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Abstract—Random forests are one of the most widely 

used machine learning methods that allow for high 

interoperability and explainability. They make up for 

where the standard decision tree falls short, namely in the 

cases of over fitting, poor generalization, and better 

handling of outliers and noise. In addition, they are 

powerful tools that can be used to solve a variety of non-

linear classification and regression problems. Their 

applications extend to the domains of healthcare, finance, 

marketing, and data mining. In an effort to enable C++ 

applications to store and exchange tree based models, 

researchers developed Treelite and its sub-module 

TL2cgen. These libraries allow for minimal code 

duplication and for models to be stored in a platform 

independent format. In this project the focus has been 

placed on investigating and analysing the runtime for 

generating predictions for random forests using TL2cgen  

and Treelite, with an emphasis on the former. The results 

show that the thread pool implementation of Treelite is not 

the governing factor in its superior runtime to TL2cgen. 

 

1. INTRODUCTION 

TL2cgen (Treelite 2 C GENerator) is a model compiler 

for decision tree models. Using this software, developers are 

equipped with the ability to convert any decision tree model 

such as random forests and gradient boosting models into an 

optimized and platform independent if-else tree in C which 

can be distributed as a native binary [2]. TL2cgen  integrates 

a submodule called Treelite, which is a lightweight library 

that enables C++ applications to exchange and store decision 

tree forests either on the disk or on a network. It supports 

conversion from tree models built in the following libraries, 

XGBoost, Scikit-learn, and LightGBM to a common 

specification that can be exchanged and used by C++ 

applications [2].  It may be the case that these applications 

wish to exchange trees or share them with a central server that 

performs read and write operations on these trees. Such a 

server using Treelite or TL2cgen, can take the tree models 

built in applications using any one of the above tree model 

libraries into a common specification that it can use to 

perform operations such as making predictions and making 

modifications. In addition, since no external libraries are used 

in the compiled C code generated by TL2cgen, devices with 

memory constraints can execute raw C code thus not needing 

to install any of the tree model libraries. To make predictions 

for a given batch of inputs, Treelite uses custom thread pools 

where parallelism is utilized to feed these inputs into a tree 

ensemble [1]. TL2cgen  however uses OpenMP instead of 

custom thread pools to parallelize the prediction process. The 

justification for using OpenMP comes from a claim from the 

original developer stating that thread pools are hard to 

maintain and might add unwanted complexity for future 

developers. This research provides an extensive analysis  on 

the impact of the aforementioned parallelization techniques 

on Treelite and TL2cgen .  

2. PROBLEM STATEMENT 

A GitHub issue [1] shows that TL2cgen is slower than 

Treelite. It was found that Treelite spawns more threads and 

utilizes a greater percentage of the CPUs logical processors as 

opposed to TL2cgen  which uses about a factor of two less. 

The conversation on the GitHub issue asserted that the 

runtime of TL2cgen might be due to its parallelization 

scheme. This paper investigates this issue with a more 

detailed analysis to determine whether TL2cgen is indeed 

slower than Treelite. 

2.1. Research Questions 

The problem defined above leads to the following 

research question: Given a pre-trained random forest, to what 

extent do custom thread pools influence batch execution of if-

else trees generated by TL2cgen?  Which can be answered by 

answering the following sub questions: 

1) How does the execution efficiency of custom thread pools 

in Treelite compare to that of OpenMP in TL2cgen?  

2) How does the implementation of custom thread pools affect 

the runtime and CPU usage of TL2cgen? 

3. BACKGROUND 

3.1. Decision Trees and Random Forests 

It is important to recognize that machine learning 

extends beyond the space of deep learning. While deep 

learning models provide solutions to speech recognition, 

object detection, natural language processing, and fraud 

detection [4], their architectures tend to be large and complex, 

making them hard to explain and interpret [9]. Another type 

of machine learning model is the decision tree, which 

addresses some of the pit falls of deep learning. Specifically, 

decision trees can accept categorical and continuous data as 

an input, are less computationally intensive, require less data 

for training, and typically do not require data normalization 

such as one-hot encoding or feature scaling [13]. Despite 

these advantages, decision trees suffer from over-fitting 

causing the model to generalize poorly [13]. To counter over-

fitting, random forests were developed to capture the 

underlying patterns in the data, rather than memorizing it [12]. 

In essence, a random forest is a collection of decision trees 

that were built from the original data set [12] .  



3.2. Treelite and TL2cgen Implementations  

The problem statement and following research 

questions ponder the influence of thread pools on the runtime 

of TL2cgen. This paper will present an algorithm to 

potentially improve the runtime of TL2cgen and possibly 

even Treelite. The nature of the algorithm relies on how the 

Treelite thread pool implementation works, therefore when 

presenting the algorithm, an understanding of Treelite is 

required. The OpenMP implementation for TL2cgen is a 

central part of this research and since it is compared to 

Treelite, its only logical to explain how it works, what it is 

and what it looks like in code. Understanding both these 

implementations will aid in explaining the resulting runtimes 

and CPU usages. TL2cgen uses OpenMP which is an 

application programming interface (API) that supports shared 

memory multiprocessing programming by specifying 

compiler directives that will spawn threads before the target 

code block executes. Treelite makes use of a custom thread 

pool implementation where a fixed number of threads are 

spawned and execute tasks whenever they become available.  

3.2.1. TL2cgen OpenMP Implementation  

Before doing any parallel inference, TL2cgen   first 

determines how many threads need to be spawned. This 

number is the minimum between the number of rows in the 

input for which predictions need to be made and the number 

of logical processors that the host device has. So twenty 

logical processors and one-hundred and fifty rows will result 

in twenty threads being spawned, and any number of rows less 

than twenty will result in that many threads being spawned. 

Once this number is determined, TL2cgen splits the input data 

into batches of at most equal size and assigns each thread a 

start and end index for which it will make predictions. Listing 

1 shows how TL2cgen calls the ParallelFor function which 

will parallelise the lambda function containing the prediction 

function. 

     Listing 1: Code snippet for ParallelFor function call 

Listing 2 shows a snippet from the ParallelFor function that 

parallelises the lambda function above. It supports static, 

dynamic, guided, and auto scheduling, but static is the default. 

If a chunk size is not specified then each thread will be 

assigned one iteration to execute of the for loop, otherwise 

each thread will execute several iterations equal to the 

specified chunk [10] . 

Listing 2: OpenMP usage with static scheduling 

3.2.2. Treelite thread pool implementation 

As mentioned before, Treelite implements a custom 

thread pool to make parallelised predictions. This requires an 

understanding of the nature of thread pools themselves. A 

thread pool is a group of pre-spawned threads that are 

continuously waiting for tasks to arrive through some data 

structure, typically a queue [15]. The main idea behind thread 

pools is that instead of incurring overhead by creating and 

destroying a thread every time a task comes in, a fixed number 

of threads are spawned and are only destroyed when all the 

tasks are completed [15]. Treelite defines a vector of threads 

each executing its own lambda function. Unlike TL2cgen   

who uses OpenMP to spawn threads whenever the prediction 

function is called (through the C++ API) in a Python program, 

Treelite creates the threads when the predictor object is 

instantiated. This means that whenever a Python program 

calls the predict function, it will always use the same threads 

created by the predictor object. According to the original 

developer of Treelite and TL2cgen, this reduces the potential 

overhead of creating and destroying threads [1]. 

The lambda function contains a loop that will continue trying 

to pop a task from a local single producer-single-consumer 

(SPSC) queue. Once the main thread submits a task to the 

queue, the waiting thread will pop the task, execute it, and 

push the result to another SPSC queue that stores the output 

of the task. Once the main thread has submitted all the tasks 

it will start trying to pop results off from the output queue that 

get used later in the program. The synchronisation between 

the pushing and popping from queues is not trivial, and for 

more efficiency, is made to be lock free and atomic. While 

locks are generally straightforward to use and understand, 

they introduce overhead due to the CPU needing to allocate 

memory for storing the lock, manage the creation and 

destruction of locks, and handle the acquisition and release 

processes [11]. What makes atomic operations complicated is 

the notion of program order. When executing an arbitrary 

program, it is expected that statements and operations happen 

in the order they are written. However, each line is susceptible 

to the compiler reordering it for improved program execution 

efficiency while still ensuring the program has the intended 

output [15]. Furthermore, there may be several orderings that 

still give the same output, for instance Listing 3 and Listing 4 

both give the same output despite their program order being 

different. 

 



Listing 3: Program order example 1 

 

Listing 4: Program order example 2 

 

When dealing with multiple threads who are each running 

their own process, the goal is to ensure that the orderings of a 

program executed by one thread does not invalidate the output 

of another process. For example “flag” and “message” being 

swapped in thread 1 wont effect the output, however it will 

influence the output of thread 2 who will either see “ ” 

(assumed initial value of “message”) or “Hello world” 

depending on where ”flag” is in the program execution. 

 Listing 5: Code fragment for thread 1 

 

Listing 6: Code fragment for thread 2 

With regards to how this relates to the implementation of 

Treelite, there are two central functions that allow for 

synchronised popping and pushing, namely “enqueue” and 

“pop”. Before discussing these functions its important to note 

that pushing happens at the tail of the queue, and popping 

happens at the head. When an item is pushed, the tail is 

incremented and points to the next available slot, the same 

happens for the head. The queue implementation is not 

specific to Treelite and may be used in other applications. 

Therefore, for purpose of correct implementation, it may 

happen that a many pop or enqueue operations are executed, 

and since the size of the buffer is finite, the head may catch 

up to the tail (or vice versa). When the head and tail indices 

are equal, then the queue is said to be empty. If the next tail 

index (modulo the size) is equal to the head index, then the 

queue is said to be full. 

Listing 7: SPSC Queue enqueue function  

Starting with the enqueue function, its clear that this function 

pushes an item to the queue. When an item is pushed, the 

function first needs to obtain the current tail. When dealing 

with shared atomic variables, the notion of memory order as 

mentioned before, becomes important. There are four main 

memory tags available, relaxed, acquire, release, and 

sequential consistency (default) [6]. The relaxed tag implies 

that the operation is simply atomic, there is no 

synchronisation between threads [6]. In the case where the 

main thread pushes and a worker thread pops, then the main 

thread uses the relaxed tag to get the tail since no other thread 

is modifying it, hence no synchronisation is needed. The same 

can be said for the case where a worker thread is pushing, and 

the main thread is popping.  

The memory orders acquire, and release are used in pairs, 

where acquire is used on loads and release on stores. So, when 

one thread performs a store and another thread performs a 

load on the same variable, the compiler will ensure that the 

store happens before the load [6]. Hence using these together 

provides thread synchronisation. In addition, release ensures 

that all operations before are guaranteed to happen before, 

preventing the compiler from reordering the code. The same 

can be said for acquire except everything after is guaranteed 

to happen after [6]. It should thus be clear that the acquire 

when loading the head is done so that when another thread is 

done popping (modifying the head), then the load will receive 

the latest value. The same is true for the release when storing 

the tail. It ensures that a thread that wants to load the tail in 

the pop function will see the latest store performed in the 

enqueue function. 

Listing 8: SPSC Queue pop function 

When entering the pop function, the thread will enter a for 

loop, which simulates a spinlock, to prevent it from going to 

sleep, since waking up a thread may incur overhead. The idea 

behind is spinlock is busy-waiting, where a thread will check 

if the lock is available or not instead of going to sleep and 

waiting for a notify. In this case, the thread will repeatedly 

check if there are any pending tasks to complete. If there is a 

task, the thread will atomically decrement the task count and 

wait for a kill signal or continue with popping if the number 

of pending tasks is zero or has gone up due to a push 

operation. The thread will first check if it should terminate, if 

not then it will proceed with the popping operation where it 

increments the head only if the current head index is less than 

the current tail index. 



4. METHOD 

The approach to answering the presented research 

questions will involve several systematic steps. First the 

problem statement will be verified, followed by defining test 

cases for assessing performance and providing an overview 

of the tools used.  

4.1. Replicating GitHub Issue  

Before collecting any data, it is important to verify the 

problem and reaffirm that it indeed is a problem to be 

explored and not a result of the hardware the initial test case 

was run on. 

Table 1: Replicated issue and original issue runtimes 

 

Repl.TL2cgen   TL2cgen   Repl.Treelite Treelite 

0.152 0.021 0.024 0.012 

 

While the initial GitHub issue shows that Treelite is about 

twice as fast as TL2cgen, the replicated issue shows that 

Treelite is about six times as fast as TL2cgen. Its evident that 

this is not enough to conclude that Treelite is faster than 

TL2cgen in all cases. From this small sample alone, it is 

impossible to know whether Treelite is superior to TL2cgen   

in all circumstances, and it will be shown that this is indeed 

not the case. 

4.2. Data Collection 

Assessing the influence of thread pools on the runtime of 

TL2cgen and evaluating its current performance using 

OpenMP requires several test cases to be defined. A test case 

is defined as a 3-tuple (𝐶, 𝐷, 𝑇) where 𝐶 is a configuration 

from either TL2cgen  or Treelite, and 𝐷 is a set of datasets for 

which the configuration must perform task 𝑇. Table 2 shows 

the breakdown of these test cases. 

 

For each data set 𝐷𝑖 from 𝐷 in (𝐶, 𝐷, 𝑇), configuration 𝐶 

will be executed for each of the random forest sizes taken 

from the following set:  

{1, 20, 40, 60, 80, 100, 200, 500, 1000, 1200, 1500, 2000} 

Where the depth of each decision tree in the random forest is 

capped at five. For each tree size, the program will make 700 

predictions instead of just one. The reason for this is because 

the time for a single prediction is shown as zero but is some 

value of the order 10e-5. Values this small would make 

comparison between Treelite and TL2cgen  more difficult. 

Note that the GitHub issue did the same except with 1000 

predictions. But since this research works with much larger 

test cases, a reduced number of iterations was chosen.  

Table 3: Dataset properties, C = Classification,  

R = Regression 

 

Dataset Task #Samples #Classes #Attributes 

Iris C 150 3 4 

Digits C 1797 10 64 

Wine C 178 3 13 

Cl.Custom1 C 750 10 100 

Cl.Custom2 C 1500 10 100 

Cl.Custom3 C 3000 10 100 

Cl.Custom4 C 6000 10 100 

Diabetes R 442 - 10 

California 

Housing  

R 20640 - 8 

Re.Custom1 R 750 - 100 

Re.Custom2 R 1500 - 100 

Re.Custom3 R 3000 - 100 

Re.Custom4 R 6000 - 100 

 

4.3. Tools 

This project will require several pieces of hardware and 

software. Below is a detailed deconstruction of the necessary 

components.  

4.3.1. Versions 

         Given that the versions of TL2cgen and Treelite in the 

original GitHub issue were 0.3.1 and 3.9.0 respectively, the 

same will be used for this project. For loading data sets scikit-

learn 1.4.2 will be used. The data sets to be loaded are Iris, 

Wine, Diabetes, Digits, California Housing, four custom 

classification tasks, and four custom regression tasks. The 

custom tasks will be made using sklearn.datasets for building 

the custom dataset and sklearn.ensemble to build a 

RandomForestClassifier and a RandomForestRegressor.  

4.3.2.  Hardware 

         All the testing and programming will be done on an 

13th Gen Intel i7 with 16GB of RAM and with 14 cores and 

20 logical processors. This means that there can be 20 

threads running concurrently.  

 

Table 2: Test case breakdown, C = Classification, R = 

Regression 

 

𝐶 𝐷 𝑇 

TL2cgen   

OpenMP 

{Iris, Wine, Digits, Cl.Custom1, 

Cl.Custom2, Cl.Custom3, 

Cl.Custom4} 

C 

{Diabetes, California Housing, 

Re.Custom1, Re.Custom2, 

Re.Custom3, Re.Custom4} 

R 

Treelite 

thread pool 

{Iris, Wine, Digits, Cl.Custom1, 

Cl.Custom2, Cl.Custom3, 

Cl.Custom4} 

C 

{Diabetes, California Housing, 

Re.Custom1, Re.Custom2, 

Re.Custom3, Re.Custom4} 

R 

TL2cgen   

copied 

thread pool 

{Iris, Wine, Digits, Cl.Custom1, 

Cl.Custom2, Cl.Custom3, 

Cl.Custom4} 

C 

{Diabetes, California Housing, 

Re.Custom1, Re.Custom2, 

Re.Custom3, Re.Custom4} 

R 

Treelite 

copied 

OpenMP 

{Iris, Wine, Digits, Cl.Custom1, 

Cl.Custom2, Cl.Custom3, 

Cl.Custom4} 

C 

{Diabetes, California Housing, 

Re.Custom1, Re.Custom2, 

Re.Custom3, Re.Custom4} 

R 



4.3.3.  Software 

        On top of using Treelite and TL2cgen, the Microsoft 

Visual Studio Integrated Development Environment (IDE) 

version 17.9.6 will be used for all the programming related 

tasks. For collecting CPU usage data, the built in Microsoft 

Visual Studio Diagnostic Tool will be used. This tool can 

monitor the CPU usage, memory usage and provide a 

detailed function call stack overview. 

5. RESULTS 

5.1. Runtime Data 

Table 4: Runtime table for Iris dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.069 0.016 0.134 0.091 

20 0.07 0.023 0.07 0.086 

40 0.072 0.023 0.141 0.106 

60 0.061 0.025 0.137 0.119 

80 0.058 0.022 0.151 0.096 

100 0.067 0.029 0.151 0.093 

200 0.068 0.035 0.148 0.108 

500 0.083 0.061 0.178 0.111 

1000 0.161 0.123 0.238 0.171 

1200 0.197 0.168 0.265 0.237 

1500 0.287 0.212 0.311 0.284 

2000 0.385 0.330 0.419 0.394 

 

Table 5: Runtime table for Wine dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.058 0.016 0.143 0.096 

20 0.066 0.021 0.152 0.098 

40 0.07 0.02 0.145 0.100 

60 0.065 0.022 0.146 0.107 

80 0.070 0.026 0.145 0.103 

100 0.072 0.033 0.151 0.103 

200 0.077 0.045 0.179 0.112 

500 0.133 0.118 0.226 0.213 

1000 0.355 0.284 0.496 0.409 

1200 0.418 0.370 0.498 0.472 

1500 0.558 0.493 0.562 0.566 

2000 0.677 0.790 0.733 0.823 

 

 

 

 

 

 

 

 

 

Table 6: Runtime table for Diabetes dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.068 0.016 0.140 0.099 

20 0.073 0.022 0.147 0.108 

40 0.072 0.031 0.151 0.110 

60 0.094 0.053 0.172 0.121 

80 0.109 0.076 0.202 0.145 

100 0.116 0.087 0.216 0.166 

200 0.285 0.229 0.345 0.319 

500 0.715 0.733 0.770 0.768 

1000 1.670 1.927 1.441 2.004 

1200 2.139 2.529 1.967 2.593 

1500 2.884 3.473 2.509 3.489 

2000 4.043 4.736 3.318 4.745 

 

Table 7: Runtime table for Digits dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.193 0.050 0.254 0.192 

20 0.225 0.098 0.29 0.251 

40 0.273 0.182 0.455 0.355 

60 0.448 0.335 0.548 0.459 

80 0.511 0.431 0.659 0.579 

100 0.572 0.520 0.629 0.695 

200 1.132 1.128 1.270 1.219 

500 3.799 3.836 3.015 4.07 

1000 8.273 11.367 7.84 11.117 

1200 11.088 13.924 10.052 13.689 

1500 12.358 15.189 12.091 12.542 

2000 16.413 16.914 15.533 17.224 

 

Table 8: Runtime table for Housing dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.232 0.081 0.356 0.288 

20 0.414 0.277 0.559 0.485 

40 0.625 0.513 0.779 0.706 

60 0.835 0.818 1.154 1.014 

80 1.155 1.111 1.408 1.35 

100 1.423 1.497 1.675 1.751 

200 3.764 3.697 3.796 4.012 

500 12.486 12.316 12.089 12.254 

1000 33.282 31.293 29.668 30.704 

1200 46.338 41.868 39.969 40.405 

1500 63.663 61.475 59.969 58.911 

2000 98.518 92.948 89.769 90.154 

 

 

 

 



Table 9: Runtime table for Re.Custom3 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.315 0.089 0.324 0.343 

20 0.395 0.134 0.397 0.412 

40 0.443 0.226 0.455 0.518 

60 0.650 0.354 0.629 0.673 

80 0.754 0.484 0.663 0.804 

100 0.774 0.664 0.870 0.965 

200 1.615 1.504 1.619 1.846 

500 4.064 4.714 4.182 4.448 

1000 8.866 9.580 8.510 8.766 

1200 13.257 12.782 11.504 11.839 

1500 15.911 16.565 15.021 15.294 

2000 21.13 22.998 20.39 20.483 

 

Table 10: Runtime table for Re.Custom4 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.456 0.156 0.485 0.567 

20 0.612 0.248 0.611 0.697 

40 0.740 0.445 0.768 0.875 

60 0.987 0.780 0.913 1.189 

80 1.250 1.026 1.194 1.485 

100 1.546 1.367 1.469 1.793 

200 2.989 2.953 2.998 3.605 

500 7.755 8.430 7.624 8.061 

1000 19.720 19.466 20.617 19.243 

1200 24.690 25.406 24.411 25.466 

1500 31.439 32.259 32.261 30.856 

2000 42.024 42.925 42.470 42.996 

 

Table 11: Runtime table for Re.Custom2 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.259 0.061 0.280 0.222 

20 0.308 0.092 0.296 0.265 

40 0.282 0.154 0.328 0.325 

60 0.436 0.226 0.408 0.403 

80 0.438 0.321 0.608 0.504 

100 0.572 0.386 0.584 0.571 

200 1.038 0.821 1.200 1.034 

500 2.268 2.448 3.081 2.509 

1000 5.703 6.846 6.307 8.160 

1200 7.190 8.860 8.202 9.444 

1500 12.309 12.370 10.068 13.602 

2000 11.731 13.397 13.509 18.841 

 

 

 

 

 

Table 12: Runtime table for Re.Custom1 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.175 0.041 0.265 0.386 

20 0.200 0.063 0.264 0.168 

40 0.250 0.086 0.297 0.212 

60 0.285 0.128 0.352 0.242 

80 0.320 0.160 0.343 0.273 

100 0.396 0.208 0.408 0.332 

200 0.567 0.426 0.639 0.561 

500 1.320 1.278 1.496 1.414 

1000 2.789 2.942 3.097 3.178 

1200 3.381 3.531 4.050 4.079 

1500 4.305 4.677 5.002 5.324 

2000 7.044 6.542 7.163 8.535 

 

Table 13: Runtime table for Cl.Custom1 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.187 0.041 0.224 0.164 

20 0.206 0.063 0.232 0.195 

40 0.279 0.086 0.280 0.269 

60 0.324 0.128 0.408 0.347 

80 0.410 0.160 0.384 0.411 

100 0.344 0.208 0.464 0.416 

200 0.623 0.426 0.744 0.676 

500 1.391 1.278 1.616 1.716 

1000 3.636 2.942 4.698 4.992 

1200 4.665 3.531 5.858 6.515 

1500 5.622 4.677 7.402 8.456 

2000 7.813 6.542 10.140 11.423 

 

Table 14: Runtime table for Cl.Custom2 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.266 0.071 0.304 0.240 

20 0.338 0.120 0.400 0.296 

40 0.450 0.209 0.520 0.420 

60 0.397 0.334 0.616 0.512 

80 0.498 0.396 0.616 0.622 

100 0.595 0.501 0.840 0.651 

200 1.053 1.049 1.248 1.212 

500 2.820 3.362 3.553 3.670 

1000 7.313 8.838 9.836 10.252 

1200 8.815 11.453 11.685 13.050 

1500 11.325 14.161 14.861 16.031 

2000 15.787 17.583 20.129 22.632 

 

 

 

 

 



 

Table 15: Runtime table for Cl.Custom3 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.329 0.107 0.432 0.393 

20 0.431 0.263 0.632 0.506 

40 0.606 0.436 0.744 0.798 

60 1.017 0.636 1.024 0.953 

80 0.958 0.839 1.176 1.178 

100 1.100 1.045 1.296 1.380 

200 2.236 1.994 2.352 2.470 

500 5.593 7.151 6.970 8.082 

1000 15.202 19.050 20.662 21.790 

1200 18.629 23.644 24.332 27.084 

1500 23.509 30.063 30.802 31.308 

2000 33.063 41.571 43.488 45.564 

 

Table 16: Runtime table for Cl.Custom4 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite 

thread 

pool 

TL2cgen   

copied 

thread 

pool 

Treelite 

copied 

OpenMP 

1 0.521 0.169 0.656 0.659 

20 0.717 0.368 0.944 0.946 

40 1.148 0.752 1.488 1.307 

60 1.563 1.104 2.072 1.795 

80 1.706 1.472 2.160 2.170 

100 2.004 1.701 2.456 2.510 

200 3.546 3.778 4.233 4.579 

500 10.976 11.984 11.819 14.357 

1000 30.589 36.659 31.367 32.658 

1200 36.011 42.658 37.786 37.784 

1500 46.250 51.924 51.314 48.086 

2000 64.884 71.037 72.738 68.085 

 

5.2. CPU Usage Data 

Table 17: CPU usage table for Iris dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

 1 9.62 10.75 36.28 7.54 

20 10.39 14.24 40.11 8.70 

40 9.44 23.81 40.97 9.36 

60 9.79 22.47 34.00 7.91 

80 9.93 21.56 36.36 8.16 

100 10.08 19.09 41.04 7.82 

200 10.72 20.21 35.38 7.26 

500 13.06 19.80 36.52 8.57 

1000 17.43 24.76 37.81 10.73 

1200 17.28 24.73 44.04 13.79 

1500 18.04 28.04 41.01 14.62 

2000 20.80 29.95 44.67 17.28 

 

 

 

 

Table 18: CPU usage table for Wine dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 9.19 24.43 41.61 9.59 

20 10.76 21.33 37.29 7.60 

40 10.28 24.40 37.55 7.22 

60 9.74 27.72 43.23 10.62 

80 9.73 23.45 40.11 8.05 

100 11.00 24.38 40.09 7.82 

200 12.76 18.16 51.54 5.90 

500 13.47 31.75 37.22 13.14 

1000 25.21 36.28 49.18 15.98 

1200 26.31 36.95 44.49 21.24 

1500 26.90 35.17 46.16 23.39 

2000 28.48 39.51 46.80 22.11 

 

Table 19: CPU usage table for Diabetes dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 9.11 22.75 42.43 9.37 

20 10.82 29.29 41.00 7.50 

40 8.41 37.38 41.68 10.51 

60 12.07 28.08 49.35 10.94 

80 15.33 30.05 53.84 7.72 

100 12.38 31.45 43.23 10.34 

200 22.12 34.54 45.49 20.61 

500 31.14 39.36 44.25 26.36 

1000 36.96 38.78 41.08 30.13 

1200 37.63 41.55 44.95 29.60 

1500 33.24 49.67 48.47 29.13 

2000 43.28 52.29 62.13 19.73 

 

 

Table 20: CPU usage table for Digits dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 20.50 17.19 41.98 15.84 

20 21.15 25.76 50.62 19.96 

40 28.02 31.43 45.24 22.23 

60 27.57 35.06 51.85 23.60 

80 29.38 34.10 51.05 24.53 

100 31.93 34.86 48.20 26.55 

200 36.11 39.40 47.95 29.69 

500 36.83 46.88 46.51 34.12 

1000 49.00 33.19 48.51 38.39 

1200 40.48 43.32 46.39 34.34 

1500 43.78 47.38 47.50 39.74 

2000 55.06 33.14 53.65 33.68 

 

 

 



Table 21: CPU usage table for California Housing dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 27.91 21.12 54.36 19.65 

20 29.85 29.28 46.09 26.26 

40 31.00 34.79 45.58 24.94 

60 30.45 36.59 42.94 27.56 

80 31.43 36.72 41.58 27.15 

100 31.18 38.49 44.34 29.13 

200 33.67 42.34 50.20 28.04 

500 34.31 45.82 49.33 31.78 

1000 41.03 42.56 49.42 34.61 

1200 41.51 45.14 56.26 31.34 

1500 57.88 24.88 66.52 25.27 

2000 54.96 29.75 60.86 29.75 

 

Table 22: CPU usage table for Re.Cusomt4 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 41.17 20.05 43.70 28.13 

20 30.28 18.05 38.79 25.32 

40 25.84 21.34 36.97 20.56 

60 28.64 25.93 37.34 21.26 

80 24.09 23.37 34.40 22.01 

100 24.32 24.75 32.50 20.63 

200 24.28 26.03 33.95 22.55 

500     

1000     

1200     

1500     

2000     

 

Table 23: CPU usage table for Re.Cusomt3 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 34.91 10.70 46.07 23.66 

20 27.03 14.56 39.65 20.26 

40 22.48 16.70 38.83 19.03 

60 25.27 21.96 37.29 19.29 

80 25.51 26.40 34.83 20.86 

100 24.71 27.06 33.04 19.81 

200 25.45 30.07 34.68 22.10 

500 27.14 35.34 35.04 22.97 

1000     

1200     

1500     

2000     

 

 

 

 

Table 24: CPU usage table for Re.Cusomt2 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 28.80 21.61 48.00 19.31 

20 21.25 22.28 38.19 20.06 

40 19.67 23.21 36.13 19.36 

60 21.65 24.53 35.19 16.69 

80 22.78 24.59 37.37 20.29 

100 22.46 27.24 35.97 19.44 

200 24.56 30.92 37.31 20.87 

500 26.63 35.28 35.00 24.59 

1000 30.46 38.49 43.57 22.81 

1200 31.15 38.87 39.46 28.61 

1500 29.86 42.51 40.89 25.74 

2000     

 

Table 25: CPU usage table for Re.Cusomt1 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 17.11 22.78 40.33 13.61 

20 18.30 18.74 38.37 15.39 

40 15.06 24.63 38.81 14.40 

60 17.40 13.19 43.25 11.97 

80 15.70 24.37 36.82 16.32 

100 16.74 25.28 40.27 19.39 

200 21.58 27.97 37.20 21.18 

500 24.68 33.26 36.27 24.18 

1000 27.82 37.92 40.02 25.07 

1200 28.43 39.15 39.07 27.18 

1500 29.38 39.37 35.67 27.42 

2000 29.02 39.92 40.61 27.56 

 

Table 26: CPU usage table for Cl.Cusomt1 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 44.46 22.10 49.97 25.44 

20 38.62 28.77 46.23 29.41 

40 35.76 37.83 46.72 29.53 

60 36.64 35.91 45.29 29.86 

80 37.25 38.72 44.29 31.44 

100 36.64 40.08 47.61 30.28 

200 37.11 42.25 47.58 32.45 

500 37.54 47.50 55.93 29.70 

1000 37.70 50.92 58.62 28.80 

1200 36.80 53.34 54.80 33.54 

1500 42.79 47.35 60.92 29.19 

2000 40.68 49.50 55.01 34.98 

 

 

 

 



Table 27: CPU usage table for Cl.Cusomt2 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 30.32 16.85 53.91 19.57 

20 32.90 20.35 47.52 24.67 

40 34.36 28.58 52.47 25.78 

60 33.71 32.56 52.78 26.78 

80 34.85 38.93 47.66 28.95 

100 34.51 38.90 47.96 29.02 

200 34.62 44.20 46.13 31.47 

500 38.16 46.52 48.23 33.10 

1000 37.49 51.31 48.37 35.86 

1200 37.69 51.66 49.62 37.14 

1500 38.35 50.27 60.68 27.38 

2000 39.90 49.72   

 

Table 28: CPU usage table for Cl.Cusomt3 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 19.64 13.43 36.82 13.01 

20 17.63 25.35 36.23 13.91 

40 22.25 23.49 37.24 16.49 

60 24.06 31.91 42.75 16.69 

80 27.51 32.37 42.61 21.33 

100 25.15 31.13 42.88 23.05 

200 29.73 35.30 44.81 24.81 

500 33.42 43.69 45.10 28.51 

1000 35.35 49.06 47.64 31.21 

1200 36.16 47.83 47.65 31.71 

1500 38.48 47.49 42.70 35.17 

2000 38.42 48.42 44.02 34.22 

 

Table 29: CPU usage table for Cl.Cusom4 dataset 

 

#Trees TL2cgen   

OpenMP 

Treelite  

Thread  

Pool 

TL2cgen    

Copied 

Thread Pool 

Treelite  

Copied 

OpenMP 

1 24.57 13.08 43.63 16.43 

20 23.51 25.49 40.52 19.95 

40 23.97 33.29 45.76 20.65 

60 26.27 37.13 44.35 25.72 

80 30.45 31.98 39.54 25.71 

100 29.17 37.20 48.53 23.62 

200 32.61 39.35 47.19 27.44 

500 35.06 45.91 47.11 30.83 

1000 36.37 48.21 48.57 31.86 

1200 38.65 48.69 48.75 30.75 

1500 37.59 49.85 50.72 31.06 

2000 35.36 53.40 55.06 29.58 

 

 

6. DISCUSSION 

6.1. Runtimes  

Considering the performance of the test cases with 

regards to the Iris dataset shown in Table 4, the thread pool 

implementation of Treelite had the best runtime for all entries. 

While the initial GitHub issue showed that Treelite was twice 

as fast as TL2cgen, it is evident that this relationship is 

inconsistent with the data. With a random forest with only one 

decision tree, Treelite showed to be about 4.31 times faster 

than TL2cgen. However, as the number of decision trees starts 

to increase, the performance difference begins to blur, 

showing that Treelite and TL2cgen do not vary much. When 

looking at whether the thread pool from Treelite improves the 

performance of TL2cgen, it appears that it performs 

marginally worse. It is expected that more decision trees will 

once again cause this performance difference to become 

negligible. On the flip side, Treelite with the OpenMP 

implementation also performs slightly worse but still better 

than TL2cgen  with a thread pool. Table 5 shows that all 

configurations are once again similar in runtime for the largest 

number of decision trees, and that Treelite is a few times faster 

than the rest for a small number of decision trees (< 200). 

Looking at the slightly larger datasets, Tables 6 and 7 show 

that TL2cgen with a thread pool slightly outperformed the 

other cases for the larger random forests, even though both 

Treelite and the original TL2cgen implementation were many 

times faster for a single decision tree. The pattern where 

Treelite starts off being noticeably faster than all the other 

cases is a recurring one (and aligns with the GitHub issue), 

but as the size of the data sets grow, as shown in Table 8 

(largest dataset), all the cases show negligible differences in 

performance. Another good example of this is shown by the 

custom datasets whose runtimes are shown in Tables 9 – 16, 

where the number of samples are 750, 1500, 3000, and 6000 

where the number of attributes remained at 100. Already at a 

random forest size of 100 do incrementing sample sizes show 

a linear relationship, suggesting that by scaling the size of the 

dataset, the runtime will scale by a similar factor independent 

of how the parallelization scheme of TL2cgen and Treelite are 

configured. These observations remain consistent for Tables. 

6.2. CPU Usage 

When the program is executed with the Microsoft Visual 

Studio Diagnostic Tool (DT) enabled, it will take snapshots of 

a functions execution to provide an estimate of how much 

time the CPU spent executing it. The number of snapshots per 

unit time is called the sample rate and was set to a value of 

4000 samples per second. For each dataset and for each tree 

count 𝑁 the program was executed for a pair of configurations 

(𝐶𝑖 , 𝐶𝑖+1):  

1) 𝐶1 = (𝑇𝐿2𝐶𝑔𝑒𝑛 𝑂𝑝𝑒𝑛𝑀𝑃, 𝐷𝑖 , 𝑁)  

2) 𝐶2 = (𝑇𝑟𝑒𝑒𝑙𝑖𝑡𝑒 𝑇ℎ𝑟𝑒𝑎𝑑 𝑃𝑜𝑜𝑙, 𝐷𝑖 , 𝑁) 

3) 𝐶3 = (𝑇𝐿2𝐶𝑔𝑒𝑛 𝐶𝑜𝑝𝑖𝑒𝑑 𝑇ℎ𝑟𝑒𝑎𝑑 𝑃𝑜𝑜𝑙, 𝐷𝑖 , 𝑁) 

4) 𝐶4 = (𝑇𝑟𝑒𝑒𝑙𝑖𝑡𝑒 𝐶𝑜𝑝𝑖𝑒𝑑 𝑂𝑝𝑒𝑛𝑀𝑃, 𝐷𝑖 , 𝑁) 

Its important to note that configuration pair (𝐶1, 𝐶2) were 

executed in sequence and in a separate execution as the other 

pair, the same was done for (𝐶3, 𝐶4). The reason for this is so 



then the DT could provide the percentage of time the CPU 

spent executing the Treelite and TL2cgen configurations and 

not mixed configurations.  

A logical expectation for the CPU usage results would be that 

Treelite spends a smaller percentage of CPU time and has a 

faster runtime compared to TL2cgen, however the data 

indicates that his is not always the case. At face value it 

appears that generally, as the size of the data set increases, 

then the CPU spends a larger percentage of time on execution 

for both TL2cgen and Treelite. Additionally, for a given data 

set, as the number of trees in a random forest increase, then 

once again, the CPU spends a larger percentage of time on 

execution. A deeper inspection of the data will show that the 

percentage values do not converge and stabilize as 

consistently as the runtimes do. For example, Table 19 in the 

final row, the Treelite Copied OpenMP implementation used 

between 2 and 3 times less CPU time compared to the others. 

A similar case is true for Tables 17,18, and 21. While its clear 

that the runtimes get larger for larger random forests, the same 

cannot be said for the CPU usages.  

In Tables 17 – 29 there is at least one case where the next CPU 

usage percentage is smaller than the previous one. While it is 

not of much interest if they differ by a few percentage points, 

but decreasing by almost fifty percent is cause for 

investigation. Table 21 illustrates this in the Treelite Thread 

Pool column and at tree count 500 and 1500. On top of this, 

the runtimes that map to Table 21 are Table 8, showing that 

the CPU spent a smaller percentage of time on the case for 

tree count 1500 as opposed to tree count 500, despite the 

former having a much slower run time. Additionally for tree 

count 2000 in Table 21, the TL2cgen  Copied Thread Pool was 

marginally faster but had a significantly higher CPU usage 

percentage than the Treelite Thread Pool and the Treelite 

Copied OpenMP implementations. 

In Tables 17 – 29 it appears that when TL2cgen adopted the 

custom thread pool from Treelite, the CPU usage percentage 

in most cells tends to be significantly larger than the OpenMP 

implementation. Why this is the case might have to do with 

manually creating threads instead of having OpenMP manage 

them as it is designed for parallel process management and 

creation. The standard implementation for Treelite also tends 

to have larger CPU percentages than the OpenMP 

implementation from TL2cgen, however the significance is 

not as large as when TL2cgen  uses the thread pool. Tables 22, 

23, 24, and 27 all have missing data. The reason for this is 

because the DT adds overhead by taking samples of function 

execution and thus increases the total execution time. The 

overhead got so large that the program began to take too long 

to complete.  

The reason why these results are interesting is because the test 

cases assume all else is constant, the only changes for a given 

configuration are the number of trees, so at face value, the 

CPU should dedicate a similar amount of time to all 

components of the program. However, it was observed during 

the data collection phase that an increasing amount of time 

was spent compiling the model into a .dll file (larger random 

forest). So it may be logical to assume that for a given 

configuration pair (𝐶𝑖 , 𝐶𝑖+1), that if the T(𝐶𝑖) > 𝑇(𝐶𝑖+1) 

where 𝑇 is some CPU usage function, and the actual 

prediction runtimes are approximately the same, then the CPU 

must have spent more time on other processes related to the 

operation of 𝐶𝑖.  

 

6.3. Custom Thread Pool Approach 

Despite the data showing that the thread pool from 

Treelite does not significantly influence the runtime of 

TL2cgen, it is still interesting to explore other possible 

parallelization schemes. The proposed scheme has not been 

thoroughly tested and will require further investigation and 

development, however if correctly implemented, it may 

improve the runtimes of the current implementations in both 

TL2cgen   and Treelite. The algorithm does not deviate much 

from what Treelite already does, it uses the same SPSC queue 

and still has an input and output channel per thread for 

popping and pushing tasks and their prediction results. Where 

the proposed algorithm differs is in the structure of the tasks. 

Specifically, Treelite currently pushes for a single thread a 

single task containing a batch of inputs for which 

corresponding predictions are to be made. Instead, the 

algorithm will separate this batch into individual prediction 

tasks, so a single task consisting of a batch of five inputs, will 

now be stored as five individual tasks.  

The motivation for this algorithm stems from the fact that if 

multiple threads are spawned, its expected that these threads 

will complete their tasks at different points in time. Since 

initially, each thread only has a single task, a thread who 

finishes its task quicker than the others will wait idly until it 

is destroyed. The new algorithm suggests that a thread who is 

finished with its tasks, may steal tasks from another thread to 

make productive use of its time alive. The first action a thread 

will take is to try and pop from the input queue. After a 

successful pop, the thread will make a prediction for the given 

input and store the result. The thread will keep track of the 

tasks that it has completed and a variable to store the 

accumulated prediction result.  

Once a thread has completed all its tasks it then can 

continuously steal and execute the tasks of the next thread 

(thread id + 1). The steal function is the same as the pop 

function except with the condition that the steal will fail if the 

number of tasks in the victim thread queue is one. If the victim 

thread only has one task left, then the stealing thread will 

leave it. If there is more than one task, then the stealing thread 

will atomically pop it from the queue of the victim. The 

stealing thread will store the results from each prediction to a 

variable and keep track of the number of tasks it has stolen. 

Once the stealing thread can no longer steal, it will atomically 

share the number of stolen tasks and result value with the 

victim thread using an atomic store operation. Since the 

victim thread will have at most one task remaining, it will be 

able to pop this task and as usual increment its completed 

count and current result value. The difference now is that the 

number of stolen tasks may be larger than zero, in which case 

it can load the stolen result and task count and update its own 

values as if it were the one to have executed those tasks. At 

this point the victim thread is finished with its tasks and may 

begin stealing tasks. 



Listing 9: Custom thread pool worker function 

7. RELATED WORK 

Given a random forest and an input vector for which a 

prediction must be made, it might be that there are hundreds 

or even thousands of decision trees in the random forest. It is 

therefore reasonable to assume that generating predictions for 

each tree sequentially is not as computationally and memory 

efficient as opposed to using some form of parallel 

computing. There has been ample research done in the domain 

of improving the inference times of tree ensembles. One paper 

investigated fast inference of tree ensembles on ARM devices 

where they investigate the effects of using fixed point 

quantization in random forests along with the architectural 

differences between ARM and Intel CPUs [7]. Another paper 

proposed solutions for making training of random forests 

faster by efficiently finding split points [14]. Specifically, they 

investigated accelerating the training process of Gradient 

Boosted Decision Trees in the case where the outputs are 

multidimensional. Here multidimensional output refers to 

multiclass classification, multilabel classification, or 

multioutput regression. A scoring function was developed to 

find the best split of a decision tree. A similar paper was 

written that implemented faster training using MABSplit, 

which is a subroutine used to efficiently find split points [8].  

A more related paper did research into a CUDA based 

implementation of random forests. CUDA stands for 

Compute Unified Device Architecture which is a C API that 

gives direct access to the instruction set of the GPU and 

allows developers to utilize the parallel computing 

capabilities of said GPU [5]. What is interesting about this 

paper is that their implementation parallelized both training 

and classification, except it was directed towards GPUs. 

While the use of GPUs is essential in applications that make 

use of machine learning, not all such applications can make 

use of one. Specifically, GPUs are expensive, resource 

intensive, require a lot of computational power and memory 

as opposed to embedded devices that only have a CPU. In 

addition, TL2cgen   compiles a model to an easy to work with 

format that can be distributed amongst C++ applications. This 

paper did not specify the model format or how it gets handled 

in their program. Furthermore, they assigned each thread to a 

tree for prediction, so if a random forest contains hundreds or 

even thousands of trees, then the GPU spawns an equivalent 

number of threads.  

 

8. CONCLUSION 

The problem addressed in this research was to find out if 

TL2cgen   was indeed slower than Treelite, and if it was, how 

the influence of thread pools used in TL2cgen might affect the 

runtime. The reason why thread pools were of interest was 

because it was asserted in a conversation on a GitHub issue 

that Treelite using custom thread pools might be the reason 

for its superior performance. However, it was found that 

TL2cgen is a few times worse than Treelite for a small number 

of decision trees in a random forest and performs slightly 

better or approximately the same for anything larger than 

1000 trees. In addition, it was also uncovered that the initial 

GitHub issue was misleading as it presented a single case for 

which TL2cgen was slower, and that the reason for this was 

due to not using thread pools, but turned out that the thread 

pool from Treelite has very little influence on performance. 

 

9. FUTURE WORK 

There is still room for investigation, as the reason why 

Treelite is superior to TL2cgen   for small instances is still 

unknown. Furthermore, while the CPU data presented 

interesting results, a more detailed breakdown of the 

respective libraries per function would make a good 

exploration. Finally, reproducing the same or similar 

experiments as the ones conducted in this research on 

different architectures and operating systems would show if 

Treelite or TL2cgen  are optimised for different pieces of 

hardware.  

 

10. ACKNOWLEDGEMENTS  

I would like to personally thank my supervisors, Dr.Kuan-

Hsun Chen and Duncan Bart for guiding me throughout this 

research project and always being there if I needed any 

assistance. I would also like to thank Philip.H.Cho for taking 

the time to help me understand his work, answer my questions 

and giving me pointers.  



REFERENCES 

[1] Cho, P.H. (2023) Why does it seem that TL2cgen   is 

slower than treelite_runtime? · issue #18 · DMLC/TL2cgen  , 

GitHub. Available at: https://github.com/dmlc/TL2cgen  

/issues/18 (Accessed: 30 June 2024).  

[2] Cho, P.H.. 2023. “Treelite”. 

https://github.com/dmlc/treelite/tree/release_3.9. (2024) 

[3] Cho, P.H..2023. “TL2cgen  ”. 

https://github.com/dmlc/TL2cgen  /tree/release_0.3. (2024) 

[4] Coursera Staff (2024) 10 examples of Deep Learning 

Applications, Coursera. Available at: 

https://www.coursera.org/articles/deep-learning-applications 

(Accessed: 30 June 2024).  

[5] H. Grahn, N. Lavesson, M. H. Lapajne, and D. Slat, 

“Cudarf: A cudabased implementation of random forests,” in 

2011 9th IEEE/ACS International Conference on Computer 

Systems and Applications (AICCSA), 2011, pp. 95–101. 

[6] Humayun, Z. (2024) Atomics and concurrency in C++, 

freeCodeCamp.org. Available at: 

https://www.freecodecamp.org/news/atomics-and-

concurrency-in-cpp. (Accessed: 30 June 2024). 

[7] L. M. Koschel, Buschjager, “Fast inference of tree 

ensembles on arm devices,” arXiv:2305.08579, 2023.  

[8] L. T. P. S. Z. Tiwari, Kang, “Mabsplit: Faster forest 

training using multiarmed bandits,” arXiv:2212.07473, 

2022. 

[9] Molnar, C. (2020) Interpretable machine learning ; a 

guide for making Black Box models explainable. Leanpub.  

[10] OpenMP - scheduling(static, dynamic, guided, runtime, 

auto) (no date) OpenMP - Scheduling(static, dynamic, 

guided, runtime, auto) - Yiling’s Tech Zone | 风逝无殇的瞎

逼逼基地. Available at: 

https://610yilingliu.github.io/2020/07/15/ScheduleinOpenM

P/ (Accessed: 30 June 2024).  

[11] Ousterhout, J. and Mazières, D. (no date) Locks and 

condition variables, Locks & Cond. Vars. Available at: 

https://web.stanford.edu/~ouster/cs111-

spring21/lectures/locks/ (Accessed: 30 June 2024).  

[12] scikit-learn developers (no date b) 1.11. ensembles: 

Gradient boosting, random forests, bagging, voting, 

stacking, scikit. Available at: https://scikit-

learn.org/stable/modules/ensemble.html#forest (Accessed: 

30 June 2024).  

[13] scikit-learn developers (no date) 1.10. decision trees, 

scikit. Available at: https://scikit-

learn.org/stable/modules/tree.html (Accessed: 30 June 

2024).  

[14] V. Iosipoi, “Sketchboost: Fast gradient boosted decision 

tree for multioutput problems,” arXiv:2211.12858, 2022.  

[15] Williams, A. (2019) C++ concurrency in action, second 

edition by Anthony Williams. S.l., Norwood, Mass.: Manning 

Publications : distributed by Skillsoft Books.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


