
 Backend Features - Banking App - FS Java Capstone 2

 Account Management - Backend Features - Banking App - FS Java Capstone 3

 Card Management - Backend Features - Banking App - FS Java Capstone 4

 User Management - Backend Features - Banking App - FS Java Capstone 11

 Loan Management - Backend Features - Banking App - FS Java Capstone 21

 Branch Management - Backend Features - Banking App - FS Java Capstone 29

 Transaction Management - Backend Features - Banking App - FS Java Capstone 30

 Frontend Features - Banking App - FS Java Capstone 37

 Homepage - Frontend Features - Banking App - FS Java Capstone 38

 Admin Portal - Frontend Features - Banking App - FS Java Capstone 40

 Account Management - Admin Portal - Banking App - FS Java Capstone 41

 Card Management - Admin Portal - Banking App - FS Java Capstone 48

 User Management - Admin Portal - Banking App - FS Java Capstone 55

 Loan Management - Admin Portal - Banking App - FS Java Capstone 63

 Branch Management - Admin Portal - Banking App - FS Java Capstone 70

 Transaction Management - Admin Portal - Banking App - FS Java Capstone 77

 Customer Portal - Frontend Features - Banking App - FS Java Capstone 82

 Users - Customer Portal - Banking App - FS Java Capstone 83

 Accounts - Customer Portal - Banking App - FS Java Capstone 93

 Cards & Loans - Customer Portal - Banking App - FS Java Capstone 105

 Branches - Customer Portal - Banking App - FS Java Capstone 125

2

Backend Features - Banking App - FS Java Capstone

Account Management - Backend Features - Banking App - FS Java Capstone

Card Management - Backend Features - Banking App - FS Java Capstone

User Management - Backend Features - Banking App - FS Java Capstone

Loan Management - Backend Features - Banking App - FS Java Capstone

Branch Management - Backend Features - Banking App - FS Java Capstone

Transaction Management - Backend Features - Banking App - FS Java Capstone

Backend Features

https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309952514/Account+Management+-+Backend+Features+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309624903/Card+Management+-+Backend+Features+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309886992/User+Management+-+Backend+Features+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/310116377/Loan+Management+-+Backend+Features+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309526577/Branch+Management+-+Backend+Features+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309657607/Transaction+Management+-+Backend+Features+-+Banking+App+-+FS+Java+Capstone

3

4

Card Management - Backend Features - Banking App - FS Java Capstone

Card Creation

Card Data Management

Card Search

Card Management

Manually Create

Card

As a user, I need the ability to manually create a

card in the banking app's backend system,

ensuring that the process is secure, reliable, and

integrates seamlessly with the existing database.

1. Functionality

API endpoint to create a new card record.

Ability to associate the card with a user

account.

Support for different card types (e.g., debit,

credit).

2. Security

Authentication: Ensure only authorized users

can access the API.

Authorization: Validate user permissions for

card creation.

Encryption: Secure transmission of card and

user data.

3. Validation
Input Validation: Check for valid card details

(e.g., card number format, expiration date).

Ensure mandatory fields (like card type, user

ID) are not empty.

4. Error Handling

Implement try-catch blocks to handle

unexpected errors.

Provide meaningful error messages for client-

side handling.

Ensure the backend does not crash on

encountering errors.

5. Database Updates
Update the user record with the new card

details.

Ensure atomic transactions to maintain data

integrity.

Story Description Acceptance Criteria Story

Point
s

Card Creation

5

Log creation date and time of the card.

6. Output/Notification
Return a success message with the card ID

upon successful creation.

In case of failure, return an appropriate error

message.

7. Logging

Log all requests to create cards, including

timestamp and user ID.

Record successful and failed attempts for

auditing.

Store logs for troubleshooting and compliance

purposes.

Data Upload As a user, I need a reliable and secure method

for uploading data during the card creation

process in the banking app's backend, ensuring

that my personal and financial information is

handled safely and accurately.

1. Functionality
The API should accept user data relevant to

card creation.

Ensure correct processing and mapping of the

uploaded data to the user's profile.

2. Security

Authentication: Verify the identity of the user

before allowing data upload.

Authorization: Ensure the user has the

necessary permissions to upload data.

Encryption: Use strong encryption protocols for

data in transit and at rest.

3. Validation
Input Validation: Check for correctness,

formatting, and completeness of the uploaded

data.

Reject any uploads that do not meet the

predefined criteria.

4. Error Handling
Implement robust error handling to prevent

crashes during data upload.

Provide clear error messages to the user or the

calling service in case of a failure.

5. Database Updates

Update the user's profile in the database with

the new card information upon successful data

upload.

Ensure database transactions are atomic to

maintain data integrity.

6. Output/Notification

On successful upload, return a confirmation

message or status code.

Notify the user of the successful update or

provide a relevant error message in case of

failure.

7. Logging

6

Log details of each API request including

timestamp, user ID, and the nature of the

request.

Record any exceptions or errors encountered

during the data upload process.

Update Card

Details

As a user, I want to be able to update my card

details securely and efficiently through the

backend API, so that my card information is

always current and accurate.

1. Functionality

API should allow users to update card details

such as expiration date, cardholder name, and

billing address.

Ensure changes are reflected in real-time.

2. Security
Authentication: Verify that only authenticated

users can access the update feature.

Authorization: Ensure users can only update

their own card details.

Encryption: Sensitive data like card details

should be encrypted during transmission.

3. Validation

Input validation: Check for the validity of the

card number, expiration date, and other card

details.

Validate that new details adhere to standard

card information formats.

4. Error Handling
Implement error handling to prevent the

application from crashing.

Provide meaningful error messages to the user

in case of invalid inputs or system failures.

5. Database Updates

On successful update, the new card details

should be recorded in the database.

Ensure previous data integrity during the

update process.

6. Output/Notification

After a successful update, return a confirmation

message.

In case of failure, provide a clear error

message.

7. Logging
Log all API requests for updating card details.

Include timestamps, user ID, and nature of the

request for auditing and debugging purposes.

Delete Card As a user, I want the ability to securely delete my

card information from the banking application,

ensuring that all related data is permanently

removed from the system without affecting other

functionalities.

1. Functionality

API endpoint to delete a specific card record.

Should verify the card belongs to the user

making the request.

2. Security

Card Data Management

7

Authentication: Verify user identity before

allowing card deletion.

Authorization: User can only delete cards

associated with their account.

Encryption: Ensure data transmission is

encrypted.

3. Validation

Input Validation: Check for valid card ID format.

Ensure card ID exists in the database before

attempting deletion.

4. Error Handling
Provide meaningful error messages for invalid

requests.

Implement try-catch to prevent application

crashes.

Handle scenarios where card does not exist.

5. Database Updates
On successful deletion, the card record should

be permanently removed.

Ensure no residual data remains in the

database.

6. Output/Notification

Return a confirmation message upon

successful deletion.

In case of failure, provide a clear error

message.

7. Logging

Log details of the deletion request such as

(user ID, card ID, timestamp).

Record successful and unsuccessful deletion

attempts.

Filter Cards As a user, I want the ability to filter my card

transactions, so that I can easily search and

analyze my card usage based on specific criteria

such as date, amount, or merchant type, without

exposing any front-end functionality.

1. Functionality
The API should allow filtering of card

transactions based on multiple criteria (date,

amount, merchant type, etc.).

It must support pagination for efficient data

retrieval.

The API should provide a summary of

transactions when requested.

2. Security

Implement Authentication and Authorization

checks to ensure only valid users can access

the feature.

All data transmissions must be encrypted using

industry-standard encryption protocols.

3. Validation

Input validation to ensure that all incoming data

(dates, amounts, etc.) adhere to expected

Card Search

8

formats and ranges.

Reject and return appropriate error messages

for invalid inputs.

4. Error Handling

Gracefully handle errors to prevent the API

from crashing.

Provide meaningful error messages for

common issues (e.g., network failures, invalid

inputs).

5. Database Updates

Ensure that queries do not affect database

integrity.

Optimized queries for efficient data retrieval

and minimal performance impact.

6. Output/Notification

The API should return filtered results in a

structured and consistent format (e.g., JSON).

Include relevant metadata (e.g., total number of

results, pagination information).

7. Logging

Log all API requests for auditing, error

handling, and debugging purposes.

Ensure logs contain sufficient information

(timestamp, user ID, request details) while

adhering to privacy standards.

View Cards As a user, I want to view and manage my bank

cards through the Banking App's backend API,

enabling me to securely access, review, and

manage my card details without interacting with

the front-end interface.

1. Functionality
The API should retrieve a list of all the cards

linked to the user's account.

Should support query parameters for filtering

and sorting the card list.

2. Security

Authentication: Verify that the request is made

by a logged-in user with valid credentials.

Authorization: Ensure the user has permission

to view the cards.

Data Encryption: Sensitive data, such as card

numbers, must be encrypted during

transmission.

3. Validation

Input Validation: Validate all input data for

correctness and prevent SQL injection or other

malicious attacks.

4. Error Handling

Implement error handling to manage

unexpected or invalid input without crashing.

Provide meaningful error messages to the

caller for known failure scenarios.

5. Database Updates

9

No updates required in the database for this

read-only feature.

Ensure database queries are optimized for

performance.

6. Output/Notification
Return a structured response containing the list

of cards with relevant details (excluding

sensitive information like full card numbers).

Include metadata in the response, such as total

number of cards, pagination data if applicable.

7. Logging
Log all API requests with necessary details for

auditing and debugging purposes.

Sensitive data should not be logged.

Sort Cards As a user, I need the ability to sort my bank cards

in the banking app's back-end system, allowing

me to organize and view them based on specific

criteria such as card type, expiration date, and

usage frequency.

1. Functionality

The API should allow sorting of card details

based on various attributes (e.g., card type,

expiration date, usage frequency).

Provide multiple sorting options (e.g.,

ascending, descending).

2. Security

Authentication: Ensure that only authenticated

users can access the sorting feature.

Authorization: Verify that the user has the

necessary permissions to sort cards.

Encryption: Sensitive card data should be

encrypted during transmission.

3. Validation

Input validation: Validate all inputs for sorting

(e.g., sorting parameters should be recognized

values).

4. Error Handling
Implement error handling to prevent the

program from crashing.

Provide meaningful error messages to the

front-end in case of invalid inputs or system

failures.

5. Database Updates
No direct updates to the database, but the API

should interact with the database to retrieve

and sort card information.

6. Output/Notification
The API should return a sorted list of cards

based on the specified criteria.

In case of no matching records, return an

appropriate message.

7. Logging

Log all API requests with relevant information

(user ID, timestamp, type of sort requested).

10

Log any errors or exceptions for auditing and

debugging purposes.

11

User Management - Backend Features - Banking App - FS Java Capstone

User Authentication/Authorization

User Creation

User Data management

User Search

User Management

Account

Authorization

As a user, I want to ensure that my account is

secure and that only I or authorized individuals

have access to my personal information and

functionalities within the system. I need a reliable

way to prove my identity and grant permissions

accordingly.

1. Credential Verification:

The system must verify the correctness of the

username and password during login.

The system should lock the account for a

predefined period after several consecutive

failed login attempts.

2. Role-Based Access Control (RBAC):

The system must ensure users have

appropriate roles assigned to access specific

features and functionalities.

Unauthorized access attempts to restricted

areas should be logged and alerted.

3. Session Management:

Once authenticated, the user should be

provided with a session token that expires after

a period of inactivity.

The system should provide a secure log-out

mechanism that invalidates the user's session

token.

4. Security Features:

Passwords must be stored securely using

modern hashing algorithms.

The system should enforce password

complexity requirements.

5. Privacy Compliance:

Ensure that the user authentication process

complies with relevant data protection

regulations.

Story Description Acceptance Criteria Story

Point
s

User Authentication/Authorization

12

Account

Authentication

As a user, I want to be able to be authenticated

as a user with an active account so that I can

access secure areas of the application with

confidence that my data and access are

protected.

1. Valid Credential Handling

The system must accept a combination of

username and password.

If incorrect credentials are entered, the user is

informed with an appropriate error message.

If correct credentials are entered, the user is

successfully authorized and directed to their

dashboard.

2. Account Lock Mechanism
After three consecutive failed login attempts,

the account should be temporarily locked for a

configurable period.

3. Password Encryption

Passwords must be encrypted using a strong

encryption algorithm.

No plain text passwords should be stored in

the database.

4. Session Management

Once logged in, the user must be provided with

a secure token for session management.

Sessions must expire after a configurable

period of inactivity.

5. Audit Logging

All login attempts, successful or not, should be

logged with date, time, and location if available.

The logs must be accessible only to authorized

administrative personnel.

6. Compliance with Regulations
The authentication process must be in

compliance with relevant banking and privacy

regulations in the jurisdiction(s) where the

application is used.

7. Accessibility

The login interface must be accessible to users

with disabilities, complying with applicable

accessibility standards like WCAG 2.0.

8. Performance

The login process must complete within a

reasonable time, not exceeding a defined

number of seconds (e.g., 5 seconds under

normal network conditions).

Manually Create

User

 As a user I should be able to manually create

User for clients

e.g. from a form filled in at our branches

1. Security:

All user input is validated to prevent SQL

injection or other forms of malicious input.

Passwords are hashed and securely stored,

never displayed in plaintext.

The system implements CAPTCHA or similar

mechanism to deter automated account

User Creation

13

creation.

2. Error Handling:
Clear error messages are displayed for invalid

inputs or failed creation attempts (e.g., email

already in use, weak password).

The system logs errors and alerts

administrators of continuous failed creation

attempts which might indicate abuse or system

issues.

3. Success Confirmation:

Upon successful creation, the user receives a

confirmation message and, if applicable, a

verification email to activate the account.

The system directs the user to the next logical

step, whether it be profile completion, a tutorial,

or direct access to the platform.

4. Privacy Compliance:

The system clearly outlines how the user data

will be used and ensures compliance with

relevant data protection regulations (e.g.,

GDPR, CCPA).

Users have the option to read and accept the

privacy policy and terms of service before the

account is created.

5. Account Verification:

Optional two-factor authentication setup is

offered to enhance account security.

Email verification is required to confirm the

user's email address.

Data Upload As a user, I want to be able to upload my data

securely and efficiently, so that I can manage and

access it as needed in the application.

1. Access and Authentication:
Only authenticated users should be able to

access the data upload feature.

The user should receive clear feedback if

they're not authorized to perform this action.

2. File Format:

The system should only accept files in .csv

format.

The system should validate the CSV format

and ensure it matches the expected structure.

The user should be notified if the uploaded file

format is not supported or if the structure

doesn't match.

3. File Size and Performance:

There should be a maximum file size limit to

ensure the system does not get overloaded

(e.g., 50MB).

Large files should show a progress bar or an

indication to assure users that the upload is in

progress.

14

The system should handle and recover

gracefully from any potential timeouts or

interruptions.

4. Data Validation:

Prior to loading the data into the database, the

system should validate the data for

consistency, correctness, and completeness.

The user should be notified of any validation

errors with clear instructions or feedback on

how to rectify them.

5. Duplication Check:

The system should check for potential

duplicate records to avoid redundancy.

If duplicates are found, the user should be

prompted for a decision on how to proceed

(overwrite, skip, or duplicate).

6. Error Handling and Reporting:

The system should log all upload attempts,

successes, and failures.

In case of an error, the user should receive a

clear error message indicating what went

wrong.

The user should have the option to download

an error report if there are issues with the

uploaded data.

7. Database Integration:

Successful uploads should result in the data

being correctly and securely saved into the

database.

The system should provide a summary post-

upload, detailing the number of records added,

updated, or any skipped due to issues.

8. User Feedback:

Upon successful upload and integration, users

should receive a success message or

notification.

Users should have an option to view a

summary or a log of their upload history.

9. Security:

Data transfers should be secured using

appropriate encryption standards.

Sensitive data, if any, should be treated with

additional layers of security and may require

masking or encryption before upload.

10. Compatibility:

The upload feature should be compatible with

all major browsers (e.g., Chrome, Firefox,

Safari, Edge).

Mobile compatibility, if within the scope, should

also be ensured.

15

Data Upload

(Stretch Goal)

 As a user, I should be able to upload account

data from a CSV file and load it to a database.

Future Implementation: To be completed using

AWS Lambda, Kinesis and DynamoDB*

1. File Format

The system must accept files in CSV (Comma-

Separated Values) format.

Files in any format other than CSV must be

rejected with an appropriate error message.

2. File Size
There should be a maximum file size limit, and

files exceeding this limit should be rejected

with a suitable error message.

The user should be notified if the upload is

taking longer than expected due to file size.

3. File Content
The CSV file must have headers that match

the database fields.

The system should validate the content type for

each field based on the corresponding

database field's datatype.

If there are any inconsistencies in the data, an

error message should appear indicating the

row number and specific issue.

Empty or null values in mandatory fields must

trigger an error message.

4. Upload Process

Users must be able to browse and select a

CSV file from their local system.

There should be a clear indication of the

upload's progress, such as a progress bar or

percentage.

On successful upload, users should receive a

confirmation message.

On unsuccessful upload, users should be

informed with a relevant error message and be

given the option to try again.

The system should allow the user to cancel the

upload process at any point.

5. Data Loading to Database

Upon successful upload and validation, data

from the CSV must be loaded into the

database.

Data loading should not produce any

duplicates in the database.

If any record from the CSV conflicts with

existing data in the database, the system

should provide feedback on the conflicting

records and ask the user if they wish to

overwrite, ignore, or take another specific

action.

The system must ensure that the data integrity

and relations in the database are maintained

during the loading process.

16

6. Security

The data upload feature should be secure and

free from vulnerabilities such as SQL

injections.

Uploaded files should be scanned for potential

threats or malicious content before processing.

Sensitive data, if present in the CSV, should be

handled securely and in compliance with

relevant data protection regulations.

7. Logs and Reporting

All upload actions, whether successful or

failed, must be logged with details like

timestamp, username, file name, and relevant

error messages if any.

Users should be able to download or view a

report of the upload, detailing success, failures,

and actions taken on conflicts.

Delete User As a user, I would like to be able to delete User

(with a delete confirmation provided to avoid

accidental deletions)

Per Corporate policy: User accounts are not
actually deleted. These accounts are

maintained for audit purposes.

1. Security Verification:
Prior to deletion, the system must verify the

user's identity.

The user should be required to re-enter their

password or undergo two-factor authentication.

2. Data Handling:

Upon confirmation, all personal data

associated with the user's account must be

permanently deleted from the system.

The system should also ensure that any

backups or copies of this data are removed.

3. Confirmation and Feedback:

The user should receive immediate feedback

that the deletion process has begun.

A confirmation email or notification should be

sent once the account is successfully deleted.

4. Error Handling:
In case of any errors during the deletion

process, the user should be informed with a

clear message.

The system should provide guidance or options

to retry or contact support.

5. Post-deletion State:
After account deletion, the user should no

longer be able to log in or recover the account.

The system should anonymize or remove any

public-facing data (like comments or posts)

previously associated with the account.

6. Audit Trail:
The system should maintain an audit trail of the

account deletion for compliance and security

User Data management

17

purposes.

7. Compliance Adherence:
The deletion process must comply with

relevant data protection and privacy laws, such

as GDPR.

Update User

Details

As a user, I want to be able to update my details,

such as name, email address, and password, so

that I can ensure my personal and contact

information is current and accurate.

1. Authentication and Authorization

The system must validate the user's

authentication token before allowing access to

update user details.

Only authorized users with appropriate

permissions (e.g., the user themselves or an

administrator) can update user details.

2. Input Validation

All user input fields (e.g., name, email, phone

number) must be validated for correct format,

length, and data type according to the system's

specifications.

Proper error messages must be returned if any

input fails validation.

3. Updating User Details
The system must update the user's details in

the database, ensuring data consistency and

integrity.

Only the fields provided by the user should be

updated, leaving other fields unchanged.

4. Error Handling

The system must handle any errors during the

update process gracefully, providing

appropriate error messages to inform the user.

The system should log errors for further

investigation and debugging.

5. Concurrency Control

The system must handle concurrent updates to

the same user record and prevent any data

loss or corruption using appropriate

concurrency control mechanisms (e.g.,

optimistic or pessimistic locking).

6. Performance

The update process must be optimized for

performance, ensuring a fast and seamless

user experience.

The system must maintain a reasonable

response time even under high load or with a

large number of users.

7. Security

The system must follow best practices for

secure data transmission (e.g., using HTTPS)

and storage (e.g., hashing passwords).

The system should be designed to prevent

common security vulnerabilities such as SQL

18

injection, cross-site scripting (XSS), and cross-

site request forgery (CSRF).

View User As a user, I want to be able to view specific user

details so that I can retrieve relevant information

about users quickly and efficiently.

1. Authentication and Authorization

The system must validate the user's

authentication token before allowing access to

update user details.

Only authorized users with appropriate

permissions (e.g., the user themselves or an

administrator) can update user details.

2. Input Validation

All user input fields (e.g., name, email, phone

number) must be validated for correct format,

length, and data type according to the system's

specifications.

Proper error messages must be returned if any

input fails validation.

3. Error Handling

The system must handle any errors during the

update process gracefully, providing

appropriate error messages to inform the user.

The system should log errors for further

investigation and debugging.

4. Concurrency Control

The system must handle concurrent updates to

the same user record and prevent any data

loss or corruption using appropriate

concurrency control mechanisms (e.g.,

optimistic or pessimistic locking).

5. Performance

The update process must be optimized for

performance, ensuring a fast and seamless

user experience.

The system must maintain a reasonable

response time even under high load or with a

large number of users.

6. Security

The system must follow best practices for

secure data transmission (e.g., using HTTPS)

and storage (e.g., hashing passwords).

The system should be designed to prevent

common security vulnerabilities such as SQL

injection, cross-site scripting (XSS), and cross-

site request forgery (CSRF).

Filter User As a user, I need the ability to filter through a list

of users based on specific criteria so that I can

efficiently manage and interact with users in the

system.

1. Functionality

The API endpoint must support filtering based

on multiple attributes such as name, role, and

status.

User Search

19

The API should return a list of users that match

the filtering criteria.

2. Security

Implement Authentication and Authorization

checks.

Only authorized users (e.g., admin roles)

should be able to access this endpoint.

Ensure all sensitive data in transit is encrypted

using industry-standard protocols (e.g., TLS).

3. Validation

Input validation to ensure only valid data is

processed.

The API should reject requests with invalid filter

parameters with an appropriate error message.

4. Error Handling

The API should handle errors gracefully and

not crash upon encountering unexpected

situations.

Error responses should include meaningful

messages for debugging without exposing

sensitive information.

5. Database Updates

No direct database updates or changes are

expected as part of this user story.

The API should only read and filter existing

user data from the database.

6. Output/Notification
The API response should include a structured

list of filtered users.

Include relevant user details in the response,

ensuring no sensitive information is exposed.

7. Logging

Log all API requests for filtering users.

Include information such as request time, user

ID of the requester, filter parameters used, and

any errors encountered.

Sort User As a user I would like to be able to sort the user

search results that I am viewing.

1. Functionality

The API should provide a feature to sort users

based on specified fields (e.g., name,

registration date, account type).

It must support sorting in both ascending and

descending orders.

2. Security

Implement Authentication and Authorization

checks.

Only authorized personnel (e.g., admins,

support staff) should have access to this

feature.

20

Ensure all sensitive data in transit is encrypted

using industry-standard protocols (e.g., TLS).

3. Validation

Input validation for sorting parameters to

prevent SQL injection and other malicious

activities.

Validate that sorting parameters match the pre-

defined fields available for sorting.

4. Error Handling

Gracefully handle errors with appropriate

messaging.

Ensure the program does not crash on

encountering an error (e.g., invalid sorting

parameter).

5. Database Updates
No direct updates to the database are needed

for this read-only operation.

Ensure database queries are optimized for

performance.

6. Output/Notification

The API should return a sorted list of users.

Include relevant metadata (e.g., total number

of users, number of pages).

7. Logging
Log all API requests for sorting users.

Include details like timestamp, user ID of the

requestor, sorting parameters for auditing and

debugging purposes.

21

Loan Management - Backend Features - Banking App - FS Java Capstone

Loan Creation

Loan Data management

Loan Search

Loan Management

Manually Create

Loan

 As a user I should be able to manually create

Loan for clients

e.g. from a form filled in at our branches

1. Functionality:

The system should allow authorized users to

create a loan manually by inputting all

necessary fields, such as loan amount, term,

interest rate, and borrower details.

2. Authorization and Access:

Only users with a designated role (for example,

'Loan Officer') should be able to create a new

loan manually. Unauthorized access attempts

should be logged and reported.

3. Validation:

The system should validate all inputs. For

instance, the loan amount and term should be

positive numbers, and the borrower details

should match with the records in the database.

4. Loan Agreement Generation:

Upon successful creation of a loan, the system

should automatically generate a loan

agreement.

5. Database Update:

The newly created loan should be correctly

reflected in the database, updating the

borrower's profile and the overall loan portfolio.

6. Notification:

The system should send notifications to

relevant parties (like the borrower and the loan

manager) once the loan is created.

7. Error Handling:

In case of invalid input or system error, the

system should provide appropriate error

Story Description Acceptance Criteria Story

Point
s

Loan Creation

22

messages and instructions to correct the

errors.

8. Audit Trails:

All manual loan creation activities should be

logged for auditing purposes.

Data Upload As a user, I want to upload loan data files

securely and efficiently to the system so that I can

process loans without manual data entry. This

feature should validate the data for format and

completeness, handle errors gracefully, and

ensure that data is encrypted and transferred

securely.

1. Access and Authentication:

Only authenticated users should be able to

access the data upload feature.

The user should receive clear feedback if

they're not authorized to perform this action.

2. File Format:

The system should only accept files in .csv

format.

The system should validate the CSV format

and ensure it matches the expected structure.

The user should be notified if the uploaded file

format is not supported or if the structure

doesn't match.

3. File Size and Performance:

There should be a maximum file size limit to

ensure the system does not get overloaded

(e.g., 50MB).

Large files should show a progress bar or an

indication to assure users that the upload is in

progress.

The system should handle and recover

gracefully from any potential timeouts or

interruptions.

4. Data Validation:
Prior to loading the data into the database, the

system should validate the data for

consistency, correctness, and completeness.

The user should be notified of any validation

errors with clear instructions or feedback on

how to rectify them.

5. Duplication Check:
The system should check for potential

duplicate records to avoid redundancy.

If duplicates are found, the user should be

prompted for a decision on how to proceed

(overwrite, skip, or duplicate).

6. Error Handling and Reporting:
The system should log all upload attempts,

successes, and failures.

In case of an error, the user should receive a

clear error message indicating what went

wrong.

The user should have the option to download

an error report if there are issues with the

uploaded data.

23

7. Database Integration:

Successful uploads should result in the data

being correctly and securely saved into the

database.

The system should provide a summary post-

upload, detailing the number of records added,

updated, or any skipped due to issues.

8. User Feedback:

Upon successful upload and integration, users

should receive a success message or

notification.

Users should have an option to view a

summary or a log of their upload history.

9. Security:

Data transfers should be secured using

appropriate encryption standards.

Sensitive data, if any, should be treated with

additional layers of security and may require

masking or encryption before upload.

10. Compatibility:

The upload feature should be compatible with

all major browsers (e.g., Chrome, Firefox,

Safari, Edge).

Mobile compatibility, if within the scope, should

also be ensured.

Data Upload

(Stretch Goal)

 As a user, I should be able to upload account

data from a CSV file and load it to a database.

Future Implementation: To be completed using

AWS Lambda, Kinesis and DynamoDB*

1. File Format

The system must accept files in CSV (Comma-

Separated Values) format.

Files in any format other than CSV must be

rejected with an appropriate error message.

2. File Size

There should be a maximum file size limit, and

files exceeding this limit should be rejected with

a suitable error message.

The user should be notified if the upload is

taking longer than expected due to file size.

3. File Content

The CSV file must have headers that match

the database fields.

The system should validate the content type for

each field based on the corresponding

database field's datatype.

If there are any inconsistencies in the data, an

error message should appear indicating the

row number and specific issue.

Empty or null values in mandatory fields must

trigger an error message.

4. Upload Process
Users must be able to browse and select a

CSV file from their local system.

24

There should be a clear indication of the

upload's progress, such as a progress bar or

percentage.

On successful upload, users should receive a

confirmation message.

On unsuccessful upload, users should be

informed with a relevant error message and be

given the option to try again.

The system should allow the user to cancel the

upload process at any point.

5. Data Loading to Database
Upon successful upload and validation, data

from the CSV must be loaded into the

database.

Data loading should not produce any

duplicates in the database.

If any record from the CSV conflicts with

existing data in the database, the system

should provide feedback on the conflicting

records and ask the user if they wish to

overwrite, ignore, or take another specific

action.

The system must ensure that the data integrity

and relations in the database are maintained

during the loading process.

6. Security

The data upload feature should be secure and

free from vulnerabilities such as SQL

injections.

Uploaded files should be scanned for potential

threats or malicious content before processing.

Sensitive data, if present in the CSV, should be

handled securely and in compliance with

relevant data protection regulations.

7. Logs and Reporting

All upload actions, whether successful or failed,

must be logged with details like timestamp,

username, file name, and relevant error

messages if any.

Users should be able to download or view a

report of the upload, detailing success, failures,

and actions taken on conflicts.

Delete Loan As a user, I would like to be able to delete loan

(with a delete confirmation provided to avoid

accidental deletions)

Per Corporate policy: Data is not actually
deleted. It is maintained for audit purposes.

1. Access Control:

Only authorized users (e.g., banking

administrators, loan officers, or individuals with

specific permissions) can delete a loan.

Unauthorized attempts should return an error

message.

Loan Data management

25

2. Confirmation Prompt:

Before the loan is deleted, the system must

present a confirmation prompt to the user to

prevent accidental deletions.

The prompt message should clearly state the

action to be taken and ask for the user's

confirmation.

3. Loan Status Check:

The system should not allow deletion of loans

with outstanding balance or any active status.

Only loans marked as 'Closed', 'Paid off' or

equivalent status should be eligible for deletion.

4. Data Integrity:

All related data (e.g., payment history,

customer details related to the loan) should

either be deleted or anonymized in accordance

with data protection laws and banking

regulations.

5. Log of Deletions:

A log must be maintained recording details of

the deleted loans, including who deleted it,

when it was deleted, and the state of the loan

at the time of deletion.

6. Error Handling:

If a deletion attempt fails, the system should

provide a clear, user-friendly error message

explaining why the attempt failed.

7. Success Confirmation:
Upon successful deletion, the system should

provide a success message confirming that the

loan has been deleted.

8. Non-Recoverability:

Once a loan is deleted, it cannot be recovered.

The system should make this clear in the

confirmation prompt before deletion.

Update Loan

Details

 As a user, I would like to be able to edit and

update any Loan details

1. Authorization:

Only authorized users (loan officers, authorized

bank employees) should be able to access and

use the "Update Loan Details" feature.

2. Validation:
The system should validate all loan details

inputs according to business rules (e.g., loan

amount, interest rate, tenure, etc.) before

updating the record in the system.

3. Auditability:

The system should maintain a complete audit

trail of every update made to a loan's details,

including the user who made the changes, the

date and time of the change, and what was

changed.

26

4. Notification:

The system should notify the relevant parties

(e.g., loan account holder, guarantor, etc.) via

their preferred communication method (e.g.,

email, SMS) when a loan's details are updated.

5. Error Handling:

The system should provide clear and

understandable error messages when updates

cannot be made, explaining why the update

failed.

6. Accessibility:

The feature should be easily accessible within

the user interface, requiring no more than 2-3

clicks from the main dashboard to reach.

7. Performance:
The system should update loan details within a

reasonable timeframe (e.g., less than 5

seconds), ensuring a seamless user

experience.

8. Consistency:

The updated loan details should consistently

reflect across all systems where this data might

be accessed or referenced, ensuring data

integrity.

9. Rollback Mechanism:
The system should provide a mechanism to roll

back changes in case of an error or

unauthorized update.

10. Data Protection:

The system should adhere to data protection

and privacy standards during the update

process, ensuring the confidentiality of loan

details.

Filter Loan As a user, I want to be able to filter loan options

based on criteria such as amount, interest rate,

loan term, and lender so that I can find loans that

match my needs more efficiently.

1. Functionality

The system allows the user to filter loans

based on various parameters such as amount,

interest rate, loan term, and lender.

Filters can be applied individually or in

combination.

2. Back-end Implementation

All filtering logic is implemented on the back-

end.

No front-end logic is involved in the filtering

process, ensuring a clear separation of

concerns.

3. Performance

The filter operation must complete within a

reasonable timeframe (e.g., less than 2

seconds) to ensure a good user experience.

Loan Search

27

The system efficiently handles large datasets

without significant performance degradation.

4. Security

All user inputs for filters are validated on the

back-end to prevent SQL injection and other

security vulnerabilities.

The system adheres to data privacy standards

and regulations for handling user data.

5. Data Integrity

The system ensures that the data returned

after applying filters is accurate and consistent

with the database.

6. Error Handling

In case of invalid filter inputs, the system

returns a clear error message to the user.

The system gracefully handles server-side

errors, ensuring that they do not crash the

application.

View Loan As a user I would like to be able to view all loans

and have the ability to filter those same loans

1. Functionality

API should retrieve specific loan details based

on user's query.

Support for querying by loan ID or user-specific

parameters.

2. Security

Implement authentication (AuthN) and

authorization (AuthZ) mechanisms.

Ensure API access is restricted to

authenticated and authorized users only.

3. Encryption
Ensure sensitive data (e.g., loan amounts, user

details) is encrypted at rest.

4. Validation

Input validation for all incoming data (e.g., loan

IDs, user credentials).

Prevent SQL injection and other common

security vulnerabilities.

5. Error Handling

API to provide clear, user-friendly error

messages for invalid requests.

Implement try-catch blocks to prevent crashes

and log exceptions.

6. Database Updates
Read-only access to loan-related tables for this

API.

Ensure no write operations are performed on

the database.

7. Output/Notification

Successful API calls should return detailed

loan information in a structured format (e.g.,

JSON).

28

Include loan status, amount, duration, interest

rate, etc., in the response.

8. Logging

Log all API requests with sufficient details

(timestamp, user ID, request type).

Include error logging for troubleshooting and

auditing purposes.

Sort Loan As a user, I want to be able to sort loan offers or

applications based on various criteria such as

interest rate, loan amount, tenure, and others so

that I can easily find the most suitable loan

options.

1. Sorting Feature Integration:

The backend should provide a feature to sort

loan offers based on specified criteria including

but not limited to interest rate, loan term, and

total repayment amount.

Users should be able to specify the sorting

order (ascending or descending).

2. Data Integrity:

Ensure that sorting the loan offers does not

alter the underlying data or attributes of the

loans.

3. Performance:
The sorting operation must be efficient and not

cause significant delays in the user interface

response time.

4. Default Sorting:

In the absence of user-specified criteria, the

system should have a default sorting order

(e.g., by interest rate ascending).

5. Multiple Criteria Sorting:

Allow users to sort by multiple criteria

simultaneously, where the secondary criteria

are used when the primary criteria values are

equal.

6. Invalid Criteria Handling:
The system should validate the sorting criteria

input and return an error message for any

unrecognized or unsupported criteria.

7. Fault Tolerance:

In case of a failure during the sorting process,

the system should not crash and should

provide a meaningful error message to the

user.

8. Security:

Ensure that the sorting feature does not

expose any vulnerabilities that could be

exploited to gain unauthorized access to data

or other resources.

Implement appropriate security measures to

safeguard the integrity and confidentiality of the

loan data during the sorting process.

29

30

Transaction Management - Backend Features - Banking App - FS Java
Capstone

Transaction Creation

Transaction Search

Transaction Management

Create

Transaction

As a user, I want to create a transaction, so that I

can transfer funds between accounts or make

payments.

1. Transaction Details:

Users should be able to input essential

transaction details such as source account,

destination account or biller details, amount,

and transaction description.

The system should validate that the entered

amount does not exceed the source account

balance.

2. Security:

Transaction initiation should require multi-factor

authentication or a one-time password (OTP)

to ensure the user's identity.

All transaction data should be encrypted during

transmission and storage.

Secure logging of all transaction activities,

ensuring no sensitive data like full account

numbers are exposed.

3. Error Handling:

If the transaction fails, the user should be

notified with a clear error message detailing the

reason for the failure.

All transaction errors should be logged for audit

and debugging purposes.

The system should handle transaction

rollbacks effectively, ensuring that funds are

not deducted unless the transaction is

successful.

4. Transaction Confirmation:

Upon successful transaction completion, the

user should receive a confirmation message

with a transaction reference number.

Story Description Acceptance Criteria Story

Point
s

Transaction Creation

31

Both the source and destination accounts

should reflect the updated balances post-

transaction.

5. Rate Limiting and Fraud Detection:

The system should have mechanisms to detect

and prevent suspicious transaction patterns.

Rate limiting should be in place to prevent

excessive transactions from a single account in

a short duration.

6. Notifications:

Users should have the option to receive

notifications (e.g., email, SMS) upon

transaction completion.

Notifications should mask sensitive data,

showing only the last few digits of account

numbers.

7. Performance:

Transactions should process within a

reasonable timeframe, ensuring user

satisfaction.

The system should be able to handle multiple

concurrent transaction requests without

performance degradation.

View Transaction As a user, I want to be able to view the full

details of a specific transaction so that I can

check all associated data or troubleshoot issues.

1. Access Control:

Only users with admin privileges can access

the "View Transaction" feature.

Users must be authenticated and authorized to

ensure secure access.

2. Security:

All transaction details are encrypted during

transmission between the server and the front-

end admin portal.

Any sensitive data, like account numbers,

should be partially masked when displayed.

E.g., "XXXX-XXXX-1234".

The system should have a secure logging

mechanism that records every transaction view

activity by the admin, including date, time, and

user ID.

3. Error Handling:

If there's an issue retrieving transaction data

from the backend, the system should show an

error message like "Error retrieving transaction

details. Please try again later."

The system should handle and display errors

gracefully without exposing any technical

details or vulnerabilities.

4. Usability:

Transaction Search

32

Each transaction detail displayed should be

clearly labelled to avoid confusion.

Sort Transactions As a user, I need the ability to sort my

transactions in various orders (e.g., date, amount,

type) through the backend API, ensuring a

tailored view of my transaction history for better

financial management.

1. Functionality

The API should support sorting transactions by

date, amount, and transaction type.

It must provide options for ascending and

descending order sorting.

2. Security

Authentication: Ensure only authenticated

users can access the sort functionality.

Authorization: Verify that users can only sort

transactions within their account.

Encryption: Use SSL encryption for data

transmission.

3. Validation

Validate sort parameters (date, amount, type)

for correct data type and format.

Ensure invalid or unsupported parameters are

rejected.

4. Error Handling

Implement error handling to prevent the API

from crashing on invalid requests.

Provide meaningful error messages for issues

like invalid parameters or server errors.

5. Database Updates

No direct database updates needed for sorting.

Sorting should be applied at the query level.

6. Output/Notification

The API should return a sorted list of

transactions based on the specified

parameters.

Include relevant metadata in the response

(e.g., sort parameter used, total transactions).

7. Logging

Log all API requests with details like user ID,

timestamp, sort parameters, and response

status for auditing and debugging.

Record any exceptions or errors encountered

during the API request processing.

Filter

Transactions

 As a user, I want to be able to filter transactions

based on parameters such as date range,

transaction type, or customer name so that I can

focus on a subset of transactions that meet

specific criteria.

1. Search Input

A search input box should be provided to allow

the admin to enter keywords related to the

transaction.

2. Date Range
Admins should have the option to filter

transactions by a specific date range. Both

'start date' and 'end date' input fields should be

available.

3. Transaction Type Filter

33

Admins should have the option to filter

transactions based on their types (e.g.,

Deposit, Withdrawal, Transfer).

4. Amount Range

There should be an option to filter transactions

based on a specific amount range. Both

minimum and maximum input fields should be

available.

5. Account Number
Allow filtering based on specific account

numbers associated with the transactions.

6. Display Results
Transactions matching the filter criteria should

be displayed in a list format.

Each item in the list should show transaction

details such as the date, account number,

transaction type, and amount.

7. No Results
If no transactions match the filter criteria, a

message indicating "No transactions found"

should be displayed.

8. Reset Filters

An option should be available to clear all active

filters and view all transactions again.

9. Security

The filtering options should adhere to the role-

based access controls of the banking system.

Sensitive transaction details must be protected

and should not be displayed unless the admin

has the appropriate permissions.

All transactions and filtering actions should be

logged for auditing purposes.

10. Error Handling

If the filter functionality encounters an error, a

user-friendly error message should be

displayed to the admin.

System errors should not reveal any technical

or sensitive details to the user.

Invalid date or amount range inputs should

prompt a validation message informing the

admin of the correct format or range.

11. Performance

Filtering results should be returned in a timely

manner, ensuring that admins do not

experience unnecessary delays.

Search

Transaction

As a user, I want to have the ability to search my

transactions, so that I can easily find specific

transaction details based on various criteria such

as transaction date, amount, type, recipient, and

more. This feature should support quick

1. Functionality
The API should allow querying of transaction

data based on input parameters like

transaction ID, date range, amount range, and

transaction type.

34

navigation and filtering capabilities for efficient

management and review of my banking

transactions.

It should support pagination and sorting to

handle large volumes of data efficiently.

The API should integrate with the existing

transaction database to fetch and filter

transaction data accurately.

2. Security

Implement Authentication and Authorization

checks to ensure only authenticated users can

access the search functionality.

Sensitive data, such as account numbers,

should be encrypted in transit and at rest.

Ensure compliance with data protection

regulations relevant to banking and financial

transactions.

3. Validation
Input validation must be in place to verify that

all incoming data is of the correct format and

within acceptable ranges.

Implement checks against SQL injection or

other forms of injection attacks in the input

fields.

4. Error Handling

The API should return meaningful error

messages for invalid queries, unauthorized

access, or internal failures.

Ensure the system logs the errors while not

crashing or exposing sensitive information.

Implement retries or fallbacks for transient

errors when possible.

5. Database Updates
Define how the transaction data is accessed

and what indices might be needed to improve

search performance.

Ensure that search operations are read-only

and do not modify transaction data.

Outline any potential database optimizations

necessary for handling search queries

efficiently.

6. Output/Notification

Upon a successful search, the API should

return a list of transactions matching the

criteria.

Define the structure of the returned data,

ensuring it includes essential transaction

details but omits sensitive information.

For no results, return a clear message

indicating no transactions were found matching

the criteria.

7. Logging

35

Log all API requests with necessary details for

auditing, error handling, and debugging without

exposing sensitive data.

Include timestamps, user information, type of

request, and the outcome of the request

(success or failure) in the logs.

Ensure that logs are secure, properly rotated,

and comply with data retention policies.

Download

Transactions

As a user, I want to be able to securely download

my transaction history so that I can keep personal

records, perform analysis, or use the data for

reporting purposes.

1. Functionality:

The system shall allow users to download their

transaction history as a CSV, PDF, or Excel file.

Users shall be able to specify a date range for

the transactions they wish to download.

The download feature should be accessible

from the transaction search results page.

2. Performance:

The system should generate the download file

within a reasonable time, not exceeding 60

seconds.

The system should handle concurrent

download requests efficiently.

3. Security:

Ensure that all data transfers are conducted

over a secure channel (e.g., HTTPS).

Implement role-based access controls to

ensure only authorized users can download

transaction data.

Ensure sensitive data within the transaction

history is masked or encrypted as per

compliance standards.

4. Data Integrity:

The downloaded file must accurately reflect the

user's transaction history, matching the records

displayed on the user interface.

Ensure that the data format and structure in the

downloaded file are consistent and error-free.

5. Input Validation:

The system should validate date range inputs

and ensure they are within acceptable

parameters (e.g., not future-dated, not

exceeding a maximum historical range).

Alert the user if the selected date range returns

no transactions for download.

6. Error Handling:

In cases of failure (e.g., server error, timeout),

the system should notify the user and log the

incident for further investigation.

Provide users with clear error messages if the

download cannot be completed due to specific

36

issues (e.g., network failure, file generation

error).

7. Fallback Mechanisms:

In case of a system malfunction or heavy load,

ensure there's a fallback or retry mechanism

for users to attempt the download again.

Inform users of the estimated wait time if the

system is experiencing high traffic or delays.

37

Frontend Features - Banking App - FS Java Capstone

Homepage - Frontend Features - Banking App - FS Java Capstone

Admin Portal - Frontend Features - Banking App - FS Java Capstone

Customer Portal - Frontend Features - Banking App - FS Java Capstone

Frontend Features

https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309526563/Homepage+-+Frontend+Features+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309592114/Admin+Portal+-+Frontend+Features+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309723167/Customer+Portal+-+Frontend+Features+-+Banking+App+-+FS+Java+Capstone

38

Homepage - Frontend Features - Banking App - FS Java Capstone

Admin Portal

Homepage

As a User, I want to have an intuitive, secure,

and informative homepage on the Admin Portal,

so that I can effectively manage various banking

activities, ensure optimal customer experience,

and maintain system integrity.

1. Security

The portal should require secure login

credentials, following industry-standard

practices for password complexity and

encryption.

Failed login attempts are limited to three, after

which an account is temporarily locked, and an

email is sent to the administrator.

2. Usability

The homepage should display critical

information (e.g., system status, recent

transactions, user management, etc.) in a clear,

concise manner.

Navigation to other sections of the portal

should be intuitive and easily accessible from

the homepage.

3. Functionality
The portal should allow the administrator to

manage user accounts, including creating,

editing, disabling, and deleting accounts.

The portal should enable administrators to

generate different types of reports (e.g.,

transaction reports, audit logs, etc.).

4. Performance

The portal should load within 3 seconds under

normal network conditions, with all elements

rendered correctly.

All interactive elements on the page (e.g.,

buttons, links, dropdowns) should respond to

user actions within 200ms.

5. Accessibility

The portal should comply with WCAG 2.1 AA

accessibility guidelines, including features for

visually impaired users like screen reader

compatibility and adjustable font sizes.

The portal should be responsive and

compatible with different devices and screen

sizes.

Story Description Acceptance Criteria Story

Point

s

Homepage

39

User Portal

Homepage

As a user, I want a user-friendly and secure

portal homepage,

So that I can manage and view all of my financial

activities in one place.

1. Accessibility & Compatibility:

The portal should be accessible and

compatible across different devices (desktops,

tablets, smartphones) and major browsers

(Chrome, Firefox, Safari, Edge).

The portal should comply with accessibility

standards.

2. Login Security

After a certain number of failed login attempts,

the user account should be temporarily locked.

3. Homepage Layout:

Upon successful login, the user should see a

dashboard summarizing their account status,

including recent transactions, current balance,

and pending transactions.

The dashboard should display any alerts or

messages requiring the user's attention.

4. Navigation:

A clear and intuitive navigation system should

be present for users to access different banking

services (e.g., account management, fund

transfers, loan applications, Card

management).

A search function should be provided for the

user to find information or services quickly.

5. Account Management:
Users should be able to view detailed account

information, update personal details, and

manage their banking preferences.

6. Performance & Reliability:

The portal should load quickly (under 2-3

seconds) even under heavy traffic.

Scheduled maintenance and unexpected

downtime should be minimal and

communicated in advance.

7. Privacy & Compliance:

The portal should comply with all applicable

laws and regulations, including data privacy

laws.

The portal should display the bank's privacy

policy and terms of use in a visible location.

40

Admin Portal - Frontend Features - Banking App - FS Java Capstone

Account Management - Admin Portal - Banking App - FS Java Capstone

Card Management - Admin Portal - Banking App - FS Java Capstone

User Management - Admin Portal - Banking App - FS Java Capstone

Loan Management - Admin Portal - Banking App - FS Java Capstone

Branch Management - Admin Portal - Banking App - FS Java Capstone

Transaction Management - Admin Portal - Banking App - FS Java Capstone

Admin Portal

https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309624847/Account+Management+-+Admin+Portal+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309985281/Card+Management+-+Admin+Portal+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309854221/User+Management+-+Admin+Portal+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309854234/Loan+Management+-+Admin+Portal+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309854246/Branch+Management+-+Admin+Portal+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309624864/Transaction+Management+-+Admin+Portal+-+Banking+App+-+FS+Java+Capstone

41

Account Management - Admin Portal - Banking App - FS Java Capstone

Admin Portal: Account Creation

Admin Portal: Account Data Management

Admin Portal: Account Search

Account Management

Data Upload As a user, I need the ability to securely upload

data files to the Admin Portal for account creation

purposes. This process should validate the data,

handle any errors gracefully, and provide clear

notifications upon completion or failure, while

ensuring all activities are logged for audit and

troubleshooting purposes.

1. Functionality

The system shall allow users to upload data

files in specified formats (e.g., CSV, Excel).

Uploaded data shall be used exclusively for

account creation within the banking

application.

2. Security

The file upload process shall comply with the

bank's data protection and privacy policies.

Secure transfer protocols shall be used for file

uploads to prevent unauthorized access.

3. Validation

The system shall validate file format and

content, ensuring compatibility with account

creation requirements.

Validation checks shall include format

correctness, mandatory fields presence, and

data consistency.

4. Error Handling

In case of an invalid file format or content, the

system shall display a descriptive error

message to the user.

The system shall handle exceptions gracefully

without causing system crashes or data

corruption.

5. Output/Notification

Upon successful upload and validation, the

system shall display a confirmation message

to the user.

Story Description Acceptance Criteria Story

Point
s

Admin Portal: Account Creation

42

In case of failure, an error notification shall be

displayed with guidance for corrective actions.

6. Logging

All upload attempts, successful or failed, shall

be logged with timestamps, user details, and

error descriptions (if any).

Logs shall be stored securely and be

accessible only to authorized personnel for

monitoring and auditing purposes.

Manually Create

Account

As a user, I want the ability to manually create a

bank account through the Admin Portal, ensuring

that the process is secure, validates input

correctly, handles errors gracefully, provides

appropriate feedback, and logs activities for

auditing purposes.

1. Functionality

The feature allows the creation of a new bank

account with necessary details such as

account type, customer ID, and initial deposit

amount.

Users can view a summary of the details

entered before final submission.

2. Security
All data transmissions are encrypted using

industry-standard protocols.

The feature restricts access to authorized

personnel only, as defined in the user roles

and permissions settings.

3. Validation
Input fields like customer ID and initial deposit

amount are validated for format and value

range.

Incomplete or improperly formatted inputs

trigger a prompt for correction.

4. Error Handling

Clear error messages are displayed for any

failed operation, such as network issues or

data submission errors.

The system gracefully handles server-side

errors, ensuring the application remains stable.

5. Output/Notification

Upon successful account creation, a

confirmation message is displayed to the user.

Notifications for successful or unsuccessful

operations are clearly distinguishable.

6. Logging

All account creation activities are logged with

timestamps, user IDs, and operation details.

Error logs include error messages and relevant

context for troubleshooting.

Update Account

Details

As a user, I need the ability to manually update

bank account details within the admin portal,

ensuring accuracy and efficiency in account data

management. This feature should be secure,

1. Functionality
Ability to select a bank account from a list or by

searching account number.

Admin Portal: Account Data Management

43

user-friendly, and capable of handling errors

gracefully while providing necessary feedback

and logging actions for auditing purposes.

Fields available for update: account holder

name, account type, contact details, and

address.

Save changes functionality with confirmation

before submission.

2. Security

Require user authentication before accessing

the update feature.

Implement role-based access control; only

authorized personnel can update account

details.

Secure data transmission using encryption.

3. Validation

Validate input fields for correct format (e.g.,

alphanumeric for account number, text for

names).

Ensure mandatory fields (e.g., account holder

name, account number) are not left blank.

Check for duplicate account details to prevent

redundant entries.

4. Error Handling
Display user-friendly error messages for invalid

inputs or system issues.

Implement timeouts for unresponsive requests.

Provide an option to revert changes or retry in

case of a failed update.

5. Output/Notification

Show a success message upon successful

update of account details.

Notify the user of any issues during the update

process.

Option to send email confirmation/notification

to the account holder about the update.

6. Logging

Log all activities related to account updates

including user ID, time, and nature of the

update.

Record unsuccessful update attempts with

reason for failure.

Maintain logs in a secure and compliant

manner as per banking regulations.

Delete Account As a user with administrative privileges in the

banking application, I need the ability to manually

delete bank accounts from the admin portal. This

feature should ensure secure, validated, and

error-free operations while providing clear

notifications and logging of actions taken.

1. Functionality

The system allows deletion of bank accounts

by users with administrative rights.

The deletion process can be initiated from the

account data management section of the

admin portal.

A confirmation step is required before final

deletion to prevent accidental removals.

44

2. Security

Deletion requests must be authenticated and

authorized, ensuring only users with admin

rights can execute this function.

Secure protocols (like HTTPS) are used for

data transmission during the deletion process.

Sensitive data is masked or encrypted during

the process.

3. Validation

The system validates the existence of the

account before attempting deletion.

Input fields for account identification (like

account number) have format and existence

checks.

4. Error Handling
Clear error messages are displayed if the

deletion process fails.

The system handles scenarios where the

account is already engaged in pending

transactions or locked due to compliance

issues.

5. Output/Notification

Upon successful deletion, a confirmation

message is displayed to the user.

In case of failure, a notification detailing the

reason is shown.

6. Logging
All deletion actions, along with timestamp and

admin user details, are logged in the system.

Logs include information about the success or

failure of the deletion process.

View Accounts As a user, I want to be able to efficiently search

and view bank accounts through the Admin

Portal, ensuring that the process is secure,

reliable, and user-friendly. This feature should

allow me to quickly find specific accounts based

on various criteria without accessing or impacting

the backend systems directly.

1. Functionality

The system should provide a search function

in the Admin Portal to view bank account

details.

Search can be conducted using account

number, customer name, or other relevant

identifiers.

The system should display a list of accounts

matching the search criteria.

Each account in the list should show essential

details like account number, customer name,

and account balance.

2. Security

Access to the account search feature should

be restricted to authenticated users only.

User roles and permissions should be checked

to ensure only authorized personnel can view

Admin Portal: Account Search

45

account details.

The system should employ SSL/TLS

encryption for data transmission.

3. Validation

Input fields for search criteria should validate

for the correct format (e.g., numerical for

account numbers).

Validation messages should be displayed for

incorrect or incomplete inputs.

4. Error Handling

If the search query fails or times out, the

system should display a relevant error

message.

Errors should be handled gracefully without

exposing sensitive system information.

5. Output/Notification

Upon a successful search, display the list of

accounts in a clear, readable format.

If no accounts match the search criteria,

display a message indicating no results found.

6. Logging
All search queries should be logged with

timestamp, user ID, and search parameters.

Failed login attempts or unauthorized access

attempts should also be logged for security

auditing.

Filter Accounts As a user, I need the ability to filter bank accounts

effectively. This feature will allow me to quickly

locate specific accounts based on set criteria,

enhancing my efficiency and ability to manage

customer accounts.

1. Functionality

The system should provide multiple filtering

options, including account number, account

type, customer name, and account status.

Filters should be able to be used in

combination for more refined results.

2. Security

Ensure that user authentication is verified

before access to the filter feature is granted.

Implement role-based access control; only

authorized personnel (e.g., admin users)

should have access to the filter accounts

feature.

3. Validation

The system should validate input fields to

ensure that they contain appropriate data

formats (e.g., numeric for account numbers).

If a user enters invalid filter criteria, a prompt

should inform them of the correct format.

4. Error Handling

If the system fails to execute a filter query, it

should display a user-friendly error message.

Error messages should not expose sensitive

system details or data.

46

5. Output/Notification

Upon successful application of filters, the

system should display the filtered results in an

organized and readable format.

If no accounts match the filter criteria, a

message should inform the user that no results

were found.

6. Logging

All filter operations should be logged with

relevant details such as user ID, timestamp,

and filter criteria used.

Any errors encountered during the filtering

process should also be logged for

troubleshooting and audit purposes.

Sort Accounts As a user, I want to sort bank accounts so that I

can efficiently manage and view accounts based

on specific criteria such as account number,

account type, balance, or date created.

1. Functionality

The system should allow users to sort

accounts by various criteria including account

number, account type, balance, and date

created.

The sorting should be toggleable between

ascending and descending order.

2. Security

Ensure that all data displayed is in compliance

with data protection regulations specific to

banking information.

User authentication should be verified before

granting access to sorting functionality.

3. Validation

Validate user inputs for sorting criteria to

ensure they match predefined formats (e.g.,

numeric for account numbers, date format for

dates).

If invalid inputs are detected, they should not

be processed.

4. Error Handling

In case of a system error during sorting, an

appropriate error message should be

displayed to the user.

Errors should be logged with sufficient detail

for debugging purposes.

5. Output/Notification

Once sorting is applied, the user interface

should update to reflect the new order of

accounts.

If no accounts meet the sorting criteria, display

a message indicating no results found.

6. Logging

All sorting actions performed by users should

be logged with relevant details including user

ID, timestamp, and sorting criteria.

47

Any failed attempts or errors during sorting

should also be logged for audit purposes.

48

Card Management - Admin Portal - Banking App - FS Java Capstone

Admin Portal: Card Creation

Admin Portal: Card Data Management

Admin Portal: Card Search

Card Management

Manually Create

Card

As a user, I need the ability to manually create

cards for customers. This feature should enable

me to input necessary card details and submit

them for card creation, ensuring a seamless and

secure process.

1. Functionality
Ability to enter card details including card type,

customer name, card limit, and expiration date.

Submission button to send the card creation

request.

2. Security

Ensure secure HTTPS connections for all data

transmissions.

Implement session timeouts after periods of

inactivity.

3. Validation

Validate all input fields for correct data format

(e.g., name, numbers).

Mandatory fields should be clearly marked and

validated to ensure they are not left empty.

4. Error Handling

Display user-friendly error messages for input

validation failures.

Implement catch-all error handling for

unforeseen errors, displaying a generic error

message.

5. Output/Notification

Upon successful submission, display a

confirmation message.

For unsuccessful submissions, provide clear

notifications indicating the reason.

6. Logging

Log all card creation activities with timestamps

and user details.

Story Description Acceptance Criteria Stor

y
Point

s

Admin Portal: Card Creation

49

Implement error logging for debugging and

auditing purposes.

Data Upload As a user, I need the ability to securely upload

and manage data related to card creation. This

feature should allow me to efficiently and

accurately upload relevant data while ensuring

data security and handling errors appropriately.

1. Functionality

The system allows the user to upload data files

for card creation.

Uploaded data is used to generate new card

details within the admin portal.

The system provides an interface for selecting

and uploading files.

Only specific file formats (e.g., CSV, XLSX) are

accepted for upload.

2. Security

The system implements secure file upload

protocols.

Data transmission during upload is encrypted

using standard encryption methods.

Access to the upload feature is restricted to

authorized users only.

3. Validation
The system validates the file format and size

before uploading.

Data within the file is validated for format and

completeness.

Invalid or incomplete files are rejected with a

clear message to the user.

4. Error Handling

The system displays descriptive error

messages for issues like file format

incompatibility, upload failures, or data

validation errors.

Errors are logged with details such as

timestamp, user ID, and error nature.

5. Output/Notification

Upon successful upload and data processing,

the system notifies the user with a confirmation

message.

In case of errors or rejections, the user

receives a notification detailing the issue.

6. Logging

All upload attempts (successful or failed) are

logged.

Logs contain details of the operation, user

information, timestamp, and nature of the data

uploaded.

Update Card

Details

As a user, I want to be able to update card details

through the Admin Portal's Card Data

Management feature, ensuring that card

1. Functionality

The system allows the update of card details

such as cardholder name, expiry date, and

Admin Portal: Card Data Management

50

information is current and accurate. This process

should be secure, intuitive, and provide clear

feedback.

card status.

The updated information is immediately

reflected in the system upon submission.

2. Security

Ensure secure HTTPS connections for all data

transmissions.

User access control is enforced, allowing only

authorized personnel to update card details.

Implement timeout for sessions to prevent

unauthorized access.

3. Validation
Input fields such as card number, expiry date,

and cardholder name have format validations.

The system checks for the existence of the

card in the database before allowing updates.

Any updates on critical fields (e.g., card

number) require additional confirmation from

the user.

4. Error Handling

Display user-friendly error messages for invalid

inputs or system failures.

Prevent submission of incomplete or

improperly formatted data.

In case of system errors, ensure that the user

can retry or contact support.

5. Output/Notification
Upon successful update, a confirmation

message is displayed to the user.

For any update, an email notification is sent to

the cardholder, if applicable.

6. Logging

All card update activities are logged with user

ID, timestamp, and details of the changes.

Unauthorized access attempts are also logged

and reported.

Delete Card As a user, I need the ability to securely delete a

card from the admin portal of our banking

application, ensuring that the card data is

accurately removed without affecting other system

functionalities.

1. Functionality

The system allows deletion of card data by

authorized users.

Deletion action is accessible from the card

management section of the admin portal.

Confirmation prompt is displayed before final

deletion to prevent accidental data loss.

2. Security

Only users with admin privileges can access

and execute the delete card functionality.

Deletion request must pass through secure,

authenticated API calls.

Session-based user authentication is required

to ensure valid user actions.

51

3. Validation

The system validates that the card to be

deleted exists in the database.

Input fields for identifying the card (e.g., card

number) are validated for correct format.

4. Error Handling

If the card does not exist, display an

appropriate error message.

Display error messages for unauthorized

access attempts.

Handle network or server errors gracefully,

informing the user to try again later.

5. Output/Notification

Post successful deletion, display a

confirmation message to the user.

In case of failure, display a descriptive error

message indicating the reason.

6. Logging

Log all delete actions, including user ID,

timestamp, and card details.

Record unsuccessful deletion attempts with

error specifics for auditing purposes.

Filter Cards As a user, I want to filter cards, so that I can

efficiently locate and manage specific bank cards

based on various criteria like card number, user

name, card status, etc.

1. Functionality

Ability to filter cards based on multiple criteria:

card number, user name, card type, issuance

date, and status.

Filters should be able to work in combination,

allowing for more refined search results.

Results update in real-time as filters are

applied.

2. Security

Ensure that all card data displayed is compliant

with data protection regulations.

Implement role-based access control: Only

authorized personnel should access the card

management features.

Secure the communication of filter queries

from the front-end to the back-end to prevent

data interception.

3. Validation

Input fields for filtering (e.g., card number, user

name) should have validation to prevent invalid

queries.

Display a message when a user inputs an

invalid search criterion (e.g., non-numeric

characters in the card number field).

4. Error Handling

Admin Portal: Card Search

52

If a query fails or times out, display a user-

friendly error message.

Implement a 'Retry' option for failed searches.

Ensure that system stability is maintained

during backend failures.

5. Output/Notification

Display the number of cards found as a result

of the applied filters.

If no results are found, display a message

indicating that no matching cards were found.

6. Logging
Log all filter and search activities with

timestamps for audit purposes.

Any errors encountered during the filtering

process should be logged with detailed

information for troubleshooting.

View Cards As a user, I want to be able to view details of

various cards. This feature should enable me to

quickly find specific cards based on defined

criteria, ensuring a seamless and secure user

experience.

1. Functionality

The system should allow the user to search for

cards by entering specific criteria (e.g., card

number, account holder's name).

Search results should display relevant card

details such as card number, cardholder name,

card type, issue and expiry dates.

The user should be able to view a detailed

individual card view by selecting a card from

the search results.

2. Security

All card data should be displayed in a secure

manner, complying with relevant data

protection regulations.

Sensitive card information like full card

numbers should be masked, showing only the

last four digits.

User access to the card management feature

should be role-based, allowing only authorized

personnel.

3. Validation

The search function should validate input

criteria, ensuring they meet predefined formats

(e.g., correct card number format).

The system should prompt the user with

appropriate messages if the input format is

incorrect.

4. Error Handling

In case of a failed search (e.g., no matches

found), the system should display a relevant

message to the user, like "No results found for

the entered criteria."

Any system errors (e.g., server issues) should

be communicated to the user through a clear

53

message, such as "Service temporarily

unavailable. Please try again later."

5. Output/Notification

Upon successful search, the results should be

displayed in an easy-to-read format.

The system should notify the user upon

successful or unsuccessful completion of

actions (e.g., a message confirming the

viewing of a card's details).

6. Logging

All user actions within the card management

feature should be logged for audit purposes,

including search queries and viewed card

details.

Logs should capture necessary information

such as user ID, timestamp, and the nature of

the action performed.

Sort Cards As a user, I want to sort cards. so that I can easily

manage and view them based on specific criteria

like card type, status, or date of issue.

1. Functionality

The system shall provide options to sort cards

by card type, status, issue date, expiry date,

and user name.

The sorting feature shall allow both ascending

and descending order sorting.

Sorting preferences shall be retained during

the session even after navigating away from

the page.

2. Security
Access to the sorting feature shall be restricted

to authenticated users with the necessary

permissions.

The system shall ensure that sorting requests

do not expose any sensitive cardholder

information.

3. Validation

The system shall validate the sorting criteria

(e.g., valid card types, status codes) before

applying the sort.

Invalid sorting requests shall prompt an

informative error message to the user.

4. Error Handling

In case of a failure in sorting (e.g., server error,

timeout), the system shall display an error

message.

The error message shall not contain sensitive

system information.

5. Output/Notification
Upon successful sorting, the sorted card list

shall be displayed without a page reload.

If no cards meet the sorting criteria, a message

indicating “No cards found” shall be displayed.

54

6. Logging

All sorting actions shall be logged with details

including user ID, timestamp, and sorting

criteria used.

Any sorting-related errors shall also be logged

for troubleshooting purposes.

55

User Management - Admin Portal - Banking App - FS Java Capstone

Admin Portal: User Authentication/Authorization

Admin Portal: User Creation

Admin Portal: User Data Management

Admin Portal: User Search

User Management

Account Logout As a user, I need the ability to

securely log out of the portal,

ensuring that my session is ended

properly to maintain security and

prevent unauthorized access.

1. Functionality

The system provides a clearly visible and accessible logout

option in the user interface.

On selecting the logout option, the user's session is

terminated.

After logout, the user is redirected to the login page.

2. Security

The logout process clears all session data associated with

the user.

Ensures that once logged out, the back button or session

history does not allow access to the authenticated areas of

the application.

3. Validation

The system validates the request to ensure it is from an

authenticated and active session before processing the

logout.

4. Error Handling

If the logout process fails, the system displays a clear and

understandable error message.

Provides the user with the option to retry the logout process.

5. Output/Notification
Upon successful logout, the user receives a confirmation

message or notification.

If redirected to the login page, a message indicating a

successful logout can be displayed for clarity.

6. Logging

The system logs the logout action, including timestamp and

user identifier, for audit and tracking purposes.

Story Description Acceptance Criteria Story

Point
s

Admin Portal: User Authentication/Authorization

56

Any errors encountered during the logout process are also

logged for troubleshooting and security auditing.

Account Login As a user, I need the ability to

securely log in to access and

manage user accounts and

permissions.

1. Functionality

The login page should accept username and password

inputs.

A 'Log In' button should be available to submit the

credentials.

2. Security

Implement SSL encryption for data transmission.

Passwords must not be visible or stored in plain text at any

point.

3. Validation

Validate that both username and password fields are not

empty before submission.

Check the format of the username to ensure it meets

specified criteria (e.g., email format).

4. Error Handling

If login fails, display a generic error message such as

"Invalid username or password."

After three consecutive failed login attempts, temporarily

disable the login function for that user for a predetermined

time.

5. Output/Notification
Upon successful login, redirect the user to the admin

dashboard.

If login is unsuccessful, clear the password field.

6. Logging

Log all login attempts, successful or unsuccessful, with a

timestamp and user identifier.

In the case of failed login attempts, log the reason for failure.

User

Authorization

As an administrator of the banking

application, I need the ability to

manage user authorizations within

the Admin Portal, ensuring that

users have the correct access rights

based on their roles and

responsibilities.

1. Functionality
The API must authenticate admin users by verifying their

credentials (username and password) against the database.

The API should authorize users based on their roles,

granting access to specific functionalities within the admin

portal.

The system must provide a secure session token upon

successful authentication, which will be used for subsequent

authorization checks.

2. Security
Implement Authorization mechanisms to ensure only

legitimate users can access the admin portal.

Utilize encryption for sensitive data transmission, including

passwords and session tokens, using industry-standard

protocols (e.g., TLS).

3. Validation

Perform input validation to ensure that username and

password fields are not empty, meet the application's

57

requirements for length and format, and prevent SQL

injection or other common security vulnerabilities.

4. Error Handling

Gracefully handle authentication and authorization errors,

such as incorrect credentials or unauthorized access

attempts, without causing the program to crash.

Provide meaningful error messages to the backend logs,

avoiding any direct error details sent to the user that could

expose system vulnerabilities.

5. Database Updates

Update the user's login timestamp upon successful

authentication.

Record unsuccessful login attempts, locking the account

after a predefined number of failed attempts, if applicable.

6. Output/Notification
Return a secure session token upon successful

authentication.

In case of failure, return an appropriate error status code

and a generic error message indicating the failure reason

without exposing specific details.

7. Logging
Log all API requests, including access timestamps,

requesting user identifier, IP address, and the outcome of

the request (success/failure) for auditing, error handling, and

debugging purposes.

Ensure that sensitive data, such as passwords, are not

logged.

Manually Create

User

As a user with administrative

privileges in the banking application,

I need the ability to manually create

new user accounts through the

admin portal. This process should

be secure, validate user input,

handle errors gracefully, and

provide appropriate notifications

and logging.

1. Functionality

The admin portal should include a form to enter new user

details (e.g., name, email, role).

The system should specify the user’s role.

A 'Create User' button should submit the form data for user

creation.

2. Security

Ensure all data transmission is encrypted.

Implement role-based access control; only users with admin

privileges can access the user creation feature.

3. Validation

Validate all input fields in the form to ensure they meet the

required format (e.g., email format, mandatory fields).

Display an informative message if validation fails.

4. Error Handling
In case of submission errors (e.g., network issues), display a

clear error message.

Prevent submission if mandatory fields are missing or

incorrectly formatted.

5. Output/Notification

Admin Portal: User Creation

58

Upon successful user creation, display a confirmation

message.

If user creation fails, provide a detailed error message

explaining the reason.

6. Logging
Log all user creation attempts, including successful and

failed attempts, with timestamps.

Store logs securely and make them accessible only to

authorized personnel.

Data Upload As a user, I need the ability to

upload data securely and efficiently

through the Portal, ensuring that the

data is validated, error-handled, and

logged appropriately for future

reference and audit trails.

1. Functionality
The system shall allow the upload of specific data file

formats (e.g., CSV, XLSX).

The system shall provide an option to preview the data

before final submission.

2. Security

The system shall implement secure file upload practices,

including file type restrictions and size limits.

User authentication and authorization checks shall be

performed before allowing access to the data upload feature.

3. Validation

The system shall validate the file format and content,

ensuring it adheres to predefined data structure

requirements.

The system shall display a message if the file does not meet

the validation criteria and reject the upload.

4. Error Handling
The system shall provide clear error messages in case of

upload failures due to network issues, file corruption, or

unexpected system behavior.

The system shall ensure that partial or failed uploads do not

corrupt existing data.

5. Output/Notification
Upon successful upload, the system shall display a

confirmation message to the user.

The user shall receive notifications regarding the status of

the data upload process.

6. Logging

All data upload attempts (successful or unsuccessful) shall

be logged with timestamp, user ID, and a description of the

action.

The system shall maintain a log of any discrepancies or

errors encountered during the upload process.

Update User

Details

As a user, I need the ability to

update user details so that I can

ensure the accuracy and currency

of user information in the system.

1. Functionality

The system should allow the admin to search for users by

their unique identifiers (e.g., user ID, username).

The system should allow the user to update roles

Admin Portal: User Data Management

59

Once a user is selected, the system should display the

current user details.

The admin should be able to edit fields such as name, email

address, and phone number.

Changes should be saved only when the admin clicks the

'Save' button.

2. Security

Ensure that only authenticated admins can access the user

update functionality.

Implement role-based access control to restrict editing

permissions to authorized admin roles.

Changes to user details should be conducted over a secure,

encrypted connection.

3. Validation
The system should validate input formats (e.g., proper email

format, phone number length).

Mandatory fields should be clearly marked, and the system

should not allow saving until these fields are populated.

Display appropriate messages for validation failures.

4. Error Handling
In case of a system error (e.g., server not responding),

display a user-friendly error message.

Provide a clear error message if the update action fails (e.g.,

"Update failed due to network error").

Ensure that the system does not crash or become

unresponsive during an error state.

5. Output/Notification

Upon successful update, display a confirmation message

(e.g., "User details updated successfully").

If the update is unsuccessful, provide a clear notification

stating the reason (e.g., "Update failed: Email already in

use").

6. Logging

All changes to user details should be logged with

timestamps, admin user ID, and a summary of the changes.

Attempted updates, successful or not, should also be logged

for audit purposes.

Maintain logs in a secure and compliant manner according

to banking application standards.

Delete User As a user with administrative

privileges in the banking application,

I need the ability to delete user

accounts from the admin portal.

This functionality should ensure

secure and accurate deletion of

user data, providing feedback and

logs for auditing purposes.

1. Functionality

The admin portal must allow the deletion of user accounts.

The deletion process should be reversible until confirmed.

Once confirmed, the record must no longer be visible on the

front-end.

Because they are not deleting the data on the backend for

audit purposes, but on the frontend it will no longer show the

record since it is deleted

2. Security

60

Ensure only users with administrative privileges can access

the delete function.

Implement a two-step verification process for account

deletion (e.g., password confirmation and a CAPTCHA).

3. Validation
Verify the existence of the user account before initiating

deletion.

Check for any dependencies or linked data that may be

affected by the deletion.

4. Error Handling

If deletion fails, provide a clear error message indicating the

reason.

Handle all exceptions gracefully and maintain system

stability.

5. Output/Notification

Upon successful deletion, notify the admin with a

confirmation message.

In case of failure, provide an appropriate error message to

the admin.

6. Logging

Log all account deletion attempts, successful or not.

Include timestamp, admin user ID, and the target user

account ID in the logs.

View User As a user, I want to be able to view

detailed user information within the

admin portal of our Banking

Application, enabling me to manage

user accounts efficiently.

1. Functionality

The feature must allow the viewing of individual user

profiles.

It should provide comprehensive details including name,

account number, contact information, and activity logs.

The user interface should be intuitive, allowing easy

navigation to the user profile section.

2. Security

Ensure all user data displayed is protected and complies

with relevant data protection regulations.

Implement role-based access controls: only authorized

personnel (e.g., admins) should access detailed user

profiles.

Sensitive data like account numbers must be partially

masked.

3. Validation
The system should validate that the user being viewed exists

in the database.

There should be checks to ensure that the user requesting

the information has the necessary permissions.

4. Error Handling

In case of an invalid user search (e.g., non-existent user ID),

display a clear error message.

For unauthorized access attempts, prompt a permission-

denied message.

Admin Portal: User Search

61

Handle server or network-related errors gracefully and

inform the user of the issue.

5. Output/Notification

Upon successful retrieval of a user’s profile, display the

information in a clear, organized format.

Notify the user when their view request is being processed

and when it’s completed.

6. Logging
Log all attempts to view user profiles, including successful

and unsuccessful attempts.

Record the user ID of the person accessing the information,

the time of access, and the profile viewed.

Filter User As a user, I need the ability to filter

users within the admin portal of the

banking application so that I can

easily find and manage user

accounts based on specific criteria.

1. Functionality

The system shall provide options to filter users based on

predefined criteria such as name, account number, email, or

role.

The filtering action shall display a list of users that match the

criteria without refreshing the entire page.

2. Security

All user filter operations shall be conducted over a secure

connection.

User data displayed as a result of the filtering process shall

be encrypted to prevent unauthorized access.

3. Validation
Input fields for filtering criteria shall validate data format

(e.g., email format, numeric values for account numbers).

Invalid inputs shall prompt an appropriate message and shall

not trigger the search operation.

4. Error Handling

In case of a system error during the filtering process, the

system shall display a user-friendly error message.

The system shall handle server timeouts or failures

gracefully, informing the user to try again later.

5. Output/Notification

Upon successful application of filters, the system shall

display the number of users found.

If no users match the criteria, a message stating “No users

found” shall be displayed.

6. Logging
Each filter operation shall be logged with details including

user ID of the administrator, timestamp, and filter criteria

used.

Any errors encountered during the filtering process shall also

be logged for future analysis and system improvements.

Sort User As as a user, I want the ability to

sort users within the Portal, so that I

can efficiently manage and locate

user accounts based on specific

1. Functionality
The system allows sorting of user accounts by multiple

fields, including but not limited to name, account type, and

creation date.

62

criteria such as name, account type,

creation date, etc.

Admins can toggle between ascending and descending

order for each sortable field.

2. Security

Sort functionality adheres to the existing security model of

the Admin Portal.

Only users with admin privileges can access and utilize the

sort feature.

The sorting process does not expose any sensitive user

information beyond what is already permissible for the admin

to view.

3. Validation
The system validates admin actions for sorting, ensuring that

only legitimate sort queries are processed.

Invalid sort requests (e.g., sorting by a non-existent field) are

identified and prevented.

4. Error Handling

In case of a failure during sorting (e.g., server timeout), the

system displays a relevant error message to the admin.

The system ensures that failed sort actions do not affect the

current state or visibility of user accounts.

5. Output/Notification
Post successful sorting, the system updates the user list

interface to reflect the new order.

If no users meet the sorting criteria, a message is displayed

indicating "No users found matching the sorting criteria."

6. Logging

All admin actions related to sorting users are logged for

auditing purposes.

Logs include details such as the admin ID, timestamp, and

the nature of the sort action performed.

63

Loan Management - Admin Portal - Banking App - FS Java Capstone

Admin Portal: Loan Creation

Admin Portal: Loan Data Management

Admin Portal: Loan Search

Loan Management

Manually Create

Loan

As a user, I require the ability to manually create

loans. This feature will enable me to input and

manage loan details, ensuring that they are

correctly set up in the system for further

processing and management.

1. Functionality

The system should allow the user to input all

necessary loan details, including loan amount,

interest rate, term, and borrower information.

Ensure that the user can submit the loan

information to be saved in the system.

The system should confirm successful creation

and display the newly created loan in the

admin portal.

2. Security

Implement role-based access control, ensuring

only authorized users can create loans.

Sensitive data, such as borrower information,

should be encrypted and transmitted securely.

Session timeouts should be enforced to

prevent unauthorized access.

3. Validation

Input fields for loan details should be validated

for correct data formats and value ranges (e.g.,

interest rate percentages, term duration).

Mandatory fields should be clearly marked, and

the system should not allow submission of the

loan creation form unless all mandatory fields

are filled.

4. Error Handling

If a submission fails, display a clear and

specific error message to the user.

Errors should be logged with enough detail for

debugging, but without exposing sensitive user

data.

Story Description Acceptance Criteria Story

Point
s

Admin Portal: Loan Creation

64

The system should handle server-side errors

gracefully and inform the user if the problem

persists.

5. Output/Notification

Upon successful creation of a loan, display a

confirmation message to the user.

If applicable, send notifications to relevant

stakeholders or systems about the new loan

creation.

6. Logging

All loan creation attempts (both successful and

unsuccessful) should be logged with

timestamps and user details.

Logs should include information about the loan

details entered, without logging sensitive

borrower information.

The system should maintain an audit trail for

compliance and tracking purposes.

Data Upload As a user, I want to upload loan data to the admin

portal so that I can manage loan applications

efficiently and accurately.

1. Functionality

Ability to upload files containing loan data.

Support for multiple file formats including CSV,

Excel, and XML.

Real-time display of upload progress.

Confirmation of successful upload.

2. Security

File uploads must be authenticated and

authorized.

Implementation of secure file upload practices

to prevent unauthorized access and data

breaches.

Files should be scanned for malware before

processing.

3. Validation

Automatic validation of file format and

structure.

Validation of data consistency and integrity

within the file.

Clear error messages for validation failures.

4. Error Handling

Handling of common file upload errors (e.g.,

connection loss, file too large).

Display of user-friendly error messages.

Option to retry the upload process after an

error.

5. Output/Notification

Notification upon successful or unsuccessful

upload.

Detailed report of any data inconsistencies or

errors detected during upload.

65

Confirmation dialog before finalizing the

upload.

6. Logging

Logging of all file upload attempts, successes,

and failures.

Capture of user details, timestamp, and file

metadata in logs.

Secure storage of logs with restricted access.

Delete Loan As a user, I need the ability to securely and

efficiently delete loan data from the admin portal.

This feature should ensure accurate deletion of

records, proper validation, and clear feedback to

prevent unintended loss of data and maintain

system integrity.

1. Functionality

The feature allows the admin to select and

delete specific loan records.

Only loan records that are not currently linked

to active transactions can be deleted.

A confirmation prompt appears before final

deletion to ensure intentional action.

2. Security

Access to the delete function is restricted to

users with admin privileges.

Each deletion request requires re-

authentication of the user for added security.

3. Validation

The system validates the existence of the loan

record before proceeding with deletion.

If the loan record does not exist or is already

deleted, an appropriate message is displayed.

4. Error Handling

In the event of a system error during deletion,

the operation is halted, and an error message

is displayed.

The system ensures that no partial deletion

occurs, maintaining data integrity.

5. Output/Notification

Upon successful deletion, a confirmation

message is displayed to the user.

If deletion is not possible (e.g., linked to active

transactions), a notification explains the

reason.

6. Logging

All deletion actions, along with timestamp and

admin user ID, are logged for audit purposes.

Failed deletion attempts are also logged with

relevant error details.

Update Loan

Details

As a user, I want to update loan details through

the Admin Portal. This feature should enable me

to modify existing loan records, ensuring that the

most current and accurate information is reflected

in our system

1. Functionality

Ability to select a specific loan record from the

list in the Admin Portal.

Provide fields to update various loan details

such as loan amount, interest rate, tenure,

Admin Portal: Loan Data Management

66

borrower's information, etc.

Include a 'Save Changes' button to confirm the

updates.

2. Security

Ensure that only authenticated users with

admin privileges can access the loan update

feature.

Implement role-based access control to restrict

unauthorized modifications.

3. Validation

Validate input fields to accept only permissible

data formats and values.

Display clear error messages for invalid inputs.

4. Error Handling
Implement graceful error handling for scenarios

like network failures or server errors.

Display user-friendly error messages in case of

update failures.

5. Output/Notification

Show a confirmation message/notification upon

successful update of loan details.

In case of update failure, provide a notification

detailing the reason for failure.

6. Logging

Log all actions performed during the update

process, including successful updates and

encountered errors, with timestamp and user

details.

Filter Loan As a user I would like to be able to filter the loan

results that I am viewing.

1. Functionality

The feature should allow users to apply

multiple filters simultaneously (e.g., amount,

date range, loan status).

Filters should be intuitive and easy to apply,

with clear interface elements like dropdowns,

checkboxes, and date pickers.

The system must update the displayed loan

data in real-time as filters are applied or

changed.

2. Security

Ensure that all loan data is transmitted securely

using encryption.

Implement role-based access control, allowing

only authorized personnel to view or modify

loan details.

Filters should not expose any sensitive

borrower information beyond the user's access

level.

3. Validation

Admin Portal: Loan Search

67

Inputs for numeric fields (like loan amount)

must accept only numeric values and should

have upper and lower limits.

Date filters should reject invalid dates and

should not allow a start date that is later than

the end date.

The system should validate the status field

against predefined loan statuses.

4. Error Handling

If the filter query fails or returns an error, the

system should display a user-friendly error

message.

In the event of a server or connectivity issue,

the system should alert the user and suggest

retrying later.

Invalid filter inputs should prompt users with

clear, instructive error messages.

5. Output/Notification
Upon applying filters, the system should

display the number of loans found.

If no loans match the filter criteria, the system

should display a message indicating "No loans

found" or a similar notification.

The system should provide visual feedback

(like a spinner) when processing filter requests.

6. Logging

All filter operations should be logged with

relevant details (user ID, timestamp, filter

criteria used).

Error logs should capture any exceptions or

failures in the filter functionality.

Access logs must record each instance of loan

data viewing or modification for audit purposes.

View Loan As a user, I need the ability to view details of

specific loans within the admin portal so that I can

manage and oversee loan-related activities

effectively.

1. Functionality

The system shall allow the admin user to

search for loans using specific criteria (e.g.,

loan ID, customer name).

Upon selecting a loan, detailed information

about the loan should be displayed, including

loan amount, duration, interest rate, customer

details, and repayment status.

2. Security
Access to loan information shall be restricted to

authenticated and authorized admin users only.

All data transmissions of loan details shall be

encrypted using industry-standard encryption

protocols.

3. Validation
Input fields for searching loans shall validate

for correct format and reject invalid inputs with

68

an appropriate message.

The system shall validate the existence of the

loan record in the database before displaying

the details.

4. Error Handling
If a loan record is not found, the system shall

display a clear and friendly error message

stating, "Loan record not found. Please check

the entered criteria."

In case of a system error or failure, the system

shall display a generic error message, "An

unexpected error occurred. Please try again

later."

5. Output/Notification

Upon successful retrieval of loan data, the

system shall display the loan details in a clear,

readable format.

If no records match the search criteria, the

system shall notify the user with a message,

"No matching loan records found."

6. Logging
All loan search activities by admin users shall

be logged with details including user ID,

timestamp, and search criteria.

Any errors or exceptions encountered during

the loan search process shall be logged for

future auditing and troubleshooting purposes.

Sort Loan As a user, I want to sort loans in the portal so that

I can efficiently manage and organize loan

information based on specific criteria such as

loan amount, date, status, or customer name.

1. Functionality

The system shall provide options to sort loans

by various fields including loan amount, date,

status, and customer name.

Sorting shall be available in both ascending

and descending order for each field.

The sorting feature shall update the display of

loans in real-time as the user selects different

sorting options.

2. Security

Sorting requests shall only be processed if the

user is authenticated and authorized to access

loan information.

The feature shall not expose any sensitive

customer data during the sorting process.

Data transmission during sorting operations

shall be encrypted.

3. Validation

The system shall validate the user's input for

sorting criteria to ensure it matches one of the

predefined sortable fields.

If a user attempts to sort by an invalid or

unrecognized field, the system shall display an

69

appropriate message and not perform the

sorting.

4. Error Handling

In the event of a sorting operation failure, the

system shall display a generic error message

without exposing underlying system details.

The system shall offer the option to retry the

sorting operation or return to the previous

state.

5. Output/Notification

Upon successful sorting, the user interface

shall reflect the sorted loan data in the chosen

order.

If there are no loans matching the sorting

criteria, the system shall display a message

indicating 'No loans found matching the

criteria'.

6. Logging
All sorting actions performed by users shall be

logged with details including user ID,

timestamp, and sorting criteria used.

Any failed sorting attempts shall also be logged

with relevant error codes for further analysis.

70

Branch Management - Admin Portal - Banking App - FS Java Capstone

Admin Portal: Branch Creation

Admin Portal: Branch Data Management

Admin Portal: Branch Search

Branch Management

Manually Create

Branch

As a user, I want to manually create a branch in

the admin portal of our banking application,

enabling me to add new branch details effectively

and securely without backend complexities.

1. Functionality

The user can access a form to input branch

details.

Inputs include branch name, address, phone

number, and manager ID.

The form allows submission of the entered

branch details.

2. Security
Form submission is protected against CSRF

(Cross-Site Request Forgery).

User input is sanitized to prevent XSS (Cross-

Site Scripting) attacks.

Users are authenticated and authorized to

access the form.

3. Validation

All input fields are validated for proper

formatting.

Mandatory fields (branch name, address) must

be filled out.

Phone numbers and manager IDs are checked

for valid patterns.

4. Error Handling

Clear error messages are displayed for invalid

inputs or submission failures.

If the server cannot be reached, the user is

notified of the connection issue.

Form errors do not reset previously entered,

valid information.

5. Output/Notification

Story Description Acceptance Criteria Story

Point
s

Admin Portal: Branch Creation

71

Upon successful creation, the user receives a

confirmation message.

If creation fails, a descriptive error message is

shown.

The user is informed of any required fields left

blank or filled incorrectly.

6. Logging

All form submissions are logged with

timestamps.

Failed attempts (due to validation or server

issues) are also logged.

Logs capture user ID and action details without

sensitive data.

Data Upload As a user, I need the ability to upload data

relevant to branch management in the banking

application's admin portal. This feature should

facilitate the secure and efficient uploading of

data without impacting backend processes.

1. Functionality

The system should provide an interface to

upload data files.

Uploaded data should be strictly for branch

management purposes, like branch details.

The front-end should only accept specific file

formats (e.g., CSV, XLSX).

2. Security

Implement file upload size limits to prevent

large file attacks.

Scan all uploaded files for malware or

malicious code.

Ensure all data transfers are over secure,

encrypted channels (e.g., HTTPS).

3. Validation

Validate file format and reject any unsupported

formats.

Check the structure of the data in the file to

match predefined templates.

Display a message for incorrect or incomplete

data files.

4. Error Handling
Provide clear error messages for file upload

failures (e.g., wrong format, size limit

exceeded).

Implement timeout for file upload process and

alert the user in case of a timeout.

Ensure the front-end remains responsive in

case of upload errors.

5. Output/Notification

Display a success message upon successful

data upload.

Notify the user of the progress during the

upload process.

Show a summary of the uploaded data, such

as the number of records processed.

72

6. Logging

Log all upload attempts, successful or not, with

timestamp and user details.

Record any file rejections with reasons for the

rejection.

Store logs in a secure and accessible manner

for future audits or troubleshooting.

Delete Branch As a user with administrative privileges in the

banking application's admin portal, I need the

ability to delete branch information effectively and

securely. This functionality is critical for

maintaining up-to-date and accurate branch data

within the system.

1. Functionality
The system should provide an option to delete

a specific branch.

The delete action must only be visible and

accessible to users with administrative

privileges.

Before deletion, the system should prompt for

confirmation to prevent accidental deletions.

2. Security

Ensure that the delete request is authenticated

and authorized, verifying that the user has

admin rights.

Implement secure communication protocols

(e.g., HTTPS) for transmitting the delete

request.

3. Validation

The system should validate that the branch

exists before attempting deletion.

If the branch is linked to any active

transactions or customers, the system should

not allow deletion and inform the user.

4. Error Handling

In case of a failure in deletion (e.g., server

error), the system should display a meaningful

error message.

The system should handle any exceptions

gracefully, ensuring the application remains

stable.

5. Output/Notification

Upon successful deletion, the system should

notify the user that the branch has been

successfully removed.

In case of unsuccessful deletion, the system

should provide a clear notification stating the

reason.

6. Logging
All delete actions should be logged with details

including user ID, timestamp, and branch ID.

Any unsuccessful deletion attempts should

also be logged for audit purposes.

Admin Portal: Branch Data Management

73

Update Branch

Details

As a user with administrative privileges in the

banking application's admin portal, I need the

ability to update branch details so that I can

ensure the information is accurate and current.

1. Functionality

The feature allows updating of branch details

such as name, address, contact details, and

operational hours.

Any changes made should be immediately

reflected in the system upon submission.

2. Security

Access to update branch details is restricted to

users with administrative privileges.

All data transmissions are encrypted using

industry-standard protocols.

The system validates user permissions before

allowing access to the update feature.

3. Validation

The system checks for the validity of all input

fields (e.g., format of the phone number, email

address).

Mandatory fields (e.g., branch name, address)

must be filled; the system should not allow

submission of incomplete forms.

Input length for each field should be restricted

to reasonable limits to prevent data overflow.

4. Error Handling

Clear error messages are displayed for invalid

inputs or incomplete forms.

In case of a system failure or connection issue,

the system should inform the user and advise

them to retry.

5. Output/Notification

Upon successful update, a confirmation

message is displayed to the user.

If the update fails, a notification with a brief

description of the issue is provided.

6. Logging
All updates to branch details are logged with

user ID, timestamp, and nature of the update.

Failed update attempts are also logged for

audit and troubleshooting purposes.

View Branch As a user, I need the ability to view detailed

information about different bank branches, so I

can manage and oversee branch operations

effectively.

1. Functionality

The system shall display a searchable list of all

bank branches.

Upon selecting a branch, detailed information

about the branch should be displayed,

including branch name, location, manager, and

contact information.

The interface shall refresh in real-time to reflect

any updates or changes made to branch

information.

Admin Portal: Branch Search

74

2. Security

Access to the branch information shall be

restricted to authenticated users only.

User roles and permissions shall be enforced,

allowing only authorized personnel to view

sensitive branch data.

All data transmissions shall be encrypted using

industry-standard encryption methods.

3. Validation

The system shall validate the existence of the

branch before displaying its information.

If a branch is not found or is inactive, the

system shall not display its information.

Input fields for search parameters shall have

validation checks to prevent SQL injection and

other common security threats.

4. Error Handling

In case of a system error or failure to retrieve

branch data, the system shall display a user-

friendly error message.

The system shall handle server timeouts and

display a message prompting the user to try

again later.

All errors shall be logged with sufficient detail

for troubleshooting.

5. Output/Notification

Upon successful retrieval of branch data, the

system shall display the information in a clear,

readable format.

If no data is found for the selected branch, a

notification shall inform the user that no data is

available.

Any changes in the branch data due to real-

time updates shall trigger a notification to the

user viewing the data.

6. Logging

All user actions related to viewing branch

information shall be logged with timestamps

and user details.

Any unsuccessful attempts to access branch

information (e.g., due to lack of permissions)

shall also be logged.

System errors and exceptions encountered

while viewing branch data shall be logged for

audit and troubleshooting purposes.

Filter Branch As a user, I want to filter branches so that I can

easily find and manage specific branch details

based on various criteria like location, branch ID,

or services offered.

1. Functionality

The feature allows users to filter branches by

predefined criteria (e.g., location, branch ID,

services offered).

75

Filtering options are available as dropdown

menus or text input fields.

The system displays the filtered results in a

clear, tabular format.

2. Security
Access to branch filtering is restricted to users

with admin or relevant privileges.

All data transmissions during filtering

operations are encrypted.

3. Validation

Input fields for filtering criteria validate the

format (e.g., numeric for branch ID,

alphanumeric for location).

The system displays a message when input

does not meet the expected format.

4. Error Handling

If the filtering process fails (e.g., server

timeout), the system shows a user-friendly

error message.

Error messages guide the user on possible

next steps or suggest trying again later.

5. Output/Notification

Once filtering is complete, the system notifies

the user of the number of branches found.

If no branches match the criteria, the system

displays a message indicating "No results

found."

6. Logging

All filtering actions are logged with details like

user ID, timestamp, and filter criteria used.

Failed attempts at filtering due to errors are

also logged for future analysis.

Sort Branch As a user, I need the ability to sort the list of

branches in the admin portal of our Banking

Application so that I can easily find and manage

specific branches based on various criteria such

as location, branch name, or status.

1. Functionality

The system shall provide an option to sort

branches by criteria such as branch name,

location, and status.

Users shall be able to toggle between

ascending and descending order for each

sorting criterion.

2. Security

The sorting feature shall adhere to the

application's existing security protocols,

ensuring that user data remains protected

during sorting operations.

Only authenticated users with admin privileges

shall have access to use the sorting

functionality.

3. Validation
The system shall validate user inputs for

sorting (e.g., correct format of sorting criteria).

76

Invalid inputs for sorting criteria shall trigger a

notification to the user to correct the input.

4. Error Handling

In case of a failure in sorting operation (e.g.,

server timeout), the system shall display a

user-friendly error message.

The system shall ensure that any error during

sorting does not affect the integrity of the

displayed branch data.

5. Output/Notification

Upon successful sorting, the system shall

display the branches in the specified order.

The system shall provide a visual indicator

(e.g., an icon) to show the current sorting

criterion and order.

6. Logging

All sorting actions performed by users shall be

logged with details such as user ID,

timestamp, and sorting criteria used.

Error logs shall be generated for any

exceptions or failures encountered during the

sorting process.

77

Transaction Management - Admin Portal - Banking App - FS Java Capstone

Admin Portal: Transaction Search

Transaction Management

View Transaction As a user of the admin portal in the Banking

Application, I need the ability to view transaction

details so that I can effectively manage and

review banking transactions.

1. Functionality

The system displays transaction details such

as transaction ID, date, amount, sender,

receiver, and transaction type.

Users can search for transactions using filters

like transaction ID, date range, and amount

range.

The system provides a clear view option for

each transaction in the search results.

2. Security

Ensure that only authenticated users with

admin rights can access transaction details.

Implement role-based access control to restrict

data visibility based on user roles.

Sensitive data like account numbers should be

partially masked.

3. Validation

Input fields for search filters (like transaction ID,

dates, amounts) must validate for correct data

types and formats.

Date range fields must not allow a start date

that is later than the end date.

The system should validate that amount fields

contain only numerical values.

4. Error Handling

If a transaction is not found, display a user-

friendly message: "No transaction found with

the provided criteria."

For invalid search inputs, show an error

message detailing the nature of the error.

Handle server-side errors gracefully and

display a message: "Error processing request,

Story Description Acceptance Criteria Story

Point
s

Admin Portal: Transaction Search

78

please try again later."

5. Output/Notification
Upon successful retrieval of transaction data,

display the results clearly and concisely.

If no data is found, notify the user with a

message: "No matching transactions found."

Provide a confirmation message or visual

indicator when the search is initiated.

6. Logging

Log all user actions related to transaction

viewing, such as search queries and viewed

transactions.

Record any failed attempts to access the

transaction details, noting the user ID and

timestamp.

System errors and exceptions should be

logged with detailed information for

troubleshooting.

Sort

Transactions

As a user, I need the ability to sort transactions

efficiently. This feature will enable me to view

transactions in a structured order based on

various parameters like date, amount, transaction

type, etc. The functionality should be intuitive,

secure, and error-tolerant, ensuring that I can

manage transaction data effectively.

1. Functionality

The system shall allow the user to sort

transactions by various fields such as date,

amount, transaction type, customer name, and

account number.

Sorting options shall include ascending and

descending order.

2. Security
Sorting requests must be authenticated to

ensure that only authorized users can perform

sorting actions.

The system shall not expose any sensitive

transaction data during the sorting process.

3. Validation

The system shall validate the user’s input for

sorting criteria to ensure it corresponds to

predefined fields (e.g., date format, numeric

values for amount).

4. Error Handling

In cases where sorting criteria are invalid, the

system shall display a clear error message

indicating the nature of the issue.

If the sorting process fails due to system errors,

the user shall receive a notification indicating

that the sorting could not be completed.

5. Output/Notification

Upon successful sorting, the system shall

display the transactions in the sorted order as

per the user’s selection.

The system shall notify the user if no

transactions meet the sorting criteria.

6. Logging

79

All sorting actions performed by users shall be

logged with details such as user ID, timestamp,

and sorting criteria used.

Any errors encountered during the sorting

process shall also be logged for

troubleshooting and audit purposes.

Filter

Transactions

As a user, I need the ability to filter transactions

within the Admin Portal of our Banking

Application, to efficiently manage and review

transaction records. This functionality should

allow me to apply various filters to refine the

transaction list based on specific criteria such as

date range, transaction amount, transaction type,

account number, and customer ID.As a user, I

want to filter transactions, so that I can view a

subset of transactions based on specific criteria

such as date range, amount range, or transaction

type.

1. Functionality

The system shall provide an interface for users

to select and apply multiple filters to transaction

records.

Filters should include:

Date range (From and To dates)

Transaction amount range (Minimum and

Maximum)

Transaction type (e.g., Deposit, Withdrawal,

Transfer)

Account number

Customer ID

Users shall have the option to apply filters

individually or in combination.

The system shall display the filtered results

dynamically as filters are applied.

2. Security

Access to transaction filtering shall be

restricted to authenticated users with admin

privileges.

Sensitive data like account numbers and

customer IDs must be handled in compliance

with data protection regulations.

The system shall enforce secure HTTPS

connections for all data transmission.

3. Validation

Input fields for date, transaction amount,

account number, and customer ID shall include

format validation.

The system shall prompt the user with a

message if the filter criteria entered are in an

invalid format.

Date range inputs must ensure that the 'From'

date is earlier than or equal to the 'To' date.

4. Error Handling
In case of an error during filtering (e.g., server

unavailability), the system shall display a user-

friendly error message.

The system shall prevent SQL injection and

other common injection flaws during input

processing.

5. Output/Notification

80

Upon successful application of filters, the

system shall display a list of transactions that

match the filter criteria.

If no transactions match the criteria, the system

shall display a message indicating 'No

transactions found with the applied filters.'

6. Logging

All attempts to access the transaction filtering

feature shall be logged with user ID,

timestamp, and action details.

Any failed attempts due to security or validation

errors shall also be logged for audit purposes.

Search

Transaction

As a user, I need the ability to search for

transactions within the Admin Portal of our

Banking Application, to efficiently manage and

review transactional data. This feature should be

secure, validate inputs, handle errors gracefully,

provide clear outputs/notifications, and maintain

appropriate logging for audit and troubleshooting

purposes.

1. Functionality

The system shall provide a search function in

the Admin Portal for transactions.

Users shall be able to search by transaction ID,

account number, date range, and transaction

type.

Search results shall display relevant

transaction details like transaction ID, date,

amount, account number, and transaction type.

The search shall return results in a paginated

format.

2. Security

Access to the transaction search feature shall

be restricted to authenticated and authorized

users only.

Sensitive data in the transaction details shall be

masked or encrypted as per data protection

guidelines.

3. Validation

The system shall validate input fields for correct

format (e.g., dates in DD/MM/YYYY format,

transaction ID in the specified numeric/string

format).

Invalid inputs shall prompt an informative error

message to the user, indicating the nature of

the input error.

4. Error Handling
In the event of a search query failing, the

system shall display a generic error message

indicating the failure.

Error messages shall not reveal sensitive

system information or technical details.

5. Output/Notification

Upon successful search, the system shall

display the results in a clear, readable format.

If no results are found, the system shall display

a message indicating “No transactions found

for the given criteria”.

81

6. Logging

All search queries shall be logged with

necessary details such as (user ID, timestamp,

search criteria) for audit purposes.

Errors and exceptions during the transaction

search process shall also be logged for future

analysis and system improvements.

82

Customer Portal - Frontend Features - Banking App - FS Java Capstone

Users - Customer Portal - Banking App - FS Java Capstone

Accounts - Customer Portal - Banking App - FS Java Capstone

Cards & Loans - Customer Portal - Banking App - FS Java Capstone

Branches - Customer Portal - Banking App - FS Java Capstone

Customer Portal

https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309461063/Users+-+Customer+Portal+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309985297/Accounts+-+Customer+Portal+-+Banking+App+-+FS+Java+Capstone
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309624915
https://smoothstack.atlassian.net/wiki/spaces/IDEAS/pages/309985309/Branches+-+Customer+Portal+-+Banking+App+-+FS+Java+Capstone

83

Users - Customer Portal - Banking App - FS Java Capstone

Customer Portal: User Authentication

Customer Portal: User Authorization

Customer Portal: User Registration

Customer Portal: User Profile Management

Users

Account Login As a user, I want to securely log into the banking

application's user portal so that I can access and

manage my banking information with confidence

in the security and reliability of the system.

1. Functionality
The login page shall present fields for

username and password.

Upon entering credentials, the system shall

authenticate the user against the stored

credentials.

Successful authentication shall redirect the user

to their dashboard.

Unsuccessful authentication attempts shall not

allow access.

2. Security

All data transmission during login shall be

encrypted.

The system shall enforce a limit of unsuccessful

login attempts.

After the limit is reached, the account shall be

temporarily locked.

3. Validation

The system shall validate the format of the

username (e.g., email format).

Passwords must meet minimum complexity

requirements.

Empty username or password fields shall

trigger a prompt for completion.

4. Error Handling

Incorrect login details shall trigger a user-

friendly error message.

Story Description Acceptance Criteria Stor

y
Point

s

Customer Portal: User Authentication

84

Error messages shall not specify whether the

username or password was incorrect.

System errors during login shall be handled

gracefully and inform the user of the issue

without exposing system details.

5. Output/Notification

Upon successful login, a welcome message or

dashboard overview shall be displayed.

Upon unsuccessful login, a clear but non-

specific error message shall be shown.

Notification of account lockout shall be provided

after the maximum attempts are exceeded.

6. Logging

All login attempts (successful or unsuccessful)

shall be logged with timestamp and user

identifier.

Account lockouts shall also be logged with

details of the triggering event.

Account Logout As a user, I want to securely log out of my

account in the banking application, ensuring that

my session ends properly and my account

information remains secure.

1. Functionality

The logout function must be easily accessible

from the user interface.

Upon clicking the logout button, the user should

be logged out of their session.

2. Security

The logout process must invalidate the current

session token.

Post-logout, the user must be redirected to the

login page, ensuring they are fully logged out.

3. Validation
The system should verify if the user is logged in

before enabling the logout functionality.

If the user is not logged in, the logout option

should be disabled or not visible.

4. Error Handling

If the logout process fails, the user should

receive a clear error message.

The system must not log out the user if the

session token invalidation process fails,

ensuring the user can attempt to log out again.

5. Output/Notification

Upon successful logout, display a confirmation

message or notification to the user.

The confirmation message should inform the

user that they have been successfully logged

out.

6. Logging

The system should log the logout action,

including timestamp and user identifier, for audit

purposes.

85

In case of a logout error, the error details

should also be logged for troubleshooting.

Change

Password

As a user, I need the ability to reset my password

through the user portal of the banking application,

ensuring I can regain access to my account

securely and efficiently if I forget my password or

need to change it for security reasons.

1. Functionality

The user must have an option to initiate a

password reset from the login screen.

Upon selecting the password reset option, the

user is prompted to enter their registered email

address or username.

The system should verify if the entered

email/username exists in the database.

If the email/username is valid, an email with a

password reset link is sent to the user's

registered email address.

The password reset link must redirect the user

to a secure page to input a new password.

2. Security

The password reset link should be time-

sensitive, expiring after a predefined period

(e.g., 30 minutes).

All password transmissions should be

encrypted.

New passwords must adhere to established

security policies (e.g., minimum length,

complexity requirements).

The user must be logged out of all other

sessions when the password is reset.

3. Validation

The system must validate the format of the

email/username entered for reset.

New passwords should be checked for

compliance with security policies before

acceptance.

A confirmation must be required for the new

password (user has to enter it twice).

4. Error Handling
If the email/username does not exist in the

database, display an appropriate, non-specific

error message (e.g., "If an account exists with

the entered information, a reset email will be

sent.").

Proper error messages should be displayed for

network issues or system errors during the

reset process.

If the new password does not meet security

requirements, display a clear message outlining

the policy requirements.

5. Output/Notification

Upon successful submission of an

email/username for reset, notify the user that

an email has been sent if the account exists.

86

After successful password reset, display a

confirmation message and direct the user to the

login page.

Send a notification email to the user upon

successful password change for security

purposes.

6. Logging

Log all password reset attempts, successful or

not, with timestamps.

Record the IP address and device information

of the user requesting the password reset.

Log any errors or exceptions that occur during

the password reset process.

Forgot

Password:

Account

Recovery

As a user, I want the option to reset my password

via email or phone number verification so that I

can regain access to my account in case I forget

my login credentials. This provides a hassle-free

way to recover my account and continue using

the User Portal without any disruptions.

1. Functionality

The "Forgot Password" option should be clearly

visible and accessible on the login page.

Clicking this option leads the user to a secure

page where they can enter their registered

email address or username.

2. Security

Implement CAPTCHA or similar verification on

the recovery page to prevent automated abuse.

Ensure all data transmission during the

password recovery process is encrypted using

industry-standard protocols.

3. Validation

The system must validate that the entered

email address or username exists in the

database.

If the input does not match any account, prompt

the user with a non-specific error message like

"If your account exists, a recovery email will be

sent."

4. Error Handling
In the event of a system error or downtime

during the recovery process, display a friendly

error message informing the user to try again

later.

The error message should not disclose

technical details of the failure.

5. Output/Notification

Upon successful input validation, send an email

to the registered email address with a password

reset link.

The reset link email should include instructions

and a time limit for usage.

6. Logging

Customer Portal: User Authorization

87

Log all attempts to use the "Forgot Password"

feature, including successful and failed

attempts, without storing personal information.

Record timestamps and IP addresses for all

password recovery attempts for security audit

purposes.

User

Authorization

As a user, I need the ability to access specific

features and information within the Banking

Application based on my role, ensuring that my

interactions are secure, relevant, and aligned with

my permissions

1. Functionality

The system should provide different access

levels (e.g., Admin, User, Auditor) with distinct

permissions.

Features and data accessible to a user must

correspond to their assigned role.

2. Security

Role assignments must be encrypted and

securely stored.

The system should prevent unauthorized role

elevation or modification.

3. Validation

All role assignments must be validated against

an authorized list of roles.

Input for role changes must be validated for

format and legitimacy.

4. Error Handling
The system should display user-friendly error

messages for unauthorized access attempts.

Errors in role assignment or modification should

be logged and reported to the admin.

5. Output/Notification

Users should receive confirmation notifications

upon successful role assignment or change.

Administrators should be notified of any

unauthorized access attempts or role

modifications.

6. Logging

All role assignment changes should be logged

with user ID, timestamp, and role details.

Unauthorized access attempts and system

errors related to role management must be

logged for audit purposes.

Register User As a user, I want to register for an online banking

account through the User Portal so that I can

access and manage my banking services online

securely and efficiently.

1. Functionality

The registration form should capture essential

information such as: name, email, password,

and phone number.

Upon submission, the system should verify the

data and create a new user account.

2. Security

Ensure HTTPS is used for all data

transmissions.

Customer Portal: User Registration

88

Passwords must be encrypted and securely

stored.

Implement CAPTCHA to prevent automated

registrations.

3. Validation
Validate email format and uniqueness against

existing users.

Passwords must meet complexity requirements

(minimum length, alphanumeric, and special

character inclusion).

Phone numbers should be validated for format

and optionally for country code.

4. Error Handling

Provide user-friendly error messages for

incorrect or incomplete form submissions.

Implement timeouts for registration attempts to

prevent overloading the server.

5. Output/Notification

On successful registration, display a

confirmation message.

Send a welcome email to the user’s registered

email address.

6. Logging

Log all registration attempts, successful or

unsuccessful, with timestamp etc.

Record any system errors during the

registration process for debugging purposes.

User Registration

Confirmation

As a user, I want to receive a confirmation after

completing my registration process in the banking

application's user portal, so that I can be sure my

account has been successfully created and is

secure.

1. Functionality

The system should display a confirmation

message upon successful completion of the

user registration process.

This confirmation should be visible immediately

after the user submits their registration details.

2. Security

The confirmation process must include a

secure, unique link sent to the user’s provided

email address.

This link should expire after a set period, for

example, 24 hours, to prevent unauthorized

access.

3. Validation

Ensure the email entered by the user during

registration is in a valid format.

The system should verify that the email address

is not already associated with an existing

account.

4. Error Handling

If the registration process fails, display a clear

and specific error message.

89

Offer the user the option to retry registration or

contact support if the error persists.

5. Output/Notification

Upon clicking the confirmation link, the user

should receive a notification of successful

account activation.

If the link has expired or is invalid, notify the

user and provide the option to resend the

confirmation email.

6. Logging

Log all successful and unsuccessful registration

attempts, including time stamps and user

details.

Record any errors encountered during the

registration and confirmation process for further

analysis.

Account Deletion As a user, I want the ability to permanently delete

my banking application account, ensuring that all

my personal and financial data is completely

removed from the system, while maintaining the

highest security and error handling standards.

1. Functionality

The user can initiate account deletion from the

User Profile section.

Confirm deletion through a two-step verification

process.

2. Security

Require re-authentication (e.g., password,

OTP) before accessing the deletion feature.

Implement a secure method to ensure

complete data erasure.

3. Validation
Validate user identity before processing the

deletion request.

Check for any pending transactions or disputes

before allowing account deletion.

4. Error Handling

Display clear error messages for any failed

deletion attempts.

Handle exceptions, such as server

unavailability, with user-friendly notifications.

5. Output/Notification

Provide a confirmation message upon

successful account deletion.

Email the user a confirmation of account

deletion for record-keeping.

6. Logging

Log all account deletion activities for auditing

purposes.

Record user’s final actions and timestamp of

account deletion.

Customer Portal: User Profile Management

90

Application

Notifications

As a user, I want to receive notifications through

the User Portal in my Banking Application, so that

I am promptly informed about important account

activities, updates, and alerts.

1. Functionality

Notifications are automatically generated for

account activities such as transactions, balance

updates, and security alerts.

Users can customize notification settings,

choosing which types of notifications to receive.

2. Security

Notifications contain no sensitive personal or

financial information.

Secure transmission protocols are used for

sending notifications to ensure data privacy.

3. Validation
The system validates user preferences for

notification types and frequency.

Notifications are validated for correctness and

relevance before being sent to the user.

4. Error Handling

In case of a failure in sending notifications, the

system retries automatically.

Users are informed of any issues in notification

delivery through an in-app message.

5. Output/Notification
Notifications are clearly distinguishable and

visible on the user interface.

The system provides visual and/or auditory

cues for incoming notifications based on user

settings.

6. Logging
All sent notifications are logged with

timestamps and user identifiers.

Failed notification attempts are also logged for

system auditing and troubleshooting purposes.

View User

Information

As a user, I want to be able to retrieve my

personal and banking information from the user

portal of the banking application so that I can

view and verify my details for accuracy and up-to-

date information.

1. Functionality
The application should allow users to retrieve

their full profile information, including name,

address, contact details, and account summary.

Users should be able to access their recent

transaction history.

2. Security

Ensure user authentication before allowing

access to personal information.

Implement secure data transmission protocols

(e.g., HTTPS).

3. Validation

The system should validate user identity

through multi-factor authentication before

displaying personal information.

Validate session tokens for each user session

to prevent unauthorized data access.

91

4. Error Handling

In case of a failure in data retrieval, display an

appropriate error message.

Provide a 'retry' option for users after an

unsuccessful information retrieval attempt.

5. Output/Notification

Upon successful retrieval of information, display

the data clearly and concisely.

Notify users of the last login date and time for

security purposes.

6. Logging
Log all user access and retrieval attempts,

successful or unsuccessful, for audit and

security purposes.

Record any errors or exceptions encountered

during the information retrieval process.

Update Profile

Information

As a user, I want to be able to update my profile

information in the banking application's user

portal so that my personal and contact details are

always current and accurate.

1. Functionality
The user must be able to access the profile

update feature from their user portal.

The system should allow editing of fields such

as name, address, phone number, and email.

Changes must be saved and updated

immediately in the user's profile upon

confirmation.

2. Security

User authentication is required before

accessing the profile update feature.

The system must implement secure data

transmission protocols (like HTTPS) to protect

the data during the update process.

Sensitive fields, like phone numbers and email,

should be masked when displayed.

3. Validation

The system must validate input formats (e.g.,

correct email format, valid phone number).

Mandatory fields should not be left blank.

The system should alert the user of invalid

inputs and provide guidance for correction.

4. Error Handling

In case of a system error or failure during the

update process, the user should receive a clear

error message.

The system should ensure that partial updates

do not occur; either all changes are saved, or

none are in case of an error.

5. Output/Notification

Upon successful update, the user should

receive a confirmation message.

92

If updates are not successful, the user should

be notified with an appropriate error message.

6. Logging

All profile update attempts (both successful and

unsuccessful) should be logged with user

identifiers, timestamp, and nature of the update.

Security logs should capture any unauthorized

access attempts to the profile update feature.

93

Accounts - Customer Portal - Banking App - FS Java Capstone

Customer Portal: Transaction Management

Customer Portal: Account Registration

Customer Portal: User Loyalty Points (cashback, miles, points) History (Stretch)

Customer Portal: Investing (Stretch)

Accounts

View Transaction As a user, I want to view all my banking

transactions so that I can track and manage my

spending, deposits, withdrawals, and transfers

effectively. This function should provide a clear,

comprehensive, and easily navigable display of all

transactions across my various bank accounts. It

should also include filters and sorting features to

help me organize and review my transactions

based on criteria like date, amount, transaction

type, etc.

1. Functionality

The system should display a list of all past

transactions associated with the user's

account.

Transactions should include details such as

date, amount, transaction type (debit/credit),

and recipient/sender information.

The user should have the option to filter

transactions by date range and type.

2. Security

Ensure that all transaction data is displayed

over a secure connection.

Implement role-based access control; only the

account owner and authorized users can view

transaction details.

Sensitive data like account numbers should be

partially masked.

3. Validation
The system should validate the date range

inputs for filtering transactions and prompt the

user if the input is invalid.

Transaction data should be validated to ensure

completeness and accuracy before display.

4. Error Handling
If transaction data fails to load, display a user-

friendly error message.

Provide a 'Retry' option if the initial attempt to

fetch transaction data fails.

Story Description Acceptance Criteria Story

Point
s

Customer Portal: Transaction Management

94

In case of an invalid request (e.g., an

unsupported filter), inform the user with a clear

message.

5. Output/Notification

Upon successful loading, the transaction data

should be displayed in an easy-to-read format.

If there are no transactions for the selected

filters, display a message indicating 'No

transactions found'.

6. Logging

Log all user actions related to viewing

transactions for auditing purposes.

Any errors or exceptions should be logged with

sufficient detail for troubleshooting.

Create

Transaction

As a user, I want to be able to create transactions

(like money transfers, bill payments, and

deposits) within my account so that I can manage

my banking needs efficiently from anywhere and

at any time. This feature is vital to meet the basic

functionality of a modern banking application. It

should allow transactions between my own

accounts, as well as transactions to other bank

users or institutions.

1. Functionality

The User Portal must allow the creation of

different types of transactions including

transfers, bill payments, and deposits.

Users should be able to select the account

from which the transaction is made.

The portal should provide a field for entering

the transaction amount.

Options for adding transaction notes or

descriptions should be available.

There should be a confirmation step before

finalizing the transaction.

2. Security

All transaction data must be transmitted over

secure, encrypted connections.

User authentication (e.g., password or

biometric verification) is required before

initiating a transaction.

Implement timeout for session inactivity to

prevent unauthorized access.

3. Validation
Check for the validity of the account details

entered.

Ensure the transaction amount does not

exceed the account balance.

Validate transaction input fields for data type

and format (e.g., numeric values for amount).

4. Error Handling

Display user-friendly error messages for failed

transactions due to network issues, insufficient

funds, or invalid account details.

Offer retry options in case of transaction

failures.

5. Output/Notification

95

On successful transaction completion, show a

confirmation message with transaction details.

Send a notification (email or SMS) to the user

confirming the transaction.

6. Logging
Log all transaction activities including

successful and failed attempts, with

timestamps.

Ensure logs capture key details like transaction

type, amount, and account involved, while

maintaining user privacy.

Sort

Transactions

As a banking application user, I would like to be

able to sort my transactions so that I can manage

and view them in a sequence that best fits my

needs.

1. Functionality

The system should allow users to sort

transactions by date, amount, and transaction

type.

Each sorting option should organize

transactions in both ascending and descending

order.

The sorting feature should be easily accessible

from the transaction management page.

2. Security

Sorting requests should be handled in the

frontend without exposing sensitive transaction

details to backend services unnecessarily.

The feature should comply with relevant data

protection regulations for handling financial

information.

3. Validation

The system must validate the user's selection

for sorting (e.g., valid date range, transaction

types).

Invalid sorting requests should prompt the user

with an appropriate message to correct their

input.

4. Error Handling

In case of a failure to sort (e.g., service

unavailability), the system should display a

user-friendly error message.

The system should handle unexpected sorting

errors gracefully without crashing or freezing

the user interface.

5. Output/Notification
Upon successful sorting, the user interface

should update to display transactions in the

selected order without a full page reload.

If no transactions meet the sorting criteria, a

message should inform the user that there are

no transactions to display.

6. Logging

96

All user actions related to sorting transactions

should be logged for auditing purposes.

Any errors or exceptions encountered during

the sorting process should also be logged with

sufficient detail for debugging.

Filter

Transactions

As a user, I want to be able to filter my

transactions so that I can easily view and manage

my account transactions based on certain criteria.

This includes filtering by transaction amount,

transaction type (debit/credit), transaction date,

and transaction category (such as groceries,

utilities, salary, etc.).

1. Functionality

The system shall provide a filter option in the

User Portal under the Transaction

Management section.

Users shall be able to filter transactions by date

range, amount range, and transaction type

(e.g., deposit, withdrawal, transfer).

The filtered results shall be displayed

immediately after the user applies the filter

criteria.

2. Security

All transaction data displayed must adhere to

the user's permission level and privacy

settings.

The filter feature shall not expose any

transaction details of other users.

Secure coding practices must be followed to

prevent injection attacks or data leaks.

3. Validation

Date fields shall validate for correct format

(e.g., MM/DD/YYYY) and logical dates (e.g.,

start date cannot be after end date).

Amount fields shall only accept numerical

values and shall validate for logical range (e.g.,

start amount cannot be greater than end

amount).

4. Error Handling

If no transactions match the filter criteria,

display a message: "No transactions found

matching your criteria."

Invalid inputs in any filter fields shall prompt an

error message detailing the correct format or

expected value range.

5. Output/Notification
Upon successful application of filters, the

system shall display the number of

transactions found.

If the filter operation fails due to a system error,

display a notification: "Unable to filter

transactions at this moment. Please try again

later."

6. Logging

Each filter operation shall be logged with

details including user ID, timestamp, and filter

criteria used.

97

Any errors encountered during the filtering

process shall be logged for further investigation

by the technical team.

Search

Transaction

As a user, I want to have the ability to search my

transactions, so that I can easily find specific

transaction details based on various criteria such

as transaction date, amount, type, recipient, and

more. This feature should support quick

navigation and filtering capabilities for efficient

management and review of my banking

transactions.

1. Functionality
The search function should allow users to filter

transactions by date, amount, transaction type

(e.g., deposit, withdrawal), and transaction ID.

Users should be able to sort the search results

by date, amount, and transaction type.

The system should display a summary of the

transaction, including date, amount, transaction

type, and a brief description etc.

2. Security

All transaction searches and results must be

conducted over a secure, encrypted

connection.

User authentication is required before

accessing the search functionality.

Access to transaction data should be restricted

based on user roles and permissions.

3. Validation

Input fields for dates and amounts should

validate for correct format (e.g., mm/dd/yyyy for

dates, numerical values for amounts).

The system should prompt the user with an

error message if the search criteria are invalid

or if no matching transactions are found.

4. Error Handling

In case of a system error or failure during the

search process, the user should receive a clear

and informative error message.

The system should gracefully handle network

or server issues, ensuring the user can retry

the search once the issue is resolved.

5. Output/Notification

Upon successful search, the transaction results

should be displayed in a clear, readable format.

If no transactions match the search criteria, the

system should display a message indicating

"No transactions found."

6. Logging

All user search activities should be logged for

audit purposes, including date, time, user ID,

and search criteria used.

Error logs should be maintained, capturing

details of any issues encountered during the

transaction search process.

98

View Account

Types

As a User , I want to be able to view my account

details so that I can check my registration details

and verify their accuracy.

1. Functionality
The system displays a list of all available bank

account types.

Each account type includes a brief description

and key features.

The user can view more details for each

account type upon selection.

2. Security

The display of account types does not require

user login; no sensitive data is shown.

All data transmissions are encrypted using

industry-standard protocols.

3. Validation
The system checks the availability of account

type data from the back-end before displaying.

If data is not available or outdated, the system

refrains from displaying incorrect or incomplete

information.

4. Error Handling

In case of a failure to retrieve account type

data, a friendly error message is displayed.

The system offers options to retry or contact

support in case of persistent errors.

5. Output/Notification

Upon successful display, the user receives

visual confirmation through the orderly

presentation of the account types.

Any updates or changes in the account types

are dynamically updated without needing a

page refresh.

6. Logging

All user interactions with the account types

view feature are logged for future analysis and

improvement of user experience.

Error occurrences are logged with details for

troubleshooting and system improvement.

Register for

Account

As a User, I want to be able to register for an

account so that I can utilize the bank's online

services and manage my finances digitally.

1. Functionality
User should be able to register for a bank

account

Users are able to select a specific bank

account type

User should be able to enter any addition

information that is required to register for the

account

2. Security

All user data is transmitted over a secure,

encrypted connection (HTTPS).

Sensitive information should be encrypted

Customer Portal: Account Registration

99

3. Validation

The system validates all input fields for format

and completeness.

Email addresses are verified for proper

formatting.

Social security numbers are validated against

standard formats.

The system checks for duplicate usernames or

email addresses.

4. Error Handling

Users are informed of any input errors (e.g.,

invalid email format, incomplete fields).

Users receive clear instructions on how to

correct the errors.

The system prevents submission until all errors

are resolved.

5. Output/Notification
Upon successful bank account registration,

users receive a confirmation message on the

screen.

Upon unsuccessful bank account registration,

users receive a confirmation message on the

screen that e.g. “Account Registration

unsuccessful”.

6. Logging

All registration attempts (successful or

unsuccessful) are logged with timestamps.

System logs capture user input errors and the

nature of the errors.

Security-related events (e.g., multiple failed

attempts) are flagged in the system logs for

review.

Account

Registration

Confirmation

As a User, I want to receive confirmation after

successfully registering an account so that I can

be sure that my registration was successful and I

can start using the banking services.

1. Functionality

The system shall send a confirmation message

to the user’s registered email upon successful

account registration if approved or unapproved.

2. Security

All communication during the confirmation

process shall be encrypted.

The system shall implement measures to

prevent brute force attacks on the confirmation

process.

3. Error Handling

The system shall provide clear error messages

for invalid or expired confirmation links or

codes.

In case of system errors during the

confirmation process, the system shall prompt

the user to try again later.

100

4. Output/Notification

Upon successful confirmation, the user shall

receive a notification of successful account

activation.

If the confirmation fails, the user shall receive

an appropriate notification explaining the

reason.

5. Logging

All user actions during the confirmation process

shall be logged for audit purposes.

System errors and failed confirmation attempts

shall also be logged for further analysis.

Account Points

History

As a user, I want to be able to view the history of

my loyalty points (cashback, miles, points) in the

banking application, so that I can track my

earnings and redemptions over time. This feature

should provide a detailed history including dates,

points earned or redeemed, and the

corresponding transactions.

1. Functionality

The system shall display the history of loyalty

points earned and redeemed.

The history shall include details such as date of

transaction, number of points earned or

redeemed, and a brief description of the

transaction.

The user shall be able to filter the history by

date range.

2. Security

Access to the loyalty points history shall be

restricted to authenticated users only.

The system shall ensure that users can only

access their own points history.

Secure communication protocols shall be used

for data transmission.

3. Validation

The system shall validate date ranges entered

by the user for filtering history.

Any invalid date range inputs shall prompt an

appropriate error message.

4. Error Handling

In case of failure to retrieve points history due

to server or connectivity issues, an error

message shall be displayed.

The error message shall be clear and non-

technical, guiding the user to try again later.

5. Output/Notification
Upon successful retrieval, the points history

shall be displayed in a clear, readable format.

If no points history is found for the selected

date range, a message shall indicate that no

records are available.

6. Logging
All user interactions with the loyalty points

history feature shall be logged.

Customer Portal: User Loyalty Points (cashback, miles, points) History (Stretch)

101

Any errors encountered during the usage of

this feature shall also be logged for further

analysis.

View Stocks As a user, I want to view my stock portfolio within

the banking application's user portal, so I can

easily monitor my investment performance, check

stock prices, and view key details about my

investments in real-time.

1. Functionality

The system displays a list of stocks currently

owned by the user.

Users can view real-time prices and

performance metrics for each stock.

The system provides detailed views for

individual stocks, including historical

performance charts.

2. Security

Stock viewing is protected by user

authentication; only the logged-in user can

view their stock information.

The system employs HTTPS for data

transmission to ensure data privacy and

integrity.

Sensitive data, like stock quantities and values,

are encrypted at rest.

3. Validation
The system validates stock symbols and user

ownership before displaying information.

Invalid or unrecognized stock symbols result in

a notification to the user without exposing

system details.

4. Error Handling
If stock data fails to load, the system shows a

user-friendly error message.

The system handles partial failures gracefully,

showing available data with notifications about

unavailable information.

Errors due to network issues prompt the user

to try again later.

5. Output/Notification

Users receive a confirmation message when

the stock data is successfully loaded.

Any changes in the stock's status (like

significant price changes) trigger notifications, if

opted in by the user.

6. Logging

The system logs all user interactions with the

stock viewing feature for audit purposes.

Errors and anomalies in stock data retrieval are

logged for system monitoring and

troubleshooting.

Purchase Stocks As a user, I want to be able to purchase stocks

through the User Portal in the Banking

1. Functionality

Customer Portal: Investing (Stretch)

102

Application, so that I can invest in various

companies easily and manage my investments

within the same platform.

The feature allows users to search for stocks

by company name or ticker symbol.

Users can view current stock prices and

relevant information before purchasing.

There is a functionality for users to specify the

number of shares they wish to purchase.

The system calculates the total cost of the

transaction based on current stock prices and

the number of shares.

Users can confirm or cancel the purchase

before final submission.

2. Security

All stock purchase transactions require two-

factor authentication.

Sensitive user data, including transaction

details, are encrypted.

Session timeouts are implemented to prevent

unauthorized access during inactivity.

3. Validation

Input fields for stock search, number of shares,

and other relevant data have validation checks

for correct format and data types.

The system validates the availability of stocks

and sufficient funds in the user's account

before allowing the transaction to proceed.

4. Error Handling

Clear error messages are displayed for invalid

inputs or failed transactions.

The system handles cases of stock

unavailability or insufficient funds by prompting

appropriate user actions.

Error logs are maintained for failed transactions

or system errors for troubleshooting.

5. Output/Notification

Upon successful purchase, a confirmation

message with transaction details is displayed.

Users receive email notifications summarizing

the transaction details.

The user's portfolio is updated in real-time to

reflect the new stock purchase.

6. Logging

All stock purchase transactions are logged with

e.g. user ID, timestamp, stock details, and

transaction amount.

Logs are maintained for auditing and tracking

purposes, and are accessible only to

authorized personnel.

Sell Stocks As a user, I want to be able to sell stocks through

the User Portal of my Banking Application, so that

1. Functionality

103

I can efficiently manage my investments within

the User Portal - Investing section.

The system provides an option for the user to

select 'Sell Stocks' under the 'User Portal -

Investing' section.

Allows the user to search and select the stock

they wish to sell from their investment portfolio.

Provides an interface to enter the number of

stocks to be sold and displays the current

market price per stock.

Shows a preview of the transaction, including

the total sale value based on the current

market price and the number of stocks

selected.

Includes a 'Confirm Sale' button to complete

the transaction.

2. Security
Ensures all stock sale transactions require user

authentication (e.g., password or biometric

verification) before processing.

Implements SSL/TLS encryption for the

transmission of user data and transaction

details.

Conducts automatic logout after a period of

inactivity during the stock sale process.

3. Validation
Checks that the number of stocks the user

wishes to sell does not exceed the number

available in their portfolio.

Validates that the entered stock symbols

correspond to valid stocks in the user's

portfolio.

Ensures that the stock sale value is

recalculated in real-time if the market price

changes during the transaction process.

4. Error Handling
Displays an error message if there is a failure

in fetching the current market price of the

stock.

Provides a clear error notification if the user

attempts to sell more stocks than available in

their portfolio.

Alerts the user in case of transaction failures

due to network issues or backend problems.

5. Output/Notification
Confirms successful stock sale transactions

with a detailed summary, including the number

of stocks sold, sale value, and transaction date.

Sends a notification to the user’s registered

email or phone number upon the successful

completion of the stock sale.

104

Updates the user's investment portfolio in real-

time to reflect the sold stocks.

6. Logging

Logs all user actions and data inputs during the

stock sale process for audit purposes.

Records successful and unsuccessful

transaction attempts, including timestamps and

user identifiers.

Maintains logs of system errors and exceptions

encountered during stock sale transactions.

105

Cards & Loans - Customer Portal - Banking App - FS Java Capstone

Customer Portal: Sign up for Card

Customer Portal: Sign Up for Loans

Customer Portal: Card Management

Customer Portal: Loan Management

Customer Portal: Cashback Program

Customer Portal: Frequent Flyer Program

Customer Portal: Foodie Points Program

Cards & Loans

Sign Up for Card As a potential cardholder, I want to sign up for a

new card through a user-friendly and secure

online application process.

When I visit the card issuer's website, I should be

able to easily find the "Sign Up for Card" button

or link. Clicking on this button should take me to a

sign-up form where I can enter my personal

information, such as my name, address, phone

number, and email address.

1. Functionality
The user can access the 'Sign Up for Card'

feature from the user portal.

The user is presented with options for different

types of cards (e.g., credit, debit, prepaid).

The application allows the user to select a card

type and fill in the required details (e.g.,

personal information, income level).

Upon submission, the application sends the

card request for processing.

2. Security

All user data input is transmitted securely using

encryption.

User authentication is required before

accessing the sign-up feature.

The application should log out automatically

after a period of inactivity.

3. Validation

The application checks for the completeness

and format of all the input fields.

Invalid inputs (e.g., incorrect email format,

missing mandatory fields) are flagged with clear

error messages.

The application verifies the eligibility of the user

based on the provided information.

Story Description Acceptance Criteria Stor

y
Poin

ts

Customer Portal: Sign up for Card

106

4. Error Handling

The application provides informative error

messages for network issues or server

unavailability.

The application displays a friendly message in

case of system errors that prevent the

completion of the sign-up process.

Users are given the option to retry submission

or contact support in case of persistent issues.

5. Output/Notification

The user receives a confirmation message

upon successful submission.

The user is informed about the estimated time

for processing the application.

Notifications are sent to the user about the

status of the card application (e.g., approved,

pending, declined).

6. Logging
All user interactions with the 'Sign Up for Card'

feature are logged for audit purposes.

Errors and exceptions during the sign-up

process are logged with relevant details.

System logs capture timestamps and user

identifiers for each step of the sign-up process.

View Cards on

Offer

As a user, I want to be able to view various card

offers available so that I can choose one that best

suits my financial needs and preferences.

1. Functionality

The system displays a variety of credit and

debit card offers.

Information about each card includes details

such as benefits, fees, interest rates, and

eligibility criteria.

Users can sort and filter card offers based on

type, benefits, and other relevant parameters.

2. Security

All card offer data is presented without

exposing sensitive banking or personal

information.

The system implements secure communication

protocols (e.g., HTTPS) to protect data in

transit.

User authentication is required before

accessing the card offers section.

3. Validation
The system validates user inputs (e.g., filters

and sorting preferences) to ensure they are

within acceptable parameters.

Displays an appropriate message if no cards

match the user's filtering criteria.

4. Error Handling
In case of a failure to load card offers (e.g.,

server issues), the system shows a user-

107

friendly error message.

Provides a mechanism to retry fetching the card

offers (e.g., a "Try Again" button).

5. Output/Notification

Confirmation or informational messages are

displayed upon successful loading of card

offers.

Visual cues (e.g., loading indicators) are

provided while card offers are being fetched.

6. Logging

User interactions with the card offers section

(e.g., sort/filter selections) are logged for

analytical purposes.

Any errors encountered during the process are

logged for troubleshooting and system

improvement.

Confirm Card

Registration

As a user, I want to be able to confirm that my

payment card has been successfully registered

with the system.

When I enter my payment card details and

submit them, the system will validate the card

information and save it in the system. Once my

payment card is registered, I will receive a

confirmation message on the screen that my

payment card has been successfully registered.

1. Functionality
The system should display a 'Confirm

Registration' button after the user completes

the card registration form.

Upon clicking 'Confirm Registration', the system

should verify the provided card details against

the database.

If the card details are correct and registration is

successful, the user should be redirected to a

confirmation page.

2. Security

All card details entered by the user must be

encrypted during transmission.

The system should implement secure session

management, ensuring that the confirmation

process is tied to the user's current

authenticated session.

There should be security measures to prevent

CSRF (Cross-Site Request Forgery) attacks

during the confirmation process.

3. Validation

The system must validate the format of card

details (e.g., card number, expiration date)

before submission.

Appropriate error messages should be

displayed for invalid inputs.

The system should check for the existence of

the card in the bank’s database.

4. Error Handling
In case of a system error or failure during

confirmation, the user should receive a clear

error message.

The system should handle server-side errors

gracefully and not expose sensitive system

108

information to the user.

5. Output/Notification
Upon successful confirmation, the user should

receive a notification (e.g., email, SMS)

confirming that the card has been registered.

The confirmation page should clearly state that

the card registration is complete and provide

next steps or actions for the user.

6. Logging

All user actions during the card confirmation

process should be logged for audit and

troubleshooting purposes.

Logs should capture details like user ID,

timestamp, and nature of the action without

storing sensitive card details.

View Loans on

Offer

As a user, I want to view the various loan options

available on the banking application's user portal

so that I can understand the different types of

loans, their terms, and eligibility requirements.

1. Functionality

The user portal should display a list of available

loan options.

Each loan option should include details such as

interest rate, loan amount range, repayment

terms, and eligibility criteria.

Users should have the ability to click on each

loan for more detailed information.

2. Security
Ensure that all loan information is transmitted

over a secure, encrypted connection.

Implement measures to prevent unauthorized

access to loan details.

3. Validation

Validate user input fields such as filters for loan

type, amount, or duration to ensure data

entered is within acceptable parameters.

Display appropriate messages if the user enters

invalid data.

4. Error Handling

If the loan information fails to load, display a

user-friendly error message.

Provide a mechanism to retry fetching the loan

information.

5. Output/Notification
On successful loading of loan options, ensure

the information is displayed in a clear,

understandable format.

Notify the user with a message if no loan

options are available or if they don't meet the

criteria for viewing certain loans.

6. Logging

Customer Portal: Sign Up for Loans

109

Log user interactions with the loan options,

such as clicks and time spent on each loan

detail.

Record any errors or issues encountered

during the loan information retrieval process.

Sign Up for Loan As a user, I want to be able to sign up for a loan

through the banking application's user portal so

that I can easily apply for financial assistance

without visiting a bank branch.

1. Functionality

The loan application form should be accessible

after user authentication.

Users should be able to select different types of

loans (e.g., personal, home, auto) from a

dropdown menu.

The application form should include fields for

amount, term, and purpose of the loan.

A 'Submit' button should be available to send

the application for processing.

2. Security

Ensure that all data transmission is encrypted

using SSL/TLS protocols.

Implement CAPTCHA verification to prevent

automated submissions.

Session timeouts should be implemented to

protect user data if left idle.

3. Validation
Input fields should be validated for correct data

format (e.g., numeric values for amount, date

format for term).

Mandatory fields (e.g., loan amount, loan term)

must be completed before submission.

Real-time validation feedback should be

provided (e.g., red outline for incorrect format).

4. Error Handling

Display user-friendly error messages for input

validation failures (e.g., "Invalid amount

entered").

In case of network issues or server

unavailability, show an appropriate error

message (e.g., "Service temporarily

unavailable, please try again later").

Include a 'Retry' option for network-related

errors.

5. Output/Notification

Upon successful submission, display a

confirmation message (e.g., "Your loan

application has been submitted successfully").

Instruct users to expect a follow-up

communication for further steps or application

status.

Provide a clear indication if the submission is

still in progress (e.g., loading spinner).

110

6. Logging

Log user actions related to the loan application

process for auditing purposes.

Errors and unsuccessful submission attempts

should be logged with timestamps and user

identifiers.

Ensure that logs are stored securely and

accessible only to authorized personnel.

Confirm Loan

Registration

As a user , I want to be able to confirm my loan

registration so that I can be sure that my loan

application has been successfully received and

processed.

1. Functionality

The confirmation process should clearly display

the loan's terms and conditions.

A visible and interactive "Confirm" button

should be provided to submit the loan

registration.

Upon confirmation, the user should be directed

to a confirmation page or dashboard indicating

successful registration.

2. Security

The confirmation process should implement

HTTPS for secure data transmission.

Sensitive data, like personal and financial

information, must be encrypted.

Implement CAPTCHA or similar mechanisms to

prevent automated submissions.

3. Validation

Ensure input fields for loan details are validated

for correct format and completeness.

Display clear error messages if the user enters

invalid data.

Confirmation button should be disabled until all

required fields are correctly filled.

4. Error Handling
Provide clear error messages for any failed

submission or system errors.

Implement a retry mechanism or direct user to

try again later in case of system failure.

Errors should be logged for further analysis but

not expose sensitive information to the user.

5. Output/Notification

Display a confirmation message or screen upon

successful loan registration.

Send an email or SMS notification to the user

confirming the loan registration.

Clearly indicate any next steps or actions

required by the user.

6. Logging

Log all user actions during the confirmation

process for audit purposes.

111

Errors and unsuccessful attempts should be

logged with timestamp and user details.

Ensure logs are secure and only accessible by

authorized personnel.

Make Card

Payments

As a user, I want to be able to make card

payments for my purchases on the website. I

want to be able to securely enter my card details

including the card number, expiry date, CVV

code, and cardholder name. The website should

also provide clear instructions and feedback

throughout the payment process to ensure that I

understand each step and can easily complete

the transaction.

1. Functionality
The system allows users to select a credit card

to make a payment.

Users can enter the amount they wish to pay.

The system provides an option to choose the

payment account.

Users can review and confirm payment details

before submission.

2. Security

The payment feature employs HTTPS for

secure data transmission.

User authentication is required before

accessing the payment feature.

The system implements anti-CSRF tokens to

prevent cross-site request forgery.

3. Validation
The system validates the entered payment

amount for format (numerical) and logical errors

(e.g., negative values, exceeding due amount).

Payment account selection is validated for

existence and fund sufficiency.

4. Error Handling

If a payment fails, the system shows a clear

error message specifying the reason (e.g.,

“Insufficient funds”, “Invalid amount”).

In case of a system error, the user is informed

without exposing any technical details.

5. Output/Notification

Upon successful payment, the user receives a

confirmation message with payment details.

The system sends an email receipt to the

user’s registered email address.

6. Logging

All payment transactions are logged with

necessary details (e.g., user ID, transaction

amount, date/time) for auditing purposes.

Failed payment attempts are logged with error

codes and timestamps.

View Card

Transactions

As a cardholder, I want to view my recent card

transactions so that I can keep track of my

spending and detect any unauthorized

transactions.

1. Functionality

The system shall display a list of recent

transactions made with the user’s cards.

Transactions shall be retrievable based on

specific cards linked to the user’s account.

Customer Portal: Card Management

112

2. Security

Access to view card transactions shall require

user authentication.

Sensitive data, such as card numbers, shall be

partially masked (e.g., last four digits visible).

The system shall implement secure

communication protocols to protect transaction

data during transmission.

3. Validation

The system shall validate user permissions to

ensure they can only view transactions for

cards they own.

Date range filters applied by the user shall be

validated for format and logical consistency

(e.g., start date cannot be after end date).

4. Error Handling

In case of a system error or failed transaction

retrieval, the system shall display a user-

friendly error message.

The system shall handle network or

connectivity issues gracefully, informing the

user to try again later.

5. Output/Notification

The system shall display transaction details in a

clear, readable format.

Notifications shall be provided for any updates

or changes in the transaction status (if

applicable).

6. Logging

All user actions related to viewing card

transactions shall be logged for audit purposes.

System errors and failed transaction retrieval

attempts shall also be logged for further

analysis.

View Card Status As a user, I want to view the status of my cards

within the banking application, so that I can easily

manage and monitor my card activities and

status without needing to contact customer

service or visit a bank branch.

1. Functionality

The user must be able to view the current

status of all their cards (credit, debit, etc.) linked

to their account.

The status information should include card

type, card number (last four digits), issue date,

expiry date, and current status (active, blocked,

expired).

2. Security

All card status information should be displayed

after successful user authentication.

The application should enforce HTTPS to

protect the data in transit.

Sensitive card details (like full card number or

CVV) should not be displayed.

3. Validation

113

The system should validate user permissions to

ensure only the account holder or authorized

users can view card status.

In case of multiple users (like in joint accounts),

proper validation should confirm that the user

has rights to view the specific card’s status.

4. Error Handling

If the card status fails to load, the system

should display a user-friendly error message.

The system should handle timeouts or network

issues gracefully, prompting the user to try

again later.

5. Output/Notification

Upon successful loading, the card status should

be displayed in a clear, readable format.

Any changes in the card status (like blocking or

unblocking a card) should trigger a real-time

update on the user interface.

6. Logging

All user actions related to viewing card status

should be logged for audit and security

purposes.

Errors or system malfunctions during the view

operation should also be logged for

troubleshooting and improvement of the

system.

Request new

Card

As a user, I want to be able to request a new card

through the User Portal, so that I can easily

manage my banking needs online without visiting

a branch or calling customer service.

1. Functionality
The portal allows users to initiate a request for

a new card.

Users can select the type of card (e.g., debit,

credit) they wish to request.

Users can review and confirm their card

request before submission.

2. Security

All card request processes are conducted over

a secure, encrypted connection.

Users are required to authenticate (e.g.,

password, biometric verification) before

accessing the card request feature.

Sensitive data (e.g., personal information, card

preferences) are handled in compliance with

data protection regulations.

3. Validation

The system validates user input for correctness

and completeness.

Error messages are displayed if the user enters

invalid or incomplete information.

The system checks for existing card limits (e.g.,

max number of cards allowed) before allowing

a new request.

114

4. Error Handling

If the card request process encounters a

technical issue, the user is informed with a

clear message.

Users are provided with suggestions or actions

to take in case of a failed request (e.g., contact

support, try again later).

The system gracefully handles server-side

errors without crashing or freezing the user

interface.

5. Output/Notification

Upon successful submission of a card request,

users receive a confirmation message with

relevant details (e.g., expected processing

time).

Notifications or updates regarding the card

request status are sent to the user (e.g., via

email, in-app notification).

6. Logging

All user actions related to the card request are

logged for audit and troubleshooting purposes.

System errors or anomalies during the card

request process are captured in the error logs.

Privacy and security standards are maintained

in the logging process, ensuring no sensitive

user data is stored in plain text.

Deactivate Card As a user, I want the ability to stop my card

through the User Portal, ensuring that I can

quickly deactivate my card in case it is lost,

stolen, or compromised. This feature should allow

me to easily and securely suspend the card,

preventing any unauthorized transactions, while

providing clear feedback and maintaining a

record of this action for future reference.

1. Functionality
The 'Stop Card' feature is accessible from the

Card Management section in the User Portal.

Users can select the specific card they wish to

stop.

Upon selection, users are required to confirm

the action to stop the card.

Once confirmed, the card is immediately

deactivated for transactions.

2. Security
The feature includes user authentication checks

before allowing access.

The session is secured, ensuring data

encryption during the process.

The application logs out the user after a period

of inactivity during the stop card process.

3. Validation

The system validates the card's existence and

status before proceeding with the stop action.

Users receive a message if they attempt to stop

an already deactivated or invalid card.

4. Error Handling
In case of a system error or failure, the user is

informed with a clear, understandable error

115

message.

The application provides an option to retry the

action or contact support if the error persists.

5. Output/Notification

Upon successful card deactivation, users

receive a confirmation notification.

The confirmation includes details of the card

stopped and the time of the action.

6. Logging

All actions related to stopping a card are logged

with user ID, timestamp, and card details.

Failed attempts are also logged for audit and

security purposes.

Report Card as

Stolen

As a user, I want to be able to report my card as

stolen through the banking application's user

portal so that I can ensure my financial security is

not compromised.

1. Functionality

The user can select the card to report as stolen

from a list of their active cards.

The application should provide an option to

report the card as stolen.

Upon selection, the user should be able to

confirm the action.

2. Security

The feature must require user authentication

before allowing access to the card reporting

option.

All data transmissions related to this feature

should be encrypted.

The application should log out the user after a

period of inactivity while using this feature.

3. Validation
The system should validate that the selected

card belongs to the authenticated user.

The application must confirm the user's action

to report the card as stolen before processing.

4. Error Handling

If the card cannot be reported as stolen (e.g.,

due to a server error), the application should

display an appropriate error message.

The application should provide guidance or

contact information for further assistance if the

process cannot be completed.

5. Output/Notification
After successful reporting, the user should

receive a confirmation message on the

application interface.

The user should receive an email or SMS

notification confirming the card has been

reported as stolen.

6. Logging

116

The system should log all actions taken by the

user during this process, including timestamp,

user ID, and the card number reported.

In case of errors, the system should log the

error details for troubleshooting purposes.

Use cashback for

Card Payments

As a user, I want to use my accumulated

cashback to make payments on my card so that I

can effectively utilize the rewards I have earned

through my card usage.

1. Functionality

The system should allow users to view their

available cashback balance.

Users should be able to apply their cashback

towards their card payments.

The amount of cashback applied should be

deducted from the total payment amount.

2. Security

Ensure all cashback transactions are

conducted over a secure connection.

Implement user authentication checks before

allowing access to the cashback redemption

feature.

Encrypt sensitive data related to cashback

transactions.

3. Validation

Validate the availability of sufficient cashback

balance before processing the payment.

Confirm that the cashback amount does not

exceed the total payment due.

Verify that the card account is active and not

flagged for any restrictions.

4. Error Handling

In case of insufficient cashback balance,

display an appropriate error message.

Handle network or processing errors gracefully

and inform the user.

Ensure errors related to card status (e.g.,

blocked or inactive card) are clearly

communicated.

5. Output/Notification

Provide a confirmation message upon

successful application of cashback to a

payment.

Display the updated cashback balance and

remaining payment amount after the

transaction.

Notify the user of any unsuccessful transaction

attempts due to errors.

6. Logging

Log all user interactions with the cashback

feature for audit and troubleshooting purposes.

Record details of each cashback transaction,

including date, time, amount, and card number.

117

Maintain logs of any errors encountered during

cashback transactions.

Temporarily Lock

Card

As a user, I want to be able to temporarily lock

my bank card through the user portal, so that I

can prevent unauthorized use while the card is

not in my possession or if I suspect it is lost or

stolen.

1. Functionality

The user can locate the 'Temporarily Lock Card'

feature easily within the Card Management

section.

On selection, the user is presented with a list of

their active cards.

The user can select the card they wish to lock.

A confirmation step is required before the card

is locked.

Once confirmed, the card status is changed to

'Locked' immediately.

2. Security

All user actions are performed over a secure

connection.

User authentication is required before

accessing the Card Management section.

Additional verification (e.g., password, security

question, OTP) is required before locking the

card.

The feature is disabled after multiple failed

attempts to prevent brute force attacks.

3. Validation

The system validates the card's existence and

active status before allowing the lock action.

An appropriate message is displayed if the user

attempts to lock a card that is already locked,

expired, or does not exist.

4. Error Handling

Clear error messages are displayed for network

issues or server unavailability.

User is informed if there is a delay in

processing the lock request.

An error message is displayed for any

unauthorized attempt to access the feature.

5. Output/Notification

The user receives a visual confirmation on the

screen once the card is successfully locked.

An email and/or SMS notification is sent to the

user confirming the card lock.

6. Logging

All actions (including successful locks, failed

attempts, and errors) are logged for audit

purposes.

Logs contain timestamps, user identifiers, and

action details without storing sensitive card

information.

118

View Loan Status As a user, I want to be able to view the status of

my loans in the banking application's user portal,

so I can easily track the current status,

outstanding balance, payment history, and any

relevant details of my loans.

1. Functionality
The user should be able to view all current and

past loans.

Each loan should display its current status

(e.g., active, paid off, in arrears).

Details such as loan amount, outstanding

balance, interest rate, and payment history

should be visible.

The user interface should refresh to show the

most recent data each time it's accessed.

2. Security

Loan status and details should only be

accessible after successful user authentication.

Data transmission of loan information must be

encrypted using industry-standard protocols.

Implement timeout for inactivity to prevent

unauthorized access.

3. Validation

Ensure that the displayed loan data matches

the user's account records.

Validate that all the loan details are up-to-date

and accurately reflect the backend database.

4. Error Handling

If loan data fails to load, display a user-friendly

error message.

Provide an option to retry fetching the loan data

if an error occurs.

Errors should be logged for further investigation

without exposing sensitive data to the user.

5. Output/Notification

Upon successful loading, the loan status and

details should be displayed in a clear, readable

format.

Notify the user of any changes to the loan

status (e.g., payment due, payment received)

through in-app notifications.

6. Logging

Log user activities related to viewing loan status

for security and auditing purposes.

Any errors or anomalies in accessing loan data

should be logged with sufficient detail for

troubleshooting.

Make Loan

Payments

As a user, I want to be able to make loan

payments through the User Portal so that I can

easily manage my loan repayment schedule and

amounts, ensuring that the process is secure,

user-friendly, and error-free.

1. Functionality
The portal allows the user to view their current

loan balance.

Users can select the loan account they wish to

make a payment to.

Customer Portal: Loan Management

119

There is an option to enter the payment

amount.

Users can choose the payment date, with the

ability to schedule future payments.

The system provides a confirmation screen

before finalizing the payment.

Upon confirmation, the payment is processed.

2. Security
All loan payment transactions require user

authentication.

The system uses SSL encryption for data

transmission.

Payment details are not stored on the user's

device or browser.

Session timeout is implemented for inactivity.

3. Validation

The system checks for the validity of the

entered payment amount (not exceeding the

loan balance and not below minimum payment

criteria).

Payment date validation ensures the chosen

date is not a past date.

The system validates the source of payment

(e.g., linked bank account) for sufficient funds.

4. Error Handling

The system displays user-friendly error

messages for invalid inputs or failed

transactions.

There are specific error messages for network

issues or service unavailability.

Retry mechanisms are in place for temporary

failures.

5. Output/Notification

Upon successful payment, the user receives a

confirmation message with payment details.

The system sends a receipt via email or SMS

as per user preference.

Real-time update of the loan balance after the

payment is reflected in the user's account.

6. Logging

All payment transactions are logged with details

including user ID, transaction ID, amount, and

date.

Failed transactions are also logged with error

details.

System maintains an audit trail for security and

dispute resolution purposes.

120

Earn cashback

for transactions

on Credit card

As a user, I want to earn cashback for

transactions made with my credit card so that I

can receive rewards for my spending.

1. Functionality
The system should automatically calculate

cashback based on the predefined percentage

rate for each eligible credit card transaction.

The cashback amount should be credited to the

user's account within a specified timeframe

after the transaction is completed.

Users should be able to view the total cashback

earned on their dashboard.

2. Security
All credit card transactions and cashback

calculations must be processed in a secure

environment to protect user data.

The system should have safeguards to prevent

unauthorized access to cashback information

and transaction details.

3. Validation
The system should validate the eligibility of

transactions for cashback. Not all transactions

may qualify (e.g., balance transfers, cash

advances).

There should be a validation check to ensure

that the cashback amount does not exceed any

set maximum limits per transaction or account.

4. Error Handling

In case of a transaction processing error, the

user should be notified, and the transaction

should not qualify for cashback.

If there's an error in cashback calculation, the

system should log the error and flag it for

review by the technical team.

5. Output/Notification

Users should receive a notification (e.g., email,

in-app notification) once cashback is credited to

their account.

The user interface should display an updated

total of cashback earned after each eligible

transaction.

6. Logging
All transactions and their corresponding

cashback calculations should be logged for

audit purposes.

Any anomalies or errors in the cashback

process should be logged with detailed

information for troubleshooting.

Earn miles for

transactions on

As a user, I want to earn miles for transactions

made using my Frequent Flyer Card so that I can

1. Functionality

Customer Portal: Cashback Program

Customer Portal: Frequent Flyer Program

121

Frequent Flyer

Card

benefit from the Frequent Flyer Program

associated with my bank's User Portal.

The system should accurately track and record

miles earned for each eligible transaction made

using the Frequent Flyer Card.

Transactions should be categorized to

distinguish between those that qualify for miles

and those that do not.

2. Security

All transactions and mile accruals must be

processed in a secure environment to protect

user data.

Implement standard encryption for data

transmission.

Ensure compliance with relevant financial data

protection regulations.

3. Validation
Validate transaction data to ensure only

legitimate and successful transactions are

considered for mile accrual.

Implement checks to prevent duplication in mile

accrual for the same transaction.

4. Error Handling
In case of a transaction failure, ensure that the

system does not award miles.

Provide meaningful error messages to the

frontend in case of failures in transaction

processing or mile recording.

5. Output/Notification
Once miles are successfully recorded, send a

confirmation to the frontend for user notification.

Ensure that the updated mile balance is

accurately reflected in the user's account.

6. Logging

Maintain detailed logs of all transactions and

mile accrual activities for auditing and

troubleshooting purposes.

Log any discrepancies or errors encountered

during the transaction or mile accrual process.

Consume earned

miles for new

Tickets

As a user, I want to be able to consume my

earned miles from the Frequent Flyer Program to

purchase new tickets through the Cards & Loans

feature within the User Portal of our Banking

Application. This will allow me to efficiently use

my reward points without the need for external

processes.

1. Functionality

The system should display the total earned

miles available for the user.

Allow users to select the number of miles they

wish to redeem.

Calculate the equivalent value of the selected

miles in terms of ticket pricing.

Provide an option to confirm the redemption of

miles for tickets.

Update the user's miles balance after

successful redemption.

2. Security

122

Implement secure session management to

prevent unauthorized access.

Employ encryption for the transmission of

sensitive data.

Require user authentication before accessing

the Frequent Flyer Program features.

3. Validation

Verify that the number of miles entered for

redemption does not exceed the user's

available balance.

Ensure the input for miles is a valid number and

not a negative value.

Validate the availability of tickets against the

miles to be redeemed.

4. Error Handling

Display an error message if the redemption

process fails due to network issues or server

errors.

Inform the user if the entered miles exceed their

available balance.

Provide a clear message if no tickets are

available for the equivalent value of miles

selected.

5. Output/Notification
Show a confirmation message upon successful

redemption of miles.

Update the user interface to reflect the new

balance of miles.

Notify the user of the successful ticket purchase

via email or in-app notification.

6. Logging

Log all user actions related to miles redemption

for auditing purposes.

Record any system errors or exceptions that

occur during the redemption process.

Maintain a log of successful and failed

redemption attempts for security and

troubleshooting.

Earn foodie

points from

transactions on

Foodie Card

As a User, I want to earn Foodie Points for every

transaction I make using the card so that I can

redeem these points later and enjoy rewards.

1. Functionality
The portal should display the total Foodie

Points earned from Foodie Card transactions.

Users can view detailed transaction history to

see how many points were earned per

transaction.

2. Security

Ensure all transaction data displayed is

encrypted during transmission.

Customer Portal: Foodie Points Program

123

Implement session timeouts to prevent

unauthorized access.

3. Validation

Validate that only transactions made with the

Foodie Card are considered for Foodie Points.

Display an error message if the system fails to

retrieve transaction data.

4. Error Handling
Provide a user-friendly error message for any

failed transaction retrieval or processing.

Offer a "Retry" option in case of temporary

system issues.

5. Output/Notification

Notify users via the portal when Foodie Points

are successfully credited after a transaction.

Display updated Foodie Points balance

immediately after each eligible transaction.

6. Logging

Log all user actions related to viewing and

earning Foodie Points.

Maintain an audit trail for troubleshooting and

security audits.

Consume Earned

points for new

Orders

As a User, I want to be able to consume my

earned points when placing new food orders, So

that I can benefit from the rewards of the program

and potentially reduce my order costs.

1. Functionality
The system shall allow users to view their

current Foodie Points balance.

Users can select Foodie Points as a payment

option when placing new orders.

The system shall deduct the appropriate

number of points from the user's balance upon

order completion.

2. Security

All point transactions must be conducted over a

secure connection.

User authentication is required before

accessing the points redemption feature.

3. Validation

The system shall validate the sufficiency of

points for the intended order.

An error message is displayed if the user's

points are insufficient.

4. Error Handling
In case of a transaction failure, the system shall

not deduct points from the user's account.

Clear error messages shall be displayed for

different failure scenarios (e.g., network issues,

server errors).

5. Output/Notification

Upon successful order placement, the user

shall receive a confirmation message with order

124

details.

The system shall update the user's Foodie

Points balance in real-time and display it post-

transaction.

6. Logging
All point redemption transactions shall be

logged with timestamps, user IDs, and

transaction details.

Any errors or exceptions during the transaction

process shall also be logged for audit and

troubleshooting purposes.

125

Branches - Customer Portal - Banking App - FS Java Capstone

Customer Portal: Check-In

Customer Portal: Appointments

Customer Portal: ATM/Branch Locator (Stretch)

Branches

Select Service As a user, I want to select the service I need

(e.g., deposit, withdrawal, transfer, loan

consultation) when I check in through the banking

app so that I can be directed to the appropriate

department or representative.

1. Functionality
The portal should display a list of available

services in the branch.

Users can select one service from the list.

Once a service is selected, it should highlight or

indicate the selection clearly.

2. Security
Ensure that the service selection feature

adheres to the application's overall security

protocol.

Implement session timeouts to protect user

data in case of inactivity.

3. Validation

Validate the user's selection to ensure a service

is chosen before proceeding.

Provide a notification or prompt if no service is

selected when attempting to proceed.

4. Error Handling

If the service list fails to load, display a user-

friendly error message.

Implement retry mechanisms for temporary

failures in loading the service list.

5. Output/Notification
Confirm the user's selection with a visual

indication (e.g., a checkmark next to the

selected service).

Display a confirmation message or dialog box

once the service selection is completed.

6. Logging

Story Description Acceptance Criteria Stor

y
Point

s

Customer Portal: Check-In

126

Log the user’s actions (service selection,

confirmation) for auditing and troubleshooting

purposes.

Ensure logs contain timestamps and user

identifiers for traceability.

View Branch As a user, I want to view details of various bank

branches within the User Portal, so that I can

easily find information about branch locations,

services, and hours of operation.

1. Functionality

The system displays a list of bank branches.

Users can select a branch to view detailed

information including location, services

provided, and hours of operation.

Branch information is presented in a user-

friendly format, ensuring readability.

2. Security

All branch data displayed is strictly non-

sensitive and public information.

User sessions are verified for authenticity

before displaying branch information.

Branch data retrieval is performed over secure,

encrypted channels.

3. Validation

The system validates the availability of branch

information before display.

If a selected branch's details are not available,

the system notifies the user accordingly.

Invalid or corrupt data, if detected, is not

displayed to the user.

4. Error Handling

In case of a failure to retrieve branch

information, the system displays a friendly error

message.

Error messages should not expose any

technical details or vulnerabilities.

The system provides the user with suggestions

to retry or contact support if errors persist.

5. Output/Notification
Successful loading of branch information is

indicated through a visual cue.

Any updates or changes in branch information

are dynamically updated without needing to

refresh the page.

Notifications for updates or maintenance

schedules related to branch information are

provided when relevant.

6. Logging
User interactions with the branch information

feature are logged for audit and troubleshooting

purposes.

Logs include timestamps, user ID, and nature

of interaction without logging any personal user

127

data.

Anomalies in user behavior or system

performance while accessing branch

information are flagged for review.

Get in Line As a user, I want to join a virtual queue at a

specific bank branch through the User Portal, so

that I can minimize my waiting time and have a

more efficient visit.

1. Functionality

The system allows users to select a bank

branch from a list.

Users can view the estimated waiting time for

each branch.

A "Join Queue" button is available for users to

enter the virtual queue.

Upon joining, users receive a queue number

and their position in the line.

2. Security

User authentication is required to access the

'Get in Line' feature.

The system ensures that queue data is

encrypted during transmission.

Session timeout is implemented to prevent

unauthorized access.

3. Validation

The system validates user selections for branch

and queue.

Error messages are displayed if a user

attempts to join a queue without selecting a

branch.

The system checks for and notifies the user if

the selected branch queue is full.

4. Error Handling
In case of system errors, users receive a clear

error message with steps to retry or contact

support.

The system handles failed queue join attempts

gracefully, prompting the user to try again.

5. Output/Notification
Once successfully in line, users receive a

confirmation message with their queue number.

Notifications are sent to update users on their

queue status and estimated wait time.

6. Logging

All user actions within the 'Get in Line' feature

are logged for audit and troubleshooting

purposes.

Queue join and leave events are logged with

timestamps and user identifiers.

Select Service As a user, I want to be able to select the specific

banking service I need when making an

1. Functionality

Customer Portal: Appointments

128

appointment at a branch through the User Portal,

so that I can ensure my visit is efficient and my

banking needs are met.

The system shall present a list of available

banking services to the user.

Users can select one service from the list for

each appointment.

The system shall save the user’s selection and

associate it with their appointment details.

2. Security

All user interactions with the service selection

feature shall be conducted over a secure,

encrypted connection.

The system shall not expose any sensitive user

data during the service selection process.

3. Validation

The system shall validate the user’s selection

to ensure a service is chosen before allowing

the user to proceed.

Invalid or incomplete selections shall prompt

the user to make a valid choice.

4. Error Handling

In case of a system error during service

selection, the user shall be presented with a

friendly error message.

The system shall offer the option to retry the

selection process after an error.

5. Output/Notification

Upon successful service selection, the user

shall receive a confirmation on the screen.

The system shall notify the user if the selected

service is not available at their chosen branch

or time.

6. Logging

All user actions within the service selection

feature shall be logged for auditing purposes.

Error occurrences and system malfunctions

within this feature shall be logged for further

analysis and improvement.

Select Banker As a user, I want to be able to select a banker

from my local branch through the User Portal of

the Banking Application, so that I can schedule an

appointment for in-person banking services.

1. Functionality

The User Portal must display a list of available

bankers from the user's selected branch.

Users must be able to view each banker's

specialties, availability, and ratings.

The system should allow users to select a

preferred banker for their appointment.

2. Security

All user interactions with the banking portal

must be conducted over a secure, encrypted

connection.

The system should implement robust

authentication to ensure that only authenticated

users can select a banker.

129

Sensitive user data, such as user preferences

and selections, must be securely stored and

handled.

3. Validation

The system must validate the availability of the

selected banker before confirming the user's

choice.

Users should be notified if their selected banker

is not available and prompted to choose

another.

4. Error Handling

In case of system errors or connectivity issues,

the user should be presented with a clear error

message.

The system should provide suggestions or

actions to resolve the issue, such as retrying

the operation or contacting support.

5. Output/Notification
Upon successful selection of a banker, the user

should receive a confirmation notification.

The system should inform the user of the next

steps, like appointment scheduling.

6. Logging

All user actions and system responses related

to the banker selection process must be logged

for audit and troubleshooting purposes.

Logs should capture key information such as

timestamps, user ID, and actions performed,

while ensuring sensitive data is anonymized.

View Calendar As a user, I want to view a calendar in the User

Portal of the Banking Application, which allows

me to see available appointment slots at different

branches, so that I can schedule my visit

conveniently.

1. Functionality

The calendar displays available appointment

slots for various bank branches.

Users can view the calendar on a daily, weekly,

or monthly basis.

Calendar integrates with the real-time

availability of the branches.

2. Security

Calendar data is only accessible to

authenticated users.

All calendar data transmissions are encrypted.

User session times out after a period of

inactivity, requiring re-authentication.

3. Validation

The system validates the availability of slots

before allowing a user to view them.

Invalid date or time entries are flagged with an

error message.

4. Error Handling

130

In case of a system error or downtime, a

friendly error message is displayed.

The system offers a 'Retry' option after an error

occurs.

If the calendar fails to load, users are prompted

to check their network connection or try again

later.

5. Output/Notification
After successfully viewing the calendar, a

confirmation message is displayed.

Notifications are sent to users if there are any

changes in the availability of slots they are

interested in.

6. Logging

All user interactions with the calendar feature

are logged for auditing purposes.

Error logs are maintained for system failures or

exceptions.

Search for

Branches

As a user, I want to be able to search for bank

branches within the user portal of the banking

application, so that I can easily find the nearest

branch location, operating hours, and available

services.

1. Functionality

The portal must provide a search function to

find bank branches.

Users should be able to enter search criteria

(e.g., zip code, city).

The system displays a list of branches

matching the search criteria.

Each branch listing includes address, operating

hours, and services available.

2. Security

Ensure that the branch search feature complies

with data privacy regulations.

Implement measures to prevent unauthorized

access to branch information.

Search queries should not expose any

sensitive bank or user data.

3. Validation

Input fields for search criteria must validate

user input for format (e.g., correct zip code

format).

The system should prompt the user to correct

invalid search inputs.

4. Error Handling

In case of a failed search (e.g., no network

connectivity), display an appropriate error

message.

Provide users with suggestions to resolve the

error (e.g., check internet connection, try a

different search term).

5. Output/Notification

Customer Portal: ATM/Branch Locator (Stretch)

131

After a successful search, display the results in

an easy-to-read format.

If no branches are found, inform the user with a

message like "No branches found for the

entered criteria."

6. Logging

Log all search queries for branches for auditing

purposes.

Ensure logs capture date, time, and user ID,

but not the specific search details to maintain

user privacy.

Logs should be stored securely and only

accessible by authorized personnel.

