
Chapter 17

Multimodal T Cell Analysis with CoNGA

Stefan A. Schattgen, William D. Hazelton, Paul G. Thomas,
and Philip Bradley

Abstract

Advances in single-cell technologies have made it possible to simultaneously quantify gene expression and
immune receptor sequence across thousands of individual T or B cells in a single experiment. Data from
such experiments are advancing our understanding of the relationship between adaptive immune receptor
sequence and transcriptional profile. We recently reported a software tool, CoNGA, specifically developed
to detect correlation between receptor sequence and transcriptional profile. Here we describe in detail how
CoNGA can be applied to analyze a large and diverse T cell dataset featuring multiple donors and batch
annotations. Our workflow illustrates new analysis modes for the detection of TCR sequence convergence
into similarity clusters and of matches to literature-derived TCR databases, as well as processing of gamma-
delta T cells.
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1 Introduction

Advances in single-cell technologies have made it possible to simul-
taneously quantify gene expression and other modalities (e.g., sur-
face protein abundance, chromatin accessibility, and immune
receptor sequence) across thousands of individual cells in a single
experiment. These technologies are being applied by immunolo-
gists to study T and B cells in a wide range of biological contexts
including cancer [1–8], infectious disease [9], and homeostasis
[10]. We recently reported a software tool, CoNGA, for the analysis
of multimodal single-cell data on T cells [11]. The primary goal of
CoNGA is to identify correlations between T cell receptor (TCR)
sequence and transcriptional profile. Here we provide a detailed
workflow for applying CoNGA that illustrates the latest develop-
ments to the software in the context of the reanalysis of a large and
multifaceted dataset on colitis induced by immune checkpoint
blockade [12].
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CoNGA identifies correlation between TCR sequence and
transcriptional profile by constructing two similarity graphs, one
defined by TCR sequence and one by gene expression profile, and
looking for a statistically significant overlap between them. These
graphs are defined at the level of clonotypes (groups of clonally
related cells defined by shared receptor sequence) as opposed to
individual cells in order to concentrate on phenotypic relationships
correlated with receptor sequence similarity rather than clonal line-
age. As originally described, CoNGA has two major modes of
analysis: graph-vs-graph analysis and graph-vs-feature analysis. In
graph-vs-graph analysis, edges shared between the GEX and TCR
similarity graphs are used to identify clusters of clonotypes defined
by common features in both modalities. This mode of analysis can
identify cell subsets defined by shared TCR sequence features and
transcriptional profiles. In graph-vs-feature analysis, numerical fea-
tures defined by one modality (gene expression or TCR sequence)
are projected onto the similarity graph defined by the other modal-
ity and graph neighborhoods with biased feature distributions are
identified. This mode of analysis can identify an individual gene
whose expression is localized within specific regions of the TCR
sequence landscape, for example, or TCR sequence features, such as
charge or hydrophobicity, that are biased within transcriptionally
defined T cell subsets. In the pipeline presented here, we illustrate
both of these modes of analyses as well as two additional protocols:
one aimed at detecting statistically significant sequence matches to
TCRs of known epitope specificity from the literature and one for
identifying convergent clusters of TCR sequences that are more
similar than would be expected by chance, providing possible evi-
dence of shared antigen specificity. We also demonstrate how to
incorporate batch assignments, such as donor origin and disease
context, into CoNGA analyses.

A brief outline of the method is as follows. Single-cell transcript
count matrices and TCR sequence files are downloaded from the
GEO database for this dataset (GSE144469). TCR sequence data
for alpha-beta and gamma-delta T cells are processed to define a
filtered set of reliable TCR clonotypes, each mapped to a set of one
or more cell barcodes. The transcript data and TCR sequence data
are then aligned and integrated for analysis with CoNGA. Each cell
is assigned donor and disease batch identifiers for annotation of the
CoNGA outputs. After standard single-cell preprocessing, the data-
set is reduced to a single cell per TCR clonotype, and the gene
expression and TCR sequence similarity graphs are constructed.
Statistically significant matches to literature TCRs are identified.
Graph-vs-graph and graph-vs-feature analyses are performed.
Finally, convergent TCR sequence clusters are identified. The
above workflow is illustrated in detail for the alpha-beta T cells by



providing the Python commands that would be used in a Jupyter
Notebook format [13]; for the gamma-delta T cells, we provide a
single shell command for performing the same steps from the
terminal using a Python script.
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2 Materials

CoNGA Software Comprehensive instructions for installing the
CoNGA package and required dependencies are available in the
README file attached to the CoNGA GitHub repository
(https://github.com/phbradley/conga#readme). We highly rec-
ommend using a Python virtual environment for managing the
CoNGA installation.

Dataset The dataset on immune checkpoint blockade-induced
colitis [12] that we will use here is publicly available from the
GEO data repository (GSE144469, https://www.ncbi.nlm.nih.
gov/geo/download/?acc¼GSE144469&format¼file). The
uploaded data were generated by the authors using the 10� Geno-
mics Single Cell Immune Profiling assay and processed using Cell
Ranger software.

3 Methods

Here we apply CoNGA to analyze a large dataset of T cells from a
study investigating the origins of colitis as a side effect of immune
checkpoint blockade therapy for cancer [12]. This dataset includes
cells from 22 donors: 8 receiving checkpoint blockade therapy who
developed colitis, 6 receiving checkpoint blockade who did not
develop colitis, and 8 healthy controls. We assume that the reader
has installed the required Python packages as described above and
downloaded the dataset from the GEO database. The code blocks
presented below are available in a Jupyter Notebook in the CoNGA
GitHub repository [https://github.com/phbradley/conga/blob/
7e152e4b0e3311c7e0e230d7bf864c8f35a9af54/fancy_conga_
pipeline_with_batches_and_gammadelta_tcrs.ipynb].

3.1 Import the

Necessary Python

Packages and

Navigate to the Folder

Containing the Dataset

It will be necessary to change the CONGA_PATH andDATA_DIR
variables below to point to the location of the CoNGA GitHub
repository and the downloaded dataset, respectively, on the reader’s
file system.

https://github.com/phbradley/conga#readme
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE144469&format=file
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE144469&format=file
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE144469&format=file
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE144469&format=file
https://github.com/phbradley/conga/blob/7e152e4b0e3311c7e0e230d7bf864c8f35a9af54/fancy_conga_pipeline_with_batches_and_gammadelta_tcrs.ipynb
https://github.com/phbradley/conga/blob/7e152e4b0e3311c7e0e230d7bf864c8f35a9af54/fancy_conga_pipeline_with_batches_and_gammadelta_tcrs.ipynb
https://github.com/phbradley/conga/blob/7e152e4b0e3311c7e0e230d7bf864c8f35a9af54/fancy_conga_pipeline_with_batches_and_gammadelta_tcrs.ipynb


%matplotlib inline
import matplotlib.pyplot a
import os
import sys
import scanpy as sc
import numpy as np
import pandas as pd
# path to CoNGA repository
CONGA_PATH = '/home/pbradl
sys.path.append(CONGA_PATH
import conga
# path to dataset (downloa
DATA_DIR = '/home/pbradley
os.chdir(DATA_DIR)
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 (downloaded from github) 
ey/gitrepos/conga/'
)

ded from GEO database)
/csdat/mimb/data/'

To perform analyses with CoNGA, the barcode assigned to an3.2 Preprocess the

Dataset for CoNGA

Analysis

individual cell in the transcript count matrix and in the TCR
sequence file must agree (for cells with both data assignments; see
Note 1 for exporting GEX data from Seurat). This will generally be
the case for individual datasets, for example, from the 10� geno-
mics chromium assay; however, it may not be true for public
datasets downloaded from the Internet or when concatenating
multiple datasets. For example, in the alpha-beta T cell data from
the GSE144469 dataset analyzed here, the transcript data are
stored in individual folders, one per donor, and the cell barcodes
all have the same “-1” suffix, whereas the TCR sequence informa-
tion is provided in a single file in which the cell barcodes have been
modified to replace the “-1” suffix with a unique string identifying
each donor. For the gamma-delta T cell data, on the other hand,
the TCR sequence data are provided in separate files for each donor,
and the cell barcodes for the transcript and TCR information both
use the “-1” suffix. As the steps required for this preprocessing are
somewhat dataset-specific, we provide the details for the
GSE144469 dataset in Appendix 1. This appendix also illustrates
how batch assignments can be added when concatenating multiple
datasets. The required preprocessing for the simple case of a single
10� genomics dataset is illustrated in the “simple_conga_pipeline”
Jupyter Notebook provided in the CoNGA GitHub repository
(https://github.com/phbradley/conga/blob/master/simple_
conga_pipeline.ipynb).

In addition to aligning the transcript and TCR cell barcodes,
preprocessing involves filtering of the TCR sequence information
to eliminate spurious alpha-beta pairings due to promiscuous high-
frequency chains (see Note 2) and (optional) calculation of the
kernel principal components (kPCs) from the TCRdist distance
matrix of the filtered clonotypes. Since this merged dataset is rather
large, we elected not to perform the kPCA calculation, relying
instead on the raw TCRdist values to define the TCR neighbor
graphs, clusters, and landscape projections (see Note 3).

https://github.com/phbradley/conga/blob/master/simple_conga_pipeline.ipynb
https://github.com/phbradley/conga/blob/master/simple_conga_pipeline.ipynb


# this string will be prep
out_prefix = 'conga_abtcr'

# Read the merged AnnData 
# this was generated using
adata = sc.read_h5ad('merg

# Store the organism for t
# Set organism to 'human' 
# other options are 'human
adata.uns['organism'] = 'h

# tell CoNGA to annotate r
# disease_int: 0= +CPI col
adata.uns['batch_keys'] =

print('adata.shape:', adat
print('adata.obs_keys():',

adata.shape: (60655, 33538
adata.obs_keys(): ['va', '
e', 'disease_int', 'donor'
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3.3 Read the

Processed Dataset into

Memory

Here we read the merged gene expression (GEX) and TCR
sequence information generated in Appendix 1 into an AnnData
Python object (assigned the name “adata” below). The AnnData
class (https://anndata.readthedocs.io/en/latest/anndata.
AnnData.html) is the fundamental dataset class used by the scanpy
[14] single-cell analysis platform on which CoNGA is built. It has
standardized locations for storing count matrices (adata.X),
one-dimensional cell (adata.obs) and gene (adata.var) features,
higher-dimensional cell features (adata.obsm), and unstructured
data (adata.uns). In the code block below we use adata.uns to
communicate to CoNGA the type of TCR chain (adata.uns[‘organ-
ism’]) and the column names of integer-valued batch identifiers
(adata.uns[‘batch_keys’]) that should be tracked in the analyses.
The per-cell batch information is stored in the corresponding col-
umns of adata.obs.

ended to all CoNGA output files

object containing transcript counts and TCR information
 the (dataset-specific) pipeline provided in Appendix 1
ed_gex_abtcr.h5ad')

his analysis in the uns array
for human alpha-beta TCR analysis
_gd' 'human_ig' 'mouse' 'mouse_gd'
uman'

esults with these batch definitions (present in adata.obs)
itis, 1= +CPI no colitis, 2= healthy control 
['disease_int','donor_int']

a.shape)
 adata.obs_keys())

)
ja', 'cdr3a', 'cdr3a_nucseq', 'vb', 'jb', 'cdr3b', 'cdr3b_nucseq', 'diseas
, 'donor_int', 'batch']

From the output above we can see that adata contains informa-
tion on the expression of 33,538 genes in 60,655 T cells with
paired alpha-beta TCR sequences. The TCR sequence information
is stored in the first eight columns (‘keys’) of adata.obs (‘va’ to
‘cdr3b_nucseq’). The remaining adata.obs columns contain batch
information in human-readable and integer-valued formats.

3.4 Filter, Scale, and

Subset the Dataset;

Reduce to Clonotypes;

Cluster and Perform

Dimensionality

Reduction

After loading the merged dataset containing GEX and TCR infor-
mation into memory, we first perform standard single-cell quality
control (QC) and filtering to remove genes that occur in only a few
cells and cells with too few or too many expressed genes or too
great a fraction of transcripts coming from mitochondrial genes.
The count matrix (adata.X) is restricted to a set of highly variable

https://anndata.readthedocs.io/en/latest/anndata.AnnData.html
https://anndata.readthedocs.io/en/latest/anndata.AnnData.html


# Perform QC filtering and
adata = conga.preprocess.f

adata,
min_genes_per_cell = 5
max_genes_per_cell = 3
max_percent_mito = 0.1

)

# reduce to CD8 cells (see
adata_cd4, adata_cd8 = con

adata, verbose= True)
adata = adata_cd8

# Reduce dataset down to a
# OPTION: The average_clon
#  clonotype as the averag
adata = conga.preprocess.r

# Perform dimensionality r
# UMAP reduction and louva
adata = conga.preprocess.c

print('adata.shape:', adat
print('adata.obs_keys():',
print('adata.obsm keys():'

adata.shape: (8585, 682)
adata.obs_keys(): ['va', '
e', 'disease_int', 'donor'
_for_cd4_vs_cd8', 'cd4_or_
ters_tcr']
adata.obsm_keys(): ['X_pca
X_tcr_2d', 'X_tcr_1d']

genes, log-transformed, and scaled (note that the full count matrix
is retained in adata.raw.X). We then partition the dataset based on
CD4 versus CD8 expression, taking only the CD8 T cells. As
reported in the original CoNGA paper [11], consistent differences
between the TCR sequences of CD4 and CD8 cells can lead to
GEX/TCR correlations that are detected by graph-vs-graph and
graph-vs-feature analyses. While these are genuine signals, we have
found that their presence can mask other signals of interest, partic-
ularly in larger datasets. Subsetting to CD4 or CD8 cells thus helps
to focus on correlations of greater potential biological interest (see
Note 4). After subsetting to the CD8 T cells, we reduce to a single
representative cell per clonotype (the cell with the smallest average
GEX distance to the other cells in the clonotype; see Note 5) and
perform clustering and dimensionality reduction.
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 scale GEX
ilter_and_scale(

00, 
000,

 Note 4)
ga.devel.split_into_cd4_and_cd8_subsets(

 single representative cell per clonotype.
e_gex option allows you represent GEX of the
e across all cells in the clonotype.
educe_to_single_cell_per_clone( adata )

eduction and clustering of GEX and TCR data. 
in clustering are the defaults.
luster_and_tsne_and_umap(adata)

a.shape)
 adata.obs_keys())
, adata.obsm keys())

ja', 'cdr3a', 'cdr3a_nucseq', 'vb', 'jb', 'cdr3b', 'cdr3b_nucseq', 'diseas
, 'donor_int', 'batch', 'n_genes', 'percent_mito', 'n_counts', 'leiden_gex
cd8', 'clone_sizes', 'gex_variation', 'louvain_gex', 'clusters_gex', 'clus

_gex', 'disease_int', 'donor_int', 'X_umap_gex', 'X_gex_1d', 'X_gex_2d', '

From the shape of the adata object we can see that the dataset
has been reduced to 8585 cells (one per CD8 clonotype) and
682 highly variable genes. The results of clustering and dimension-
ality reduction are stored in adata.obs and adata.obsm: the GEX
and TCR cluster assignments in the adata.obs columns ‘clusters_-
gex’ and ‘clusters_tcr’, the GEX principal component projections in
adata.obsm[‘X_pca_gex’], and the GEX and TCR 2D UMAP [15]
projections in adata.obsm[‘X_gex_2d’] and adata.obsm



# specify the neighbor fra
nbr_fracs = [0.01, 0.1]

# construct the K nearest 
all_nbrs, nndists_gex, nnd

adata, nbr_fracs, also
nbr_frac_for_nndists=

) 

# store the NNdists in ada
adata.obs['nndists_gex'] =
adata.obs['nndists_tcr'] =

# stores the annotated TCR
conga.preprocess.setup_tcr

# match TCRs in the datase
match_results = conga.tcr_

adata, outfile_prefix=
num_random_samples_for

)

# There is also the abilit
alpha_hits, beta_hits = co

adata, outfile_prefix 
)

# show the top paired resu
cols = 'tcrdist pvalue_adj
match_results.drop_duplica

[‘X_tcr_2d’]. Note that if we had performed TCRdist kernel PCA
during preprocessing, the TCR principal component information
would be stored in adata.obsm[‘X_pca_tcr’].
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3.5 Compute the

Neighbor Graphs

In the CoNGA GEX and TCR neighbor graphs, each clonotype is
connected to its K-nearest neighbors in GEX and TCR space,
respectively. Multiple neighbor graphs can be constructed, each
defined by the neighbor fraction K/N where N is the total number
of clonotypes. By default, neighbor fractions of 0.01 and 0.1 are
used. During neighbor graph construction, a nearest-neighbor
distance (‘NNdist’) is computed for each clonotype in both GEX
and TCR space; this weighted average of the distance to its
K-nearest neighbors provides a measure of local (inverse) density
nearby that clonotype for use in subsequent analyses.

ctions

neighbor graphs for each neighbor fraction
ists_tcr = conga.preprocess.calc_nbrs(
_calc_nndists=True, 
nbr_fracs[0],

ta.obs
nndists_gex
nndists_tcr

 cluster names in adata.uns
_cluster_names(adata)

In this step we look for sequence matches to TCRs of known3.6 Match to a

Database of

Literature-Derived TCR

Sequences

epitope specificity described in the literature [16–21]. For paired-
chain matches, the raw TCRdist score for each match is converted
to a probability that takes into account how far from germline the
matched sequences are. This probability is adjusted to account for
the number of TCRdist comparisons being performed, and an FDR
value is computed. For single-chain matches, all exact CDR3
sequence matches are reported. The top 15 paired-chain matches
are reported in Table 1.

t to a database derived from literature sources
clumping.match_adata_tcrs_to_db_tcrs(
out_prefix,
_bg_freqs=500000, #default is 50000

y to simply look for single chains matching in amino acid sequence
nga.tcr_clumping.strict_single_chain_match_adata_tcrs_to_db_tcrs(
= out_prefix,

lts, focusing on a few columns of interest
 va cdr3a vb cdr3b db_epitope db_epitope_gene db_mhc_trim'.split()
tes('clone_index')[cols].head(15)
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# Run the graph-vs-graph a
conga.correlations.run_gra

# Specify the nbr fraction
nbrs_gex, nbrs_tcr = all_n

# Specify the minimal cong
# We typically use 0.001 *
min_cluster_size = 8

# Generate graph-vs-graph 
# If batch keys have been 
#  they will appear in the
conga.plotting.make_graph_

adata, out_prefix, min
nbrs_gex,
nbrs_tcr,

)
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3.7 Run Graph-vs-

Graph Analysis

CoNGA graph-vs-graph analysis identifies clonotypes whose neigh-
bors in GEX space overlap significantly with their neighbors in TCR
space. These clonotypes are grouped into CoNGA clusters based
on their joint GEX and TCR cluster assignments, and a logo-style
visualization is produced for each cluster (Fig. 1). GEX landscapes
colored by GEX-neighbor-averaged marker gene expression help to
delineate T cell subsets. Here we are using the 0.1 neighbor fraction
graph for averaging; this produces fairly smooth landscapes,
whereas a smaller neighbor fraction would preserve more of the
fine-scale variation that can be seen in the raw expression plots. As
illustrated in the code block below, CoNGA analyses are typically
divided into two function calls, one that performs the calculations
and stores the results in the AnnData object and a second that
produces the visualizations.

nalysis and store results in adata.uns['conga_results']
ph_vs_graph(adata, all_nbrs, outfile_prefix = out_prefix)

 used for averaging GEX and TCR features for plotting
brs[0.1]

a cluster size for plotting.
 number of clonotypes in the dataset to limit the FDR.

results plot
specified and database matching results are stored in the object,
 plot by default.
vs_graph_logos(
_cluster_size,

From the batch-assignment visualizations in Fig. 1 (the color-
ful stacked bars labeled ‘disease_int’ and ‘donor_int’), we can see
that there are several CoNGA clusters found exclusively or almost
exclusively in the colitis-positive donors (the bottom cluster and the
top 11 clusters; note the tall blue segments in the ‘disease_int’
bars). On the other hand, the mucosal-associated invariant T
(MAIT) cell clusters— (10, 6) and (10, 4)—appear somewhat
depleted within the colitis-positive subset.

3.8 Run Graph-vs-

Feature Analyses

In graph-vs-feature analysis, features defined by one modality (gene
expression or TCR sequence) are projected onto the neighbor
graph defined by the other modality in order to identify graph
neighborhoods with biased feature distributions. This analysis can
identify genes whose expression is localized to specific TCR
sequence clusters and CDR3 biochemical features such as charge
or hydrophobicity that are significantly biased within T cell subsets
defined by gene expression. Since the original development and
publication of the CoNGA algorithm, we have implemented
the Yosef Lab’s HotSpot algorithm [23] as an additional approach
for identifying these features. HotSpot can in some cases be more



Fig. 1 Graph-vs-graph logo plots. At the top are 2D UMAP projections of clonotypes in the dataset based on
GEX similarity (left three panels) and TCR similarity (right three panels), colored from left to right by GEX cluster
assignment; CoNGA score; joint GEX-TCR cluster assignment for clonotypes with significant CoNGA scores,
using a bicolored disk whose left half indicates GEX cluster and whose right half indicates TCR cluster; TCR
cluster; CoNGA score; and GEX-TCR cluster assignments for CoNGA hits. Below are two rows of smaller GEX
landscapes colored by selected marker genes (left) and TCR sequence features (right); for genes, raw counts
are shown as well as neighbor-averaged Z scores. Finally, the GEX and TCR sequence features of CoNGA
clusters containing eight or more clonotypes are summarized by a series of logo-style visualizations, from left
to right, cluster dendrogram based on KNN graph connections; bicolored disk showing the GEX and TCR
cluster assignments; stacked bar plots showing batch distribution of clustered cells; differentially expressed
genes (DEGs) and TCR sequence logos showing V and J gene usage and CDR3 sequences [22]; biased TCR
sequence scores, with red indicating elevated scores and blue indicating decreased scores; gene expression
dot plots showing mean expression levels and fraction of expressing cells for a panel of marker genes (gene
names shown in the panel above). DEG and TCR sequence logos are scaled by the adjusted P value of the
associations, with full logo height requiring a top adjusted P-value below 10�6. DEGs with fold changes less
than 2 are shown in gray. The stacked bars showing the batch composition of each CoNGA cluster are split
vertically, with the left, thicker portion showing the batch composition of the cells in that cluster and the right
portion showing the batch composition of all the cells in the dataset



# run the graph-vs-feature
#  in adata.uns['conga_res
conga.correlations.run_gra

adata, all_nbrs, outfi

# generate plots visualizi
conga.plotting.make_graph_

adata, all_nbrs, out_p
clustermap_max_type_fe

)

# run an alternative graph
#  using the Yosef lab's H
conga.correlations.find_ho

adata, all_nbrs, nbr_f
outfile_prefix = out_p

)

# generate plots visualizi
conga.plotting.make_hotspo

adata, all_nbrs,
outfile_prefix = out_p
clustermap_max_type_fe

)

sensitive than our original graph-vs-feature analysis, since it assesses
feature/graph correlation across the entire graph rather than look-
ing at the feature score distribution in each clonotype’s neighbor-
hood individually. On the other hand, features that are highly
elevated in a very small subpopulation may receive a more signifi-
cant score in the original CoNGA graph-vs-feature analysis. We
sometimes find that neighbor graphs with small neighborhoods
(e.g., neighbor fractions <0.02) give less interpretable/robust
results; here we are using only the 0.1 neighbor fraction (i.e., the
K-nearest neighbor graph with K ¼ 0.1 * num_clonotypes) for the
HotSpot analysis. Figure 2 shows a heatmap of the top 50 nonre-
dundant features from HotSpot graph-vs-feature analysis.

s analysis and store results 
ults']
ph_vs_features(
le_prefix = out_prefix)

ng the results
vs_features_plots(
refix,
atures=25,

-vs-features analysis
otSpot algorithm
tspots_wrapper(
racs = [0.1],
refix,

ng the results
t_plots(

refix,
atures=25,
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3.9 Look for

Evidence of TCR

Sequence

Convergence

TCR sequence clustering above and beyond what would be
expected under a null model of VDJ rearrangement can signal
recurrent selection of T cell clonotypes responding to the same
epitope. CoNGA’s “TCR clumping” algorithm detects sequence
convergence by matching the TCR sequences to each other and to
a large set of shuffled TCR sequences and then looking for TCR
neighborhoods in the dataset that are overpopulated relative to
background expectation. The clonotypes with enriched neighbor-
hoods are grouped into clusters and these clusters are visualized by
logo plots similar to those for the graph-vs-graph results (Fig. 3).
Here we can seeMAITcells (cluster 1) and a large cluster (cluster 2)
of clonotypes characterized by usage of the TRBV6–2 gene seg-
ment. This cluster, which comes from a single donor (orange in the
donor_int batch bar), can also be seen in the graph-vs-graph logo
plot (Fig. 1).



# Run TCR clumping analysi
conga.tcr_clumping.assess_

adata, outfile_prefix 
)

# make plots to visualize 
conga.plotting.make_tcr_cl

adata, nbrs_gex, nbrs_
min_cluster_size_for_l

)
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Fig. 2 HotSpot graph-vs-feature analysis. HotSpot analysis identified 358 GEX features with biased distribu-
tions over the TCR neighbor graph and 79 TCR features with biased distributions across the GEX neighbor
graph. Hierarchical clustering was used to reduce this to 25 nonredundant features for each modality, which
are visualized here across the GEX landscape using a heatmap colored by neighbor-averaged feature
Z-scores. Rows correspond to features; columns represent clonotypes. The rows (features) are ordered
sequentially by hierarchical clustering of the feature values as indicated in the dendrogram to the left of the
heatmap; the columns (clonotypes) are ordered by hierarchical clustering of the GEX principal component
landscape. The three rows above the heatmap show the disease and donor batch assignments and the GEX
cluster number, as indicated. The two columns to the left of the heatmap show the feature type (orange¼ GEX,
blue ¼ TCR) and adjusted P-value for each feature. The remaining redundant/correlated features that
associate with the 50 representative features are shown along the left of the image

s 
tcr_clumping(
= out_prefix,

the results
umping_plots(
tcr, out_prefix, 
ogos=8,



# print all the results tha
print('conga results keys:'

# show the stats that are s
adata.uns['conga_stats']
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Fig. 3 TCR sequence convergence logo plots. TCR clonotype clusters detected by CoNGA’s TCR clumping
analysis are visualized using logo plots in the same layout as in Fig. 1, with the exception that each cluster is
represented by a stacked bar immediately to the right of the dendrogram indicating the GEX cluster distribution
of the cluster members. Matches to literature-derived TCR sequences of known specificity identified in Step
3.6 above are displayed in the second to last column on the right, where we can see that sequence cluster
10 has significant matches to the HLA A*02-presented GLC peptide (derived from the EBV BMLF1 antigen)

3.10 Review Results

Cached in the AnnData

Object

The results of these analyses are stored as Pandas [24] DataFrames
in the adata.uns[‘conga_results’] dictionary, as are links to image
file locations and help messages describing the tables and figures
generated by CoNGA. A set of summary statistics are stored in
adata.uns[‘conga_stats’].

t have been stored in adata.uns['conga_results']
, ' '.join(adata.uns['conga_results'].keys()))

tored in adata.uns['conga_stats']



conga results keys: tcr_db_
os graph_vs_graph_logos_hel
eatures tcr_genes_vs_gex_fe
_features_gex_clustermap gr
_features_tcr_clustermap_he
ph_vs_gex_features_panels t
es_vs_gex_features_panels_h
aph_vs_tcr_features_panels 
hotspot_gex_umap hotspot_ge
ap hotspot_tcr_umap_help ho
lp tcr_clumping_logos tcr_c

OrderedDict([('min_genes_pe
('max_genes_pe
('max_percent_
('num_filt_max
('num_filt_max
('num_antibody
('num_TR_genes
('num_TR_genes
('num_highly_v
('num_cells_af
('num_clonotyp
('max_clonotyp

# save adata object to a fi
adata_file = out_prefix+'_f
adata.write(adata_file)

# make an .html summary fil
html_file = out_prefix+'_re
conga.plotting.make_html_su

python /home/pbradley/gitre
--gex_data merged_gex_g
--gex_data_type h5ad \
--outfile_prefix conga_
--organism human_gd \
--batch_keys disease_in
--short_clustermaps \
--no_kpca --all

match tcr_db_match_help graph_vs_graph graph_vs_graph_help graph_vs_graph_log
p tcr_graph_vs_gex_features tcr_graph_vs_gex_features_help tcr_genes_vs_gex_f
atures_help gex_graph_vs_tcr_features gex_graph_vs_tcr_features_help graph_vs
aph_vs_features_gex_clustermap_help graph_vs_features_tcr_clustermap graph_vs
lp tcr_graph_vs_gex_features_plot tcr_graph_vs_gex_features_plot_help tcr_gra
cr_graph_vs_gex_features_panels_help tcr_genes_vs_gex_features_panels tcr_gen
elp gex_graph_vs_tcr_features_plot gex_graph_vs_tcr_features_plot_help gex_gr
gex_graph_vs_tcr_features_panels_help hotspot_features hotspot_features_help 
x_umap_help hotspot_gex_clustermap hotspot_gex_clustermap_help hotspot_tcr_um
tspot_tcr_clustermap hotspot_tcr_clustermap_help tcr_clumping tcr_clumping_he
lumping_logos_help

r_cell', 500),
r_cell', 3000),
mito', 0.1),
_genes_per_cell', 4650),
_percent_mito', 1914),
_features', 0),
', 171),
_in_hvg_set', 89),
ariable_genes', 682),
ter_filtering', 54064),
es', 8585),
e_size', 336),

The final AnnData object, including the analysis results cached in
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3.11 Save the Final

AnnData Object as

Well as an HTML-

Formatted Summary

Webpage

adata.uns, can be saved to a file for later reanalysis. A summary web
page can also be generated for viewing in a web browser.

le for later analysis
inal.h5ad'

e for viewing in a browser
sults_summary.html'
mmary(adata, html_file)

3.12 Perform CoNGA

Analysis of the

Gamma-Delta T Cells

Using the run_conga.

py Script

These CoNGA analyses can also be accessed through a single
Python script that wraps the code blocks presented above (Figs. 4
and 5). The command below was used to run the full analysis
pipeline on the gamma-delta TCRs from this dataset.

pos/conga/scripts/run_conga.py \
dtcr.h5ad \

gdtcr \

t donor_int \



require(Seurat)
require(DropletUtils)

# open Seurat object
hs1 <- readRDS('~/vdj_v1_hs
# export GEX counts matrix 
write10xCounts(x = hs1@assa
# Import the hs1_mtx direct
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Fig. 4 Graph-vs-graph logo plots for the gdTCRs. Same layout as in Fig. 1; here we can see two large clusters,
one featuring a TRGV9/TRDV2 gene pairing and one with a TRGV4/TRDV1 gene pairing

4 Notes

1. Migrating from Seurat to CoNGA

In instances where extensive investigation has been done using
other single-cell analysis software, for example, Seurat, or in cases
where the original GEX counts matrix is not available and only a
Seurat object is accessible, it may be convenient to export the GEX
information (and other surface protein information, if available) in
a format suitable for import into CoNGA/scanpy. We recommend
using the write10� Counts function from the DropletUtils pack-
age for exporting the necessary information from Seurat in 10�
format.

_V1_sc_5gex.rds')
and feature information in 10X format
ys$RNA@counts, path = './hs1_mtx/')
ory into CoNGA using the '10x_mtx' option.



# RNA' is the GEX, and 'ADT
count_matrix <- rbind(hs1@a

# create vector of feature 
features <- c(
rep("Gene Expression", nrow
rep("Antibody Capture", nro
)

# write out
write10xCounts( count_matri
path = './hs1_mtx/',
gene.id = rownames(count_ma
gene.symbol = rownames(coun
barcodes = colnames(count_m
gene.type = features,
version = "3")
# Import the hs1_mtx direct
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Fig. 5 HotSpot graph-vs-feature analysis for the gdTCRs. Same visualization as Fig. 2 with the difference that
the columns (clonotypes) are ordered by TCR sequence similarity, rather than GEX similarity, and the TR gene
segments are shown in the four rows immediately above the heatmap. We can see the features associated
with the TRGV9/TRDV2 pairing in the top-right corner of the heatmap. Note that the labeling uses the alpha
nomenclature, with alpha corresponding to gamma and delta corresponding to beta

If exporting a multimodal dataset with, for example, TotalSeq
labeling, we can concatenate the count matrices prior to exporting:

' is the antibody labeling assay slot.
ssays$RNA@counts, hs1@assays$ADT@counts)

type labels

(hs1@assays$RNA@counts)),
w(hs1@assays$ADT@counts))

x,

trix),
t_matrix),
atrix),

ory into CoNGA using the '10x_mtx' option.
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2. Clonotype Filtering

Single-cell TCR sequencing datasets often suffer from promis-
cuous pairing of high-frequency chains with secondary partners at
much lower frequency due to the presence of cell doublets and/or
ambient TCRmRNA from ruptured cells. For this reason, CoNGA
filters the set of TCR chains recovered from each cell based on the
pairings observed in all the other cells in the dataset in order to
define a set of reliable clonotypes. The first step is to count the
number of times each alpha-beta pairing is observed in the dataset,
with each cell contributing a count of 1 for all alpha-beta chain pairs
observed in that cell. The set of possible alpha-beta chain pairs is
sorted by this count (a measure of the support for that pairing in
the dataset) in decreasing order, and alpha-beta pairs are succes-
sively added to a list of filtered pairs provided that they do not
overlap with a higher-count pairing. Second in-frame alpha chains
are allowed provided that their support is at least one-third of the
support of the primary alpha-beta pairing. Cells with a single
in-frame beta chain and up to two in-frame alpha chains, where all
alpha-beta pairings are on the filtered pairing list, are assigned to
the clonotype defined by those chains. Cells in which only one of
the two in-frame alphas of a valid dual-alpha clonotype was
observed are assigned to that clonotype. This stringent clonotype
filtering is important because cells derived from the same clonal
lineage tend to have similar gene expression profiles; artificially
splitting true clonotypes can therefore create apparent GEX/TCR
correlation, since the split clonotypes will also share one or the
other of their TCR chains and thus have greater than expected
TCR sequence similarity in addition to greater than expected
GEX similarity.

3. TCRdist Kernel Principal Components Analysis

In the original CoNGA publication, we described a workflow in
which the matrix of inter-clonotype TCRdist distances is converted
to a reduced dimensionality representation by kernel principal
component analysis (kPCA). This had the advantage that the
reduced dimensionality representation could be easily incorporated
into standard single-cell workflows for clustering and landscape
projection by simply replacing the GEX PCA matrix. Focusing on
the top principal components in kPCA also allowed for some
degree of smoothing of the original high-dimensional TCR
sequence landscape. For larger datasets (>50,000) we have found
that kPCA can be fairly CPU- and memory-intensive, leading us to
implement an alternative pipeline in which the raw TCRdist dis-
tances are used for neighbor-graph construction, clustering, and
landscape projection. This is the approach taken in the pipeline
presented here. A related issue is that if multiple independently



preprocessed datasets with kPCA projections are concatenated,
their kPCA projections will automatically be concatenated by the
AnnData machinery, but these projections will not be in the same
frame of reference (since each kPCA calculation was carried out
independently). Thus, it is important either to rerun the kernel
PCA calculation on the full merged dataset, or to delete the
‘X_pca_tcr’ field from the adata.obsm array and use the raw
TCRdist distances in CoNGA.
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4. Splitting Mixed T Cell Datasets into CD4+ and CD8+ Subsets

We and others have observed that there are consistent TCR
sequence differences between CD4+ and CD8+ T cells: TCRs from
CD4+ T cells tend to be more positively charged, for example, and
they sample from a different distribution of V and J gene segments
than the one used by CD8+ T cells [25–28]. Although these
differences are not absolute (it is not possible to predict whether
an individual cell is a CD4+ T cell or a CD8+ T cell from its TCR
sequence alone), they can combine with the transcriptional differ-
ences between CD4+ and CD8+ T cells to generate covariation
between TCR and GEX that is detectable by CoNGA analysis. We
have found that the presence of this CD4 versus CD8 covariation
can make it harder to recognize other signals of TCR/GEX covari-
ation, particularly in larger datasets. For this reason, we recom-
mend splitting datasets by CD4/CD8 status for CoNGA analysis
and comparing these results to the analyses of the full, merged
datasets. This can be done in a fully automated fashion as in Step
3.4 above, but human intervention and/or incorporation of sur-
face protein expression may yield better results.

5. Analyzing Clonotypes Versus Single Cells

T cells belonging to the same clonal lineage (here referred to as
a clonotype) will all have the same TCR sequence. In addition, we
and others have observed that clonally related T cells have higher
than average transcriptional similarity. For these reasons, CoNGA
neighbor graphs and correlation analyses are conducted at the level
of clonotypes rather than individual cells. This necessarily involves
the loss of some information, particularly in cases where there is
transcriptional diversity within individual clonotypes. By default,
the cell with the smallest average GEX distance (measured by
Euclidean distance in GEX principal component space) to the
other cells in an expanded clonotype is selected as the representative
for that clonotype. An alternative is to average the GEX profiles of
all the cells in the clonotype and use this as the clonotype’s GEX
profile; this behavior can be selected by passing average_clone_-
gex ¼ True to the conga.preprocess.reduce_to_single_cell_per_-
clone function (see Step 3.4).
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import matplotlib.pyplot a
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import pandas as pd
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os.chdir(DATA_DIR)
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In this appendix we provide a detailed description of the preproces-
sing steps necessary to prepare the GSE144469 dataset for CoNGA
analysis. To perform analyses with CoNGA, the barcode assigned to
an individual cell in the transcript count matrix and in the TCR
sequence file must agree (for cells with both data assignments). This
will generally be the case for individual datasets, for example, from
the 10� genomics chromium assay; however, it may not be true for
public datasets downloaded from the Internet or when concatenat-
ing multiple datasets. In the alpha-beta T cell data from the
GSE144469 dataset analyzed here, the transcript data are stored
in individual folders, one per donor, and the cell barcodes all have
the same “-1” suffix, whereas the TCR sequence information is
provided in a single file in which the cell barcodes have been
modified to replace the “-1” suffix with a unique string identifying
each donor. For the gamma-delta T cell data, on the other hand,
the TCR sequence data are provided in separate files for each donor,
and the cell barcodes for the transcript and TCR information both
use the “-1” suffix.
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Appendix 1

Step 1. Import the necessary Python packages and navigate to the
folder containing the dataset.

It will be necessary to change the CONGA_PATH and
DATA_DIR variables below to point to the location of the
CoNGA GitHub repository and the downloaded dataset, respec-
tively, on the reader’s file system.

s plt

 (downloaded from github) 
ey/gitrepos/conga/'
)

x_clones_file import make_10x_clones_file
/csdat/mimb/data/'

Step 2. Process and merge the abTCR data.



gex_datasets = sorted(glob
diseases = ['C','NC','CT']
contigs_file = 'GSE144469_
all_contigs = pd.read_csv(
all_data = []
for donor_num, gex_dir in

# The folder name is a
donor = gex_dir.split(
donor_contigs = all_co
# change the barcode s
donor_contigs['barcode
donor_contigs_file = f
donor_contigs.to_csv(d
# process the contigs 
donor_clones_file = f'
make_10x_clones_file(

donor_contigs_file
organism = 'human'
clones_file = dono
stringent = True, 

)
# read the GEX data an
adata = conga.preproce

gex_dir, '10x_mtx'
allow_missing_kpca

disease = donor[:-1]
adata.obs['disease'] =
adata.obs['disease_int
adata.obs['donor'] = d
adata.obs['donor_int']

all_data.append( adata

# concatenate the datasets
new_adata = all_data[0].co
#save the aggregate AnnDat
new_adata.write('merged_ge

We first read the TCR sequence information from the contig
annotations file. Then, for each of the 22 donors we modify the cell
barcodes in the TCR data to match the GEX data, filter the TCR
clonotypes, merge the GEX and TCR data into a single AnnData
object, and assign batch identifiers giving the donor ID and disease
status. Finally, a single AnnData object is created by merging the
22 individual datasets and this object is saved to disk for subsequent
CoNGA analysis.

.glob('*-CD3/'))
 # colitis, no-colitis, healthy control
TCR_filtered_contig_annotations_all.csv'
contigs_file)

enumerate(gex_datasets):
lso the donor ID
'/')[-2].split('-')[0]
ntigs[all_contigs.barcode.str.endswith(donor)].copy()
uffix to '-1' to match the GEX data
'] = donor_contigs.barcode.str.split('-').str.get(0)+'-1'
'{donor}_abtcr_filtered_contigs.csv'
onor_contigs_file)
to generate conga clonotypes
{donor}_abtcr_clones.tsv'

, 
, # using 'human' for TCRab
r_clones_file, 
# (the default) see Note #1 on clonotype filtering 

d the clonotypes into CoNGA
ss.read_dataset(
, donor_clones_file,
_file=True)

disease
'] = diseases.index(disease) # conga batch ids are integers
onor
 = donor_num # conga batch ids are integers

 )

ncatenate(all_data[1:])
a object
x_abtcr.h5ad')

Step 3. Process and merge the gdTCR data.
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Then, for each of the 21 donors with gdTCR data we filter the
TCR clonotypes, merge the GEX and TCR data into a single
AnnData object, and assign batch identifiers giving the donor ID
and disease status. Finally, a single AnnData object is created by
merging the 21 individual datasets and this object is saved to disk
for subsequent CoNGA analysis.



gex_datasets = sorted(glob

diseases = ['C','NC','CT']
all_data = []

for donor_num, gex_dir in
# The folder name is a
donor = gex_dir.split(
donor_contigs_file = g
if len(donor_contigs_f

continue
else:

assert len(donor_c
donor_contigs_file

# process the contigs 
donor_clones_file = f'
make_10x_clones_file(

donor_contigs_file
organism = 'human_
clones_file = dono
stringent = True, 

)
# read the GEX data an
adata = conga.preproce

gex_dir, '10x_mtx'
allow_missing_kpca

disease = donor[:-1]
adata.obs['disease'] =
adata.obs['disease_int
adata.obs['donor'] = d
adata.obs['donor_int']
all_data.append( adata

# concatenate the datasets
new_adata = all_data[0].co

#save the aggregate AnnDat
new_adata.write('merged_ge
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.glob('*-CD3/'))

 # colitis (0), no-colitis (1), healthy control (2)

enumerate(gex_datasets):
lso the donor ID
'/')[-2].split('-')[0]
lob.glob(f'*_{donor}-gdTCR_filtered_contig_annotations.csv')
ile)==0:

ontigs_file) == 1
 = donor_contigs_file[0]
to generate conga clonotypes
{donor}_gdtcr_clones.tsv'

, 
gd', # using 'human_gd' for gdTCR
r_clones_file, 
# (the default) See Note #1 on clonotype filtering

d the clonotypes into CoNGA
ss.read_dataset(
, donor_clones_file,
_file=True)

disease
'] = diseases.index(disease) # conga batch ids are integers
onor
 = donor_num # conga batch ids are integers
 )

ncatenate(all_data[1:])

a object
x_gdtcr.h5ad')
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