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ABSTRACT

This paper investigates the use of a Passive Intelligent Mir-
rors (PIM) to operate a multi-user MISO downlink commu-
nication. The transmit powers and the mirror reflection co-
efficients are designed for sum-rate maximization subject to
individual QoS guarantees to the mobile users. The result-
ing problem is non-convex, and is tackled by combining al-
ternating maximization with the majorization-minimization
method. Numerical results show the merits of the proposed
approach, and in particular that the use of PIM increases the
system throughput by at least 40%, without requiring any ad-
ditional energy consumption.

Index Terms— Multi-user MIMO, passive intelligent
mirrors, non-convex optimization, majorization-minimization.

1. INTRODUCTION

The number of wireless devices is anticipated to reach 50 bil-
lions by 2020 [1–6]. This poses serious sustainability con-
cerns for future cellular networks, which are demanded to
provide 1000× higher data rates compared to present net-
works, while at the same time halving energy consumptions
[7–9]. This puts forth the critical needs for green and energy-
efficient wireless solutions. The recent tutorial [10] and sur-
vey [11] provide a comprehensive review of green solution-
s, including renewable energy sources, energy-efficient hard-
ware, and green radio resource allocation and transmission.

One recent technology that has a significant potential in
reducing energy consumptions in wireless networks is the so-
called Passive Intelligent Mirrors (PIM), i.e. a physical meta-
surface composed of many small-unit reflectors equipped
with simple low-cost sensors and a cognitive engine. Each
unit of the mirror is able to reflect a phase-shifted version of
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an incoming electromagnetic field. Thus, by suitably design-
ing the phase shifts, it is possible to constructively combine
the signals reflected by the different units, which effectively
makes the PIM an active medium. In other words, a PIM is
able to act as an amplify-and-forward relay, but without re-
quiring any dedicated energy source, thereby saving precious
energy and enabling communication also in the presence of
poor channel conditions. In addition, deployment costs are
limited. A PIM can be easily integrated into the walls of the
buildings surrounding the transmitter, as well as into ceilings
of moving trains, laptop cases, and even on people’s arms.

Previous research on PIM mainly focused on indoor sce-
narios [5, 12–15]. In [12, 13], the concept of intelligent wall
was proposed, as a wall that can be equipped inside a building
to improve indoor communications. In [14], a detailed anal-
ysis on the information transfer from the users to the large
intelligent surfaces was carried out. However, these previous
works did not provide any system design method, focusing
merely on introducing the PIM idea in indoor scenarios.

In contrast, this work focuses on an outdoor scenario, con-
sidering a MISO downlink channel, and optimizing the trans-
mit powers and the PIM phase shifts so as to maximize the
system sum-rate. The resulting optimization problem is non-
convex, and a provably convergent, low-complexity optimiza-
tion method is developed merging the alternating optimiza-
tion and majorization-minimization frameworks. Numerical
results show that PIM can increase the system sum-rate by
more than 40%, without any additional energy consumption.

2. SYSTEM MODEL

The considered system model is shown in Fig. 1. A base sta-
tion (BS) equipped withM antennas servesK single-antenna
users, through a PIM composed of N reflecting units embed-
ded in a surrounding building, which acts a relay. The direct
path between the BS and the mobile is neglected as it is as-
sumed that no line-of-sight communication is present. Then,
the discrete-time signal received at user k can be written as

yk = hk,2ΘH1x + wk, k = 1, 2, ...,K, (1)
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Fig. 1. A BS serves K mobile users through a PIM

where hk,2 ∈ C1×N and H1 ∈ CN×M denote the channel
between the PIM and user k and between the BS and PIM,
with entries modeled as independent and identically distribut-
ed (i.i.d.) complex circularly symmetric standard Gaussian
variables; Θ = diag[ejθ1 , . . . , ejθN ] is the PIM phase-shift
matrix, with j the imaginary unit; wk ∼ CN (0, σ2) models
the thermal noise at user k; x =

∑K
k=1

√
p
k
gksk is the BS

transmit signal, with pk, sk, and gk the transmit power, infor-
mation symbol, and beamforming vector intended for user k.
Then, for all k, the SINR enjoyed by user k is

γk =
pk|h2,kΘH1gk|2

K∑
i=1,i6=k

pi|h2,kΘH1gi|2 + σ2

. (2)

2.1. Problem formulation

The goal of this work is to optimize the transmit powers and
the matrix Θ for system sum-rate maximization. To make
the problem tractable, we employ zero-forcing transmission,
which is optimal in the high-SNR regime [16, 17]. Assum-
ing N ≥ K, and defining G = [g1, . . . ,gK ] ∈ CM×K and
H2 = [hT2,1, . . . ,h

T
2,K ]T ∈ CK×N , zero-forcing is achieved

by setting G = (H2ΘH1)
+, with (·)+ denoting pseudo-

inversion. Then, defining the matrix P = diag[p1, . . . , pK ]
and denoting the maximum feasible transmit power at the BS
by Pmax, and the k-th user’s rate requirement by Rmin,k, the
sum-rate maximization problem can be formulated as

max
Θ,P

K∑
k=1

log2

(
1 +

pk
σ2

)
(3a)

s.t. log2

(
1 +

pk
σ2

)
≥ Rmin,k ,∀ k = 1, . . . ,K (3b)

tr((H2ΘH1)
+P(H2ΘH1)

+H) ≤ Pmax (3c)
0 ≤ θi ≤ 2π ,∀ i = 1, . . . , N (3d)

Problem (3) is non-convex, and especially the optimization
with respect to Θ appears challenging [18]. The next section
introduces a computationally-affordable way to tackle (3).

3. PROPOSED APPROACH

In order to tackle (3) with affordable complexity, a convenient
approach is to separately and iteratively optimize P and Θ.

3.1. Optimization with respect to Θ

For fixed P, Problem (3) becomes the feasibility test

max
Θ

1 (4a)

s.t. tr((H2ΘH1)
+P(H2ΘH1)

+H) ≤ Pmax (4b)
0 ≤ θi ≤ 2π ,∀ i = 1, . . . , N (4c)

As a first step, it is convenient to apply the change of variable
φk = ejθk , which leads to the problem:

max
Φ

1 (5a)

s.t. tr((H2ΦH1)
+P(H2ΦH1)

+H) ≤ Pmax (5b)
|φi| = 1,∀ i = 1, . . . , N , (5c)

The challenge in solving Problem (5) lies in the fact that its
objective is non-differentiable and that (5c) is a non-convex
constraint. To proceed further, we observe that (5) is feasible
if and only if the solution of the problem

min
Φ

tr((H2ΦH1)
+P(H2ΦH1)

+H) (6a)

s.t. |φi| = 1,∀ i = 1, . . . , N , (6b)

is such that the objective can be made lower than Pmax. At
this point, we observe that (6a) can be rewritten as follows:

tr((H2ΦH1)
+P(H2ΦH1)

+H) = ‖H+
1 Φ−1H+

2 ‖F
=‖vec(H+

1 Φ−1H+
2 )‖2 = ‖(H+

2 ⊗H+
1 )vec(Φ−1)‖2 , (7)

where we have exploited the properties of the Frobenius ma-
trix norm and the connection between the vectorization oper-
ator and the Kronecker product. As we will show, the objec-
tive in (7) enables to deal with the non-convex constraint (6b),
provided one is able to reformulate (7) into a differentiable
function. To this end, a convenient approach is to resort to
the Majorization-Minimization (MM) method [19–21]. The
MM method is an iterative approach that, in the i-th iteration,
maximizes an upper-bound of (7). However, for any i-th it-
eration, the upper-bound maximized in i-th iteration and the
true objective (7) must be equal when evaluated at the maxi-
mizer computed in (i − 1)-th iteration. The MM is attractive
because it enjoys the monotonic improvement property, i.e., it
monotonically decreases the value of the true objective (7) af-
ter each iteration. This also implies converges in the objective
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value, since (7) is lower-bounded over the problem feasible
set. Nevertheless, the challenge in using the MM method lies
in determining a suitable upper bound of (7), which fulfill-
s the theoretical requirements of the method, (i.e., coincides
with the true objective at a given point), and is also easier to
minimize compared with the original objective. For the case
at hand, a convenient upper-bound is provided in the follow-
ing lemma.

Lemma 1 Consider (6). Then, for any feasible x = vec(Φ−1),
and given any feasible point xt, a suitable upper-bound to
employ the MM method is:

‖(H+
2 ⊗H+

1 )x‖2 ≤ f(x|xt) =
xHMx + 2Re(xH(L−M)xt) + xt

H(M− L)xt
H , (8)

wherein, M = cmaxt AAH , L = A
(
diag(ct)−N2I

)
AH ,

A = H+
2 ⊗ H+

1 , ct = |AHxt|, and cmaxt = max(ct) is a
maximum element in the vector ct.

Proof: The proof leverages the second-order Taylor expan-
sion of (8). Full details are omitted due to space constraints.

Based on Lemma 1, in each iteration of the MM method
we are faced by the problem

min
x

f(x|xt) (9a)

s.t. |xi| = 1 ,∀, i = 1, . . . , N . (9b)

Proposition 1 For any xt, (9) is solved by x = e−jarg(y),
with arg(y) denoting the component-wise phase of y, and

y =
−(A

(
diag(ct)− cmaxt I−N2I

)
AH)

cmaxt AAH
xt (10)

Proof: The result follows from the analysis of the stationary
points of (9a). Details are omitted due to space constraints.

3.2. Optimization with respect to P

For fixed Θ, Problem (3) is stated as,

max
P

K∑
k=1

log2

(
1 +

pk
σ2

)
(11a)

s.t. pk ≥ σ2(2Rmin,k − 1) ,∀ k = 1, . . . ,K (11b)

tr((H2ΘH1)
+P(H2ΘH1)

+H) ≤ Pmax (11c)

Problem (11) is convex and thus can be solved by means of s-
tandard convex optimization techniques [22,23]. Specifically,
analyzing the Karush–Kuhn–Tucker (KKT) optimality condi-
tions of (11) yields the following closed-form expression for
the solution of (11).

Lemma 2 Problem (11) admits the following solution

pk = [αλk − σ2]+ + σ2(2Rmin,k − 1)λ−1k , (12)

where water level α = 1
q (Pmax −

∑K
k=1 σ

2(2Rmin,k −
1)λ−1k +σ2

∑q
k=1 λ

−1
k ) is the Lagrange multiplier associated

to (11c), λk is the k-th eigenvalue of (H2ΘH1) (H2ΘH1)
H ,

q is the number of non-zero eigenvalues λk, and [x]+ denotes
max (0, x).

Finally, the overall algorithm can be stated as in Algorithm
1, wherein the inner loop implements the MM algorithm, and
the outer loop the alternating maximization. We remark that
each iteration of Algorithm 1 monotonically increases the val-
ue of the overall problem objective in (3a). Thus, Algorithm
1 converges in the value of the objective, since (3a) is contin-
uous over the compact feasible set of (3), and thus is upper-
bounded.

Algorithm 1 Proposed Sum-rate Maximization Algorithm
1: Require: Pmax, σ2, {Rmin,k}Kk=1, H2, and H1;
2: Initialize {pk}Kk=1, and set t=0;
3: Repeat:
4: Repeat:
5: ct = |AHxt|; cmaxt = max(ct); M = cmaxt AAH ;
6: L = A

(
diag(ct)−N2I

)
AH ;

7: y =
−(A(diag(ct)−cmax

t I−N2I)AH)

cmax
t AAH xt;

8: xt+1 = ejarg(y); t← t+ 1;
9: Until Convergence is reached; Obtain Φ;

10: If (6a) evaluated at Φ is lower than Pmax:
11: pk = [αλk −σ2]+ +σ2(2Rmin,k − 1)λ−1k , for all k;
12: Else
13: Break and declare unfeasibility.
14: Until Convergence is reached; Φ and pk are obtained.

4. NUMERICAL RESULTS

In our numerical simulations, we considered the system sce-
nario described in Section 2, with users randomly placed in
an area of 625 m2 with channels generated as realizations
of random matrices with i.i.d. entries drawn from a standard
complex Gaussian distribution. All results have been obtained
by averaging over 500 independent channels and users posi-
tions realizations. We define the Signal Noise Ratio (SNR),
SNR=Pmax/σ2.

Fig. 2 compares the achievable sum rate versus SNR. We
consider two sets of system parameters, namely K = 16,
M = 32, N = 32 and K = 8, M = 8, N = 8, and
the minimum QoS rate has been set to Rmin,k = Rmin =
log2(1 +

SNR
2K ) bps/Hz for all k = 1, . . . ,K according to the

different SNRs. The optimal solution of problem (3) is ob-
tained through global optimization methods (Quasi-Newton
search). This approach has an exponential complexity and is
considered here only for benchmarking purpose. Resource
allocation in a system without PIM is also considered as a
baseline scheme. In this case only power allocation needs to
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Fig. 2. Achievable rate versus SNR. Rmin = log2(1 +
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2K )

bps/Hz; a) K = 16, M = 32, N = 32; b) K = 8, M = 8,
N = 8.

be performed, which is accomplished by the tools described
in Section 3.2. We compare the achievable sum rate of the
proposed Algorithm 1 with the optimal solution. It can be
seen that employing the PIM increases the sum rate by more
than 40%. Also, the gap becomes wider as the number of
antennas and PIM units increases. Furthermore, Algorithm
1 suffers a limited gap compared to the global optimization
method, which has a much higher complexity.

Fig. 3 shows the achievable sum spectral efficiency of the
global optimization method and proposed Algorithm 1, versus
the number of PIM units. The SNR is 20 dB, while K = 16,
M = 8, Rmin,k = 2 bps/Hz for all k. It can be seen that
the proposed Algorithm 1 matches the sum spectral efficiency
obtained by the global optimization method. Furthermore,
this figure also shows that the more PIM units the larger the
sum spectral efficiency in one cell, even though, as expected,
the increase saturates as the number of PIM units grows.

Finally, Fig. 4 addresses the convergence speed of the
MM-based method employed within Algorithm 1, in terms of
the number of iterations to reach a given Mean Square Error
(MSE) among two successive iterations, defined as

MSE =
‖Θt+1 −Θt‖2

‖Θt‖2
(13)

System parameters have been set to K = 16, M = 8, and
N = 16; 32; 64. It is seen that Algorithm 1 reaches acceptable
values of MSE in a few dozens of iterations, which increases
as N grows larger, since this corresponds to increasing the
number of optimization variables. Nevertheless, recalling that
each iteration of the MM method involves simple closed-form
computations, Fig. 4 confirms the very limited complexity of
the proposed MM-based method.
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Fig. 3. Spectral Efficiency versus PIM units number. SNR=
20dB, K = 16, M = 8, Rmin,k = 2 bps/Hz: a) Global
optimization method; b) Proposed MM-based method.

5. CONCLUSION

A sum-rate maximization scheme for a PIM-based, multi-
user MIMO system was developed. The non-convex radio
resource allocation problem was tackled by combining MM
and alternating optimization, to provide a provably conver-
gent and low-complexity algorithm. Numerical result show
that the proposed scheme achieves near-optimal performance,
and improves by more than 40% the sum rate compared to tra-
ditional systems without PIM.
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