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About Me
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Agenda of this workshop
1. Intro on data ingestion

2. Challenges of data ingestion

3. An intro to dlt and how it solves these challenges

4. Challenges of vector DBs

5. Intro to LanceDB

6. Practical implementation of a scalable RAG data pipeline



What is data ingestion?
The process of extracting data from a producer, transporting it to a convenient environment, 
and preparing it for usage by normalising it, sometimes cleaning, and adding metadata.

Sometimes the format in which it appears is structured, and with an explicit schema (e.g. 
Parquet or a db table)

Most of the time, the format is weakly typed and without explicit schema (e.g. csv and json), in 
which case some normalization and cleaning is required

In many data science teams, data magically ✨ appears - because the engineer loads it.

💡 What is a schema? The schema specifies the expected format and structure of data within 
a document or data store, defining the allowed keys, their data types, and any constraints or 
relationships.



What is a RAG and a vector DB?
Retrieval augmented generation (RAG): 

● A framework to retrieve contextually relevant information and integrate it into an LLM’s query
● Learn more

Vector DB:

● A database that lets you store, index and query embeddings of your data 
● Learn more

https://youtu.be/Q75JgLEXMsM?feature=shared
https://youtu.be/C5AWdL3kg1Q?feature=shared


Why is this course even needed? Why not just use 
some python scripts?

● Less work, no more breaking python scripts

● Make sure your data is of good quality (data contracts)

● Keep your data up to date without having to reload the entire dataset

● Make your data pipelines production ready!



Challenges with data ingestion



Moving data with scripts

Local 
machine



Getting data from APIs



● Data is always changing - how do we keep it up to date?

● You need to be able to identify bad data

● You need to be able to version and roll back your data loads

Data & schema versioning



● Loading a few documents is one thing, what happens when you load thousands?

● Hardware limits: limited memory and disk space can cause your machines to crash

● Network limits: sometimes networks fail

● API limits: rate limiting

Scaling data ingestion



Additional consideration for RAGs
● Pre-processing: 

○ Extracting the data from PDFs, jsons etc
○ Making sure the resulting text data is clean

● Chunking: making sure the text is in manageable segments

We won’t cover cleaning text data or chunking in detail - please refer to section 4 of the 
LLM Zoomcamp 

https://github.com/DataTalksClub/llm-zoomcamp/tree/main/04-orchestration


dlt (data load tool)



Introducing dlt
dlt is a Python library that automates data loading with features like schema creation, normalization, 

and integration adaptability. 



Introducing dlt

Easy install and set up.

Easy to use, learning curve is shallow, 
declarative interface.

It’s Pythonic, you don’t have to learn new 
frameworks or programming languages.

import dlt 

pipeline = dlt.pipeline(
   pipeline_name='my_pipeline',
   destination='bigquery',
   dataset_name='my_data',
)
pipeline.run(data, table_name='users')

>> pip install dlt



Integrations
Verified sources: 

30+ existing well-tested 
sources, such as Postgres 
CDC, SQL databases, REST API 
connector, Google Sheets, 
Zendesk, Stripe, Notion, 
Hubspot, GitHub and others.

Destinations: 

16 destinations, such as 
DuckDB, Postgres, Delta 
tables, BigQuery, Snowflake, 
and others.

Reverse ETL – build your own 
destination

Integrations: 

dbt-runner, deploy helpers, 
Streamlit build-in app, etc. 

Be it a Google Colab notebook, 
AWS Lambda function, an 
Airflow DAG, or your local 
laptop — dlt can be dropped in 
anywhere.

https://dlthub.com/docs/dlt-ecosystem/verified-sources/
https://dlthub.com/docs/dlt-ecosystem/destinations/


Normalizing nested data
dlt normalizes nested data

data = [
    {
        'id': 1,
        'name': 'Alice',
        'job': {
            'company':"ScaleVector",
            'title': "Data Scientist",
        },
        'children': [
            {
               'id': 1,
               'name': 'Eve'
            },
            {
               'id': 2,
               'name': 'Wendy'
            }
        ]
    }
]



Schema evolution

dlt contains all DE best practices. Anyone who ever worked with Python can create the pipeline on a 
Senior level:

■ Schema evolution With dlt schema evolution is handled automatically. 
When modifications occur in the source data’s schema, 
dlt detects these changes and updates the schema 
accordingly. 



Data contracts

dlt contains all DE best practices. Anyone who ever worked with Python can create the pipeline on a 
Senior level:

■ Schema evolution
■ Data contracts

You can use data contracts modes to tell dlt how to apply 
contract for a particular entity:

● evolve: No constraints on schema changes.
● freeze: Raise an exception if data is encountered that 

does not fit the existing schema.
● discard_row: Discard any extracted row if it does not 

adhere to the existing schema.
● discard_value: Discard data in an extracted row that 

does not adhere to the existing schema.

https://dlthub.com/docs/general-usage/schema-contracts#schema-and-data-contracts


Incremental loading

dlt contains all DE best practices. Anyone who ever worked with Python can create the pipeline on a 
Senior level:

■ Schema evolution
■ Data contracts
■ Incremental loading

Incremental loading is a crucial concept in data pipelines that 
involves loading only new or changed data instead of reloading 
the entire dataset. 

https://dlthub.com/docs/general-usage/incremental-loading


Performance management

dlt contains all DE best practices. Anyone who ever worked with Python can create the pipeline on a 
Senior level:

■ Schema evolution
■ Data contracts
■ Incremental loading
■ Performance management

dlt provides several mechanisms and configuration options 
to manage performance and scale up pipelines:

1. Parallel execution: extraction, normalization, and load 
processes in parallel.

2. Thread pools and async execution: sources and 
resources that are run in parallel.  

3. Memory buffers, intermediary file sizes, and 
compression options. 

4. Scalability through iterators and chunking. 

https://dlthub.com/docs/reference/performance#parallelism
https://dlthub.com/docs/reference/performance#parallelism
https://dlthub.com/docs/reference/performance#running-several-pipelines-in-parallel-in-single-process
https://dlthub.com/docs/reference/performance#running-several-pipelines-in-parallel-in-single-process
https://dlthub.com/docs/reference/performance#memorydisk-management
https://dlthub.com/docs/reference/performance#memorydisk-management
https://dlthub.com/docs/build-a-pipeline-tutorial#scalability-via-iterators-chunking-and-parallelization


How does it address our challenges?
● Messy python scripts: with dlt you write minimal python code, it handles most complexities 

automatically

● Extracting the data: dlt automatically unnests json, types it and figures out the schema

● Data versioning: Each load has an id, is versioned and could be rolled back

● Data quality: You can define “data contracts” that reject data that isn’t of the right type

● Scaling: 

○ Incremental loading - only load new or changed data

○ Performance management



Challenges with vector DBs



Maintaining data and embeddings
● Most vector DBs only store embeddings and their metadata

● Extra infrastructure and maintenance costs! 



Introducing LanceDB



LanceDB: a scalable open source vector DB
● Stores your data (incl text and images), the embeddings and metadata

● Highly scalable + fast



Link to colab
https://colab.research.google.com/drive/1nNOybHdWQiwUUuJFZu__xvJxL_ADU3xl?usp=sharing

https://colab.research.google.com/drive/1nNOybHdWQiwUUuJFZu__xvJxL_ADU3xl?usp=sharing

