggregations tep to protect client identities. Each client adds a layer of random
noise to their updates before communicating to the server. The server then updates the server with the
noisy updates, meaning that the amount of noise needs to be tuned carefully to balance privacy and

12.5.3 Selective Update Sharing

Figure 12.6: Split model architecture for selective sharing. Credit: Shi et al., (2022).

12.5.4 Optimized Aggregation
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noisy updates, meaning that the amount of noise needs to be tuned carefully to balance privacy and
accuracy.

In addition to security-enhancing aggregation methods, there are several modifications to the aggregation
methods that can improve training speed and performance by adding client metadata along with the
weight updates. Momentum aggregation is a technique that helps address the convergence problem. In
federated learning, client data can be extremely heterogeneous depending on the different environments in
which the devices are used. That means that many models with heterogeneous data may need help to
converge. Each client stores a momentum term locally, which tracks the pace of change over several
updates. With clients communicating this momentum, the server can factor in the rate of change of each
update when changing the global model to accelerate convergence. Similarly, weighted aggregation can
factor in the client performance or other parameters like device type or network connection strength to
adjust the weight with which the server should incorporate the model updates. Further description of
specific aggregation algorithms is described by Moshawrab et al. (2023).

When using federated learning to train a model across many client devices, it is convenient to consider the
data to be independent and identically distributed (IID) across all clients. When data is IID, the model will
converge faster and perform better because each local update on any given client is more representative of
the broader dataset. This makes aggregation straightforward, as you can directly average all clients.
However, this differs from how data often appears in the real world. Consider a few of the following ways
in which data may be non-IID:

If you are learning on a set of health-monitor devices, different device models could mean different
sensor qualities and properties. This means that low-quality sensors and devices may produce data,
and therefore, model updates distinctly different than high-quality ones

A smart keyboard trained to perform autocorrect. If you have a disproportionate amount of devices
from a certain region, the slang, sentence structure, or even language they were using could skew
more model updates towards a certain style of typing

If you have wildlife sensors in remote areas, connectivity may not be equally distributed, causing some
clients in certain regions to be unable to send more model updates than others. If those regions have
different wildlife activity from certain species, that could skew the updates toward those animals

There are a few approaches to addressing non-IID data in federated learning. One approach would be to
change the aggregation algorithm. If you use a weighted aggregation algorithm, you can adjust based on
different client properties like region, sensor properties, or connectivity (Zhao et al. 2018).

Considering all of the factors influencing the efficacy of federated learning, like IID data and communication,
client selection is a key component to ensuring a system trains well. Selecting the wrong clients can skew
the dataset, resulting in non-IID data. Similarly, choosing clients randomly with bad network connections
can slow down communication. Therefore, several key characteristics must be considered when selecting
the right subset of clients.

When selecting clients, there are three main components to consider: data heterogeneity, resource
allocation, and communication cost. We can select clients on the previously proposed metrics in the non-IID
section to address data heterogeneity. In federated learning, all devices may have different amounts of
computing, resulting in some being more inefficient at training than others. When selecting a subset of
clients for training, one must consider a balance of data heterogeneity and available resources. In an ideal
scenario, you can always select the subset of clients with the greatest resources. However, this may skew
your dataset, so a balance must be struck. Communication differences add another layer; you want to avoid
being bottlenecked by waiting for devices with poor connections to transmit all their updates. Therefore,
you must also consider choosing a subset of diverse yet well-connected devices.

A primary example of a deployed federated learning system is Google’s Keyboard, Gboard, for Android
devices. In implementing federated learning for the keyboard, Google focused on employing differential
privacy techniques to protect the user’s data and identity. Gboard leverages language models for several
key features, such as Next Word Prediction (NWP), Smart Compose (SC), and On-The-Fly rescoring (OTF)
(Xu et al. 2023), as shown in Figure 12.7.

NWP will anticipate the next word the user tries to type based on the previous one. SC gives inline
suggestions to speed up the typing based on each character. OTF will re-rank the proposed next words
based on the active typing process. All three of these models need to run quickly on the edge, and
federated learning can accelerate training on the users’ data. However, uploading every word a user typed
to the cloud for training would be a massive privacy violation. Therefore, federated learning emphasizes
differential privacy, which protects the user while enabling a better user experience.

12.5.5 Handling non-IID Data

12.5.6 Client Selection

12.5.7 An Example of Deployed Federated Learning: G board
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To accomplish this goal, Google employed its algorithm DP-FTRL, which provides a formal guarantee that
trained models will not memorize specific user data or identities. The algorithm system design is shown in
Figure 12.8. DP-FTRL, combined with secure aggregation, encrypts model updates and provides an optimal
balance of privacy and utility. Furthermore, adaptive clipping is applied in the aggregation process to limit
the impact of individual users on the global model (step 3 in Figure 12.8). By combining all these
techniques, Google can continuously refine its keyboard while preserving user privacy in a formally
provable way.

One of the richest examples of data on the edge is medical devices. These devices store some of the most
personal data on users but offer huge advances in personalized treatment and better accuracy in medical
AI. Given these two factors, medical devices are the perfect use case for federated learning. MedPerf is an
open-source platform used to benchmark models using federated evaluation (Karargyris et al. 2023).
Instead of just training models via federated learning, MedPerf takes the model to edge devices to test it
against personalized data while preserving privacy. In this way, a benchmark committee can evaluate
various models in the real world on edge devices while still preserving patient anonymity.

12.6 Security Concerns

Performing ML model training and adaptation on end-user devices also introduces security risks that must
be addressed. Some key security concerns include:

Exposure of private data: Training data may be leaked or stolen from devices
Data poisoning: Adversaries can manipulate training data to degrade model performance
Model extraction: Attackers may attempt to steal trained model parameters
Membership inference: Models may reveal the participation of specific users’ data
Evasion attacks: Specially crafted inputs can cause misclassification

Any system that performs learning on-device introduces security concerns, as it may expose vulnerabilities
in larger-scale models. Numerous security risks are associated with any ML model, but these risks have
specific consequences for on-device learning. Fortunately, there are methods to mitigate these risks and
improve the real-world performance of on-device learning.

On-device ML introduces unique data security challenges compared to traditional cloud-based training. In
particular, data poisoning attacks pose a serious threat during on-device learning. Adversaries can
manipulate training data to degrade model performance when deployed.

Several data poisoning attack techniques exist:

Label Flipping: It involves applying incorrect labels to samples. For instance, in image classification,
cat photos may be labeled as dogs to confuse the model. Flipping even 10% of labels can have
significant consequences on the model.
Data Insertion: It introduces fake or distorted inputs into the training set. This could include pixelated
images, noisy audio, or garbled text.
Logic Corruption: This alters the underlying [patterns]
(https://www.worldscientific.com/doi/10.1142/S0218001414600027) in data to mislead the model. In
sentiment analysis, highly negative reviews may be marked positive through this technique. For this
reason, recent surveys have shown that many companies are more afraid of data poisoning than other
adversarial ML concerns.

What makes data poisoning alarming is how it exploits the discrepancy between curated datasets and live
training data. Consider a cat photo dataset collected from the internet. In the weeks later, when this data

Figure 12.7: Google G Board Features. Credit: Zheng et al., (2023).

Figure 12.8: Differential Privacy in G Board. Credit: Zheng et al., (2023).
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training data. Consider a cat photo dataset collected from the internet. In the weeks later, when this data
trains a model on-device, new cat photos on the web differ significantly.

With data poisoning, attackers purchase domains and upload content that influences a portion of the
training data. Even small data changes significantly impact the model’s learned behavior. Consequently,
poisoning can instill racist, sexist, or other harmful biases if unchecked.

Microsoft Tay was a chatbot launched by Microsoft in 2016. It was designed to learn from its interactions
with users on social media platforms like Twitter. Unfortunately, Microsoft Tay became a prime example of
data poisoning in ML models. Within 24 hours of its launch, Microsoft had to take Tay offline because it had
started producing offensive and inappropriate messages, including hate speech and racist comments. This
occurred because some users on social media intentionally fed Tay with harmful and offensive input, which
the chatbot then learned from and incorporated into its responses.

This incident is a clear example of data poisoning because malicious actors intentionally manipulated the
data used to train and inform the chatbot’s responses. The data poisoning resulted in the chatbot adopting
harmful biases and producing output that its developers did not intend. It demonstrates how even small
amounts of maliciously crafted data can significantly impact the behavior of ML models and highlights the
importance of implementing robust data filtering and validation mechanisms to prevent such incidents from
occurring.

Such biases could have dangerous real-world impacts. Rigorous data validation, anomaly detection, and
tracking of data provenance are critical defensive measures. Adopting frameworks like Five Safes ensures
models are trained on high-quality, representative data (Desai et al. 2016).

Data poisoning is a pressing concern for secure on-device learning since data at the endpoint cannot be
easily monitored in real-time. If models are allowed to adapt on their own, then we run the risk of the
device acting maliciously. However, continued research in adversarial ML aims to develop robust solutions
to detect and mitigate such data attacks.

During the training phase, attackers might inject malicious data into the training dataset, which can subtly
alter the model’s behavior. For example, an attacker could add images of cats labeled as dogs to a dataset
used to train an image classification model. If done cleverly, the model’s accuracy might not significantly
drop, and the attack could be noticed. The model would then incorrectly classify some cats as dogs, which
could have consequences depending on the application.

In an embedded security camera system, for instance, this could allow an intruder to avoid detection by
wearing a specific pattern that the model has been tricked into classifying as non-threatening.

During the inference phase, attackers can use adversarial examples to fool the model. Adversarial
examples are inputs that have been slightly altered in a way that causes the model to make incorrect
predictions. For instance, an attacker might add a small amount of noise to an image in a way that causes a
face recognition system to misidentify a person. These attacks can be particularly concerning in applications
where safety is at stake, such as autonomous vehicles. In the example you mentioned, the researchers were
able to cause a traffic sign recognition system to misclassify a stop sign as a speed sign. This type of
misclassification could lead to accidents if it occurred in a real-world autonomous driving system.

To mitigate these risks, several defenses can be employed:

Data Validation and Sanitization: Before incorporating new data into the training dataset, it should
be thoroughly validated and sanitized to ensure it is not malicious.
Adversarial Training: The model can be trained on adversarial examples to make it more robust to
these types of attacks.
Input Validation: During inference, inputs should be validated to ensure they have not been
manipulated to create adversarial examples.
Regular Auditing and Monitoring: Regularly auditing and monitoring the model’s behavior can help
detect and mitigate adversarial attacks. However, this is easier said than done in the context of tiny ML
systems. It is often hard to monitor embedded ML systems at the endpoint due to communication
bandwidth limitations, which we will discuss in the MLOps chapter.

By understanding the potential risks and implementing these defenses, we can help secure on-device
training at the endpoint/edge and mitigate the impact of adversarial attacks. Most people easily confuse
data poisoning and adversarial attacks. So Table 12.2 compares data poisoning and adversarial attacks:

12.6.2 Adversarial Attacks

Table 12.2: Comparison of data poisoning and adversarial attacks.

Aspect Data Poisoning Adversarial Attacks

Timing Training phase Inference phase

Target Training data Input data

Goal Negatively affect model’s performance Cause incorrect predictions

Method Insert malicious examples into training
data, often with incorrect labels

Add carefully crafted noise to input data

Example Adding images of cats labeled as dogs
to a dataset used for training an image
classification model

Adding a small amount of noise to an
image in a way that causes a face
recognition system to misidentify a person

Potential Effects Model learns incorrect patterns and
makes incorrect predictions

Immediate and potentially dangerous
incorrect predictions

Applications
Affected

Any ML model Autonomous vehicles, security systems,
etc

12.6.3 Model Inversion
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Model inversion attacks are a privacy threat to on-device machine learning models trained on sensitive user
data (Nguyen et al. 2023). Understanding this attack vector and mitigation strategies will be important for
building secure and ethical on-device AI. For example, imagine an iPhone app that uses on-device learning
to categorize photos in your camera roll into groups like “beach,” “food,” or “selfies” for easier searching.

The on-device model may be trained by Apple on a dataset of iCloud photos from consenting users. A
malicious attacker could attempt to extract parts of those original iCloud training photos using model
inversion. Specifically, the attacker feeds crafted synthetic inputs into the on-device photo classifier. By
tweaking the synthetic inputs and observing how the model categorizes them, they can refine the inputs
until they reconstruct copies of the original training data - like a beach photo from a user’s iCloud. Now, the
attacker has breached that user’s privacy by obtaining one of their photos without consent. This

demonstrates why model inversion is dangerous - it can potentially leak highly sensitive training data.

Photos are an especially high-risk data type because they often contain identifiable people, location
information, and private moments. However, the same attack methodology could apply to other personal
data, such as audio recordings, text messages, or users’ health data.

To defend against model inversion, one would need to take precautions like adding noise to the model
outputs or using privacy-preserving machine learning techniques like federated learning to train the on-
device model. The goal is to prevent attackers from being able to reconstruct the original training data.

While data poisoning and adversarial attacks are common concerns for ML models in general, on-device
learning introduces unique security risks. When on-device variants of large-scale models are published,
adversaries can exploit these smaller models to attack their larger counterparts. Research has
demonstrated that as on-device models and full-scale models become more similar, the vulnerability of the
original large-scale models increases significantly. For instance, evaluations across 19 Deep Neural
Networks (DNNs) revealed that exploiting on-device models could increase the vulnerability of the original
large-scale models by up to 100 times.

There are three primary types of security risks specific to on-device learning:

Transfer-Based Attacks: These attacks exploit the transferability property between a surrogate model
(an approximation of the target model, similar to an on-device model) and a remote target model (the
original full-scale model). Attackers generate adversarial examples using the surrogate model, which
can then be used to deceive the target model. For example, imagine an on-device model designed to
identify spam emails. An attacker could use this model to generate a spam email that is not detected
by the larger, full-scale filtering system.

Optimization-Based Attacks: These attacks generate adversarial examples for transfer-based attacks
using some form of the objective function and iteratively modify inputs to achieve the desired outcome.
Gradient estimation attacks, for example, approximate the model’s gradient using query outputs (such
as softmax confidence scores), while gradient-free attacks use the model’s final decision (the predicted
class) to approximate the gradient, albeit requiring many more queries.

Query Attacks with Transfer Priors: These attacks combine elements of transfer-based and
optimization-based attacks. They reverse engineer on-device models to serve as surrogates for the
target full-scale model. In other words, attackers use the smaller on-device model to understand how
the larger model works and then use this knowledge to attack the full-scale model.

By understanding these specific risks associated with on-device learning, we can develop more robust
security protocols to protect both on-device and full-scale models from potential attacks.

Various methods can be employed to mitigate the numerous security risks associated with on-device
learning. These methods may be specific to the type of attack or serve as a general tool to bolster security.

One strategy to reduce security risks is to diminish the similarity between on-device models and full-scale
models, thereby reducing transferability by up to 90%. This method, known as similarity-unpairing,
addresses the problem that arises when adversaries exploit the input-gradient similarity between the two
models. By finetuning the full-scale model to create a new version with similar accuracy but different input
gradients, we can construct the on-device model by quantizing this updated full-scale model. This
unpairing reduces the vulnerability of on-device models by limiting the exposure of the original full-scale
model. Importantly, the order of finetuning and quantization can be varied while still achieving risk
mitigation (Hong, Carlini, and Kurakin 2023).

To tackle data poisoning, it is imperative to source datasets from trusted and reliable vendors.

Several strategies can be employed to combat adversarial attacks. A proactive approach involves
generating adversarial examples and incorporating them into the model’s training dataset, thereby
fortifying the model against such attacks. Tools like CleverHans, an open-source training library, are
instrumental in creating adversarial examples. Defense distillation is another effective strategy, wherein the
on-device model outputs probabilities of different classifications rather than definitive decisions (Hong,
Carlini, and Kurakin 2023), making it more challenging for adversarial examples to exploit the model.

The theft of intellectual property is another significant concern when deploying on-device models.
Intellectual property theft is a concern when deploying on-device models, as adversaries may attempt to
reverse-engineer the model to steal the underlying technology. To safeguard against intellectual property
theft, the binary executable of the trained model should be stored on a microcontroller unit with encrypted
software and secured physical interfaces of the chip. Furthermore, the final dataset used for training the
model should be kept private.

Furthermore, on-device models often utilize well-known or open-source datasets, such as MobileNet’s
Visual Wake Words. As such, it is important to maintain the privacy of the final dataset used for training the
model. Additionally, protecting the data augmentation process and incorporating specific use cases can
minimize the risk of reverse-engineering an on-device model.

Lastly, the Adversarial Threat Landscape for Artificial Intelligence Systems (ATLAS) serves as a valuable

12.6.4 On-Device Learning Security Concerns

12.6.5 Mitigation of On-Device Learning Risks
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Lastly, the Adversarial Threat Landscape for Artificial Intelligence Systems (ATLAS) serves as a valuable
matrix tool that helps assess the risk profile of on-device models, empowering developers to identify and
mitigate potential risks proactively.

There are various ways to secure on-device training data. Each concept is really deep and could be worth a
class by itself. So here, we’ll briefly allude to those concepts so you’re aware of what to learn further.

Encryption serves as the first line of defense for training data. This involves implementing end-to-end
encryption for local storage on devices and communication channels to prevent unauthorized access to raw
training data. Trusted execution environments, such as Intel SGX and ARM TrustZone, are essential for
facilitating secure training on encrypted data.

Additionally, when aggregating updates from multiple devices, secure multi-party computation protocols
can be employed to enhance security (Kairouz, Oh, and Viswanath 2015); a practical application of this is in
collaborative on-device learning, where cryptographic privacy-preserving aggregation of user model
updates can be implemented. This technique effectively hides individual user data even during the
aggregation phase.

Differential privacy is another crucial strategy for protecting training data. By injecting calibrated statistical
noise into the data, we can mask individual records while still extracting valuable population patterns
(Dwork and Roth 2013). Managing the privacy budget across multiple training iterations and reducing noise
as the model converges is also vital (Abadi et al. 2016). Methods such as formally provable differential
privacy, which may include adding Laplace or Gaussian noise scaled to the dataset’s sensitivity, can be
employed.

Anomaly detection plays an important role in identifying and mitigating potential data poisoning attacks.
This can be achieved through statistical analyses like Principal Component Analysis (PCA) and clustering,
which help to detect deviations in aggregated training data. Time-series methods such as Cumulative Sum
(CUSUM) charts are useful for identifying shifts indicative of potential poisoning. Comparing current data
distributions with previously seen clean data distributions can also help to flag anomalies. Moreover,
suspected poisoned batches should be removed from the training update aggregation process. For
example, spot checks on subsets of training images on devices can be conducted using photoDNA hashes
to identify poisoned inputs.

Lastly, input data validation is essential for ensuring the integrity and validity of input data before it is fed
into the training model, thereby protecting against adversarial payloads. Similarity measures, such as
cosine distance, can be employed to catch inputs that deviate significantly from the expected distribution.
Suspicious inputs that may contain adversarial payloads should be quarantined and sanitized. Furthermore,
parser access to training data should be restricted to validated code paths only. Leveraging hardware
security features, such as ARM Pointer Authentication, can prevent memory corruption (ARM Limited,
2023). An example of this is implementing input integrity checks on audio training data used by smart
speakers before processing by the speech recognition model (Z. Chen and Xu 2023).

12.7 On-Device Training Frameworks

Embedded inference frameworks like TF-Lite Micro (David et al. 2021), TVM (T. Chen et al. 2018), and
MCUNet (Lin et al. 2020) provide a slim runtime for running neural network models on microcontrollers and
other resource-constrained devices. However, they don’t support on-device training. Training requires its
own set of specialized tools due to the impact of quantization on gradient calculation and the memory
footprint of backpropagation (Lin et al. 2022).

In recent years, a handful of tools and frameworks have started to emerge that enable on-device training.
These include Tiny Training Engine (Lin et al. 2022), TinyTL (Cai et al. 2020), and TinyTrain (Kwon et al.
2023).

Tiny Training Engine (TTE) uses several techniques to optimize memory usage and speed up the training
process. An overview of the TTE workflow is shown in Figure 12.9. First, TTE offloads the automatic
differentiation to compile time instead of runtime, significantly reducing overhead during training. Second,
TTE performs graph optimization like pruning and sparse updates to reduce memory requirements and
accelerate computations.

Specifically, TTE follows four main steps:

During compile time, TTE traces the forward propagation graph and derives the corresponding
backward graph for backpropagation. This allows differentiation to happen at compile time rather than
runtime.

12.6.6 Securing Training Data

Encryption

Differential Privacy

Anomaly Detection

Input Data Validation

12.7.1 Tiny Training Engine

Figure 12.9: TTE workflow.
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runtime.
TTE prunes any nodes representing frozen weights from the backward graph. Frozen weights are
weights that are not updated during training to reduce certain neurons’ impact. Pruning their nodes
saves memory.
TTE reorders the gradient descent operators to interleave them with the backward pass computations.
This scheduling minimizes memory footprints.
TTE uses code generation to compile the optimized forward and backward graphs, which are then
deployed for on-device training.

Tiny Transfer Learning (TinyTL) enables memory-efficient on-device training through a technique called
weight freezing. During training, much of the memory bottleneck comes from storing intermediate
activations and updating the weights in the neural network.

To reduce this memory overhead, TinyTL freezes the majority of the weights so they do not need to be
updated during training. This eliminates the need to store intermediate activations for frozen parts of the
network. TinyTL only finetunes the bias terms, which are much smaller than the weights. An overview of
TinyTL workflow is shown in Figure 12.10.

Freezing weights apply to fully connected layers as well as convolutional and normalization layers.
However, only adapting the biases limits the model’s ability to learn and adapt to new data.

To increase adaptability without much additional memory, TinyTL uses a small residual learning model.
This refines the intermediate feature maps to produce better outputs, even with fixed weights. The residual
model introduces minimal overhead - less than 3.8% on top of the base model.

By freezing most weights, TinyTL significantly reduces memory usage during on-device training. The
residual model then allows it to adapt and learn effectively for the task. The combined approach provides
memory-efficient on-device training with minimal impact on model accuracy.

TinyTrain significantly reduces the time required for on-device training by selectively updating only certain
parts of the model. It does this using a technique called task-adaptive sparse updating, as shown in
Figure 12.11.

Based on the user data, memory, and computing available on the device, TinyTrain dynamically chooses
which neural network layers to update during training. This layer selection is optimized to reduce
computation and memory usage while maintaining high accuracy.

More specifically, TinyTrain first does offline pretraining of the model. During pretraining, it not only trains
the model on the task data but also meta-trains the model. Meta-training means training the model on
metadata about the training process itself. This meta-learning improves the model’s ability to adapt
accurately even when limited data is available for the target task.

Then, during the online adaptation stage, when the model is being customized on the device, TinyTrain
performs task-adaptive sparse updates. Using the criteria around the device’s capabilities, it selects only
certain layers to update through backpropagation. The layers are chosen to balance accuracy, memory
usage, and computation time.

By sparsely updating layers tailored to the device and task, TinyTrain significantly reduces on-device

12.7.2 Tiny Transfer Learning

Figure 12.10: TinyTL workflow. Credit: Cai et al. (2020).)

12.7.3 Tiny Train

Figure 12.11: TinyTrain workflow. Credit: Kwon et al. (2023).
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By sparsely updating layers tailored to the device and task, TinyTrain significantly reduces on-device
training time and resource usage. The offline meta-training also improves accuracy when adapting to
limited data. Together, these methods enable fast, efficient, and accurate on-device training.

Here is a table summarizing the key similarities and differences between the Tiny Training Engine, TinyTL,
and TinyTrain frameworks:

Framework Similarities Differences

Tiny Training Engine On-device training
Optimize memory & computation
Leverage pruning, sparsity, etc

Traces forward & backward
graphs
Prunes frozen weights
Interleaves backprop & gradients
Code generation

TinyTL On-device training
Optimize memory & computation
Leverage freezing, sparsity, etc

Freezes most weights
Only adapts biases
Uses residual model

TinyTrain On-device training
Optimize memory & computation
Leverage sparsity, etc

Meta-training in pretraining
Task-adaptive sparse updating
Selective layer updating

12.8 Conclusion

The concept of on-device learning is increasingly important for increasing the usability and scalability of
TinyML. This chapter explored the intricacies of on-device learning, exploring its advantages and
limitations, adaptation strategies, key related algorithms and techniques, security implications, and existing
and emerging on-device training frameworks.

On-device learning is, undoubtedly, a groundbreaking paradigm that brings forth numerous advantages for
embedded and edge ML deployments. By performing training directly on the endpoint devices, on-device
learning obviates the need for continuous cloud connectivity, making it particularly well-suited for IoT and
edge computing applications. It comes with benefits such as improved privacy, ease of compliance, and
resource efficiency. At the same time, on-device learning faces limitations related to hardware constraints,
limited data size, and reduced model accuracy and generalization.

Mechanisms such as reduced model complexity, optimization and data compression techniques, and related
learning methods such as transfer learning and federated learning allow models to adapt to learn and
evolve under resource constraints, thus serving as the bedrock for effective ML on edge devices.

The critical security concerns in on-device learning highlighted in this chapter, ranging from data poisoning
and adversarial attacks to specific risks introduced by on-device learning, must be addressed in real
workloads for on-device learning to be a viable paradigm. Effective mitigation strategies, such as data
validation, encryption, differential privacy, anomaly detection, and input data validation, are crucial to
safeguard on-device learning systems from these threats.

The emergence of specialized on-device training frameworks like Tiny Training Engine, Tiny Transfer
Learning, and Tiny Train presents practical tools to enable efficient on-device training. These frameworks
employ various techniques to optimize memory usage, reduce computational overhead, and streamline the
on-device training process.

In conclusion, on-device learning stands at the forefront of TinyML, promising a future where models can
autonomously acquire knowledge and adapt to changing environments on edge devices. The application of
on-device learning has the potential to revolutionize various domains, including healthcare, industrial IoT,
and smart cities. However, the transformative potential of on-device learning must be balanced with robust
security measures to protect against data breaches and adversarial threats. Embracing innovative on-device
training frameworks and implementing stringent security protocols are key steps in unlocking the full
potential of on-device learning. As this technology continues to evolve, it holds the promise of making our
devices smarter, more responsive, and better integrated into our daily lives.

12.9 Resources

Here is a curated list of resources to support students and instructors in their learning and teaching
journeys. We are continuously working on expanding this collection and will add new exercises soon.

These slides serve as a valuable tool for instructors to deliver lectures and for students to review the material at
their own pace. We encourage both students and instructors to leverage these slides to enhance their
understanding and facilitate effective knowledge transfer.

Intro to TensorFlow Lite (TFLite).

TFLite Optimization and Quantization.

TFLite Quantization-Aware Training.

Transfer Learning:

Transfer Learning: with Visual Wake Words example.

On-device Training and Transfer Learning.

Distributed Training:

Distributed Training.

12.7.4 Comparison

Slides
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Distributed Training.

Continuous Monitoring:

Continuous Evaluation Challenges for TinyML.

Federated Learning Challenges.

Continuous Monitoring with Federated ML.

Continuous Monitoring Impact on MLOps.

Video 12.1

Video 12.2

To reinforce the concepts covered in this chapter, we have curated a set of exercises that challenge students to
apply their knowledge and deepen their understanding.

Exercise 12.1

Exercise 12.2

Exercise 12.3

In addition to exercises, we also offer a series of hands-on labs that allow students to gain practical experience with
embedded AI technologies. These labs provide step-by-step guidance, enabling students to develop their skills in a
structured and supportive environment. We are excited to announce that new labs will be available soon, further
enriching the learning experience.

Coming soon.

0 reactions

0 comments

Write Preview

Sign in to comment

Sign in with GitHub

Written, edited and curated by Prof. Vijay Janapa Reddi (Harvard
University)

  This book was built with Quarto.

Videos

Exercises

Labs


