
Untitled

March 20, 2024

1 BitCamp Expo Algorithm Development
By: Sumit Nawathe

[78]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy
import functools
import itertools
from typing import List, Dict, Tuple, Optional

2 BitCamp Dataset EDA
We begin by visualizing the distribution of parameters for previous BitCamp Expos.

[15]: def plot_hacks(hacks: pd.Series):
num_prizes_by_hack = hacks.to_numpy().sum(axis=1)
plt.hist(num_prizes_by_hack, bins=max(num_prizes_by_hack))
plt.xlabel('Number of Desired Prizes')
plt.ylabel('Number of Hacks')
plt.title('Distribution of Number of Judging Categories Requested')
plt.show()

plt.barh(hacks.columns, hacks.sum())
plt.title('Number of Entries in Each Judging Category')
plt.show()

[16]: ROOT_DIR = "C:/Users/Sumit/GitRepos/Bitcamp/hackathon-expo-app/data/"

2.1 2022 Dataset
[17]: df = pd.read_csv(ROOT_DIR+"bitcamp2022/projects-bitcamp-2022.csv",␣

↪dtype='string')
del df['Judging Status'] # all 'Pending'
df = df.astype({

'Project Status': 'category',
'Highest Step Completed': 'category',

1

})
hacks = pd.get_dummies(df['Desired Prizes'].str.split(', ').explode()).

↪groupby(level=0).sum()
plot_hacks(hacks)

2

2.2 2019 Dataset
[18]: df = pd.read_csv(ROOT_DIR+"bitcamp2019/bitcamp-2019.csv", dtype='string')

hacks = pd.get_dummies(df['Desired Prizes'].str.split(', ').explode()).
↪groupby(level=0).sum()

plot_hacks(hacks)

3

2.3 Comments
Unfortunately, a large number of people try to register for more than three judging categories.

Furthermore, there is a large disparity between the most and least popular judging categories.

From these graphs, we can get decent estimates of the scale of our problem.

3 Algorithm
This algorithm is very abstract, mainly working with the theoretical setup. Much of the prepro-
cessing work must be done before and after.

3.1 Mathematical Description
Suppose there are 𝑀 hacks, 𝑁 judging categories, and 𝑇 time periods. Let 𝑥ℎ𝑗𝑡 ∈ {0, 1} be a
boolean that represents whether hack ℎ is being judged in category 𝑗 during time period 𝑡. We
have the following linear constraints (note that the notation [𝑛] = {1, 2, … 𝑛}):

• For every hack, it can be judged at most once in every judging category (ideally exactly once
for the categories it signed up for and zero times otherwise).

∀(ℎ, 𝑗) ∈ [𝑀] × [𝑁], ∑
𝑡

𝑥ℎ𝑗𝑡 ≤ 1

• For every judging category, it can judge at most 𝐶𝑗 hacks in every time period.

∀(𝑗, 𝑡) ∈ [𝑁] × [𝑇], ∑
ℎ

𝑥ℎ𝑗𝑡 ≤ 𝐶𝑗

• Each hack can only be judged by one category at any time.

∀(ℎ, 𝑡) ∈ [𝑀] × [𝑇], ∑
𝑗

𝑥ℎ𝑗𝑡 ≤ 1

4

As these are all linear constraints, we can model this problem as an integer linear program, and
solve it using the scipy.optimize.milp library function.

The number of variables is rather large; in the formulation above, there are 𝑀𝑁𝑇 variables. We
can reduce this by only considering (ℎ, 𝑗) pairs that have been registered. Since each hack can
only submit to 3 judging categories, this reduces the number of variables to 3𝑀𝑇 . (Note that this
restriction is not checked by the algorithm; it is assumed to be true in the provided input.)

3.2 Input/Output Description
Our algorithm takes three arguments:

• hc: List[List[int]]. For hack i, we set hc[i] to be a list of the judging categories that
hack i enrolls in.

• cap: List[int]. For judging category j, we set cap[j] to be the maximum number of hacks
that can be judged from that category every time period.

• t_max: int. The largest possible value of T. We assume that a schedule exists with this
many time periods.

The beginning of the algorithm consists of bookkeeping to properly index all the variables, according
to the comment at the end of the “Mathematical Description” section. We flatten the provided hc
list, and then build a dictionary to map from (h, j, t) tuples to variable indices, which we use
when constructing the matricies for the linear programming algorithm.

The remainder of the algorithm is running the linear programs within binary search, which is used
to find the minimum number of time periods such that there is a valid schedule where everyone is
judged (in order to maximize the time per judging).

The outcome of the algorithm is a 3-tuple: * t: int. This is the optimal value of t via the binary
search. * H: List[List[Tuple[int, int]]]. We set H[h] to be a list of (j, t) tuples describing
when and by whom hack h is being judged. * J: List[List[List[int]]]. We let J[j][t] be a
list of the hacks that category j will be judging at time t.

3.3 Algorithm Code

[152]: def abstract_expo_alg(hc: List[List[int]], cap: List[int], t_max: int):
extracting sizes
M = len(hc)
N = len(cap)

bookkeeping for valid (h, j) pairs
valid_hj = set()
for h, req_cat in enumerate(hc):

for j in req_cat:
valid_hj.add((h, j))

hj_to_i_base = dict(map(tuple, map(lambda t: t[::-1],␣
↪list(enumerate(valid_hj)))))

def solve_expo(T: int):
index bookkeeping

5

num_var = len(valid_hj) * T
def hjt_to_i(h: int, j: int, t: int) -> int:

return len(valid_hj) * (t-1) + hj_to_i_base[(h, j)]

first condition
A1 = np.zeros((len(valid_hj), num_var))
for x, (h, j) in enumerate(valid_hj):

for t in range(T):
A1[x, hjt_to_i(h, j, t)] = 1

b1= np.ones(len(valid_hj))

second condition
A2 = np.zeros((N*T, num_var))
for x, (j, t) in enumerate(itertools.product(range(N), range(T))):

for h in range(M):
if (h, j) not in valid_hj:

continue
A2[x, hjt_to_i(h, j, t)] = 1

b2 = np.repeat(cap, T)

third condition
A3 = np.zeros((M*T, num_var))
for x, (h, t) in enumerate(itertools.product(range(M), range(T))):

for j in range(N):
if (h, j) not in valid_hj:

continue
A3[x, hjt_to_i(h, j, t)] = 1

b3 = np.ones(M*T)

solve linear program
x = scipy.optimize.milp(

c=-np.ones(num_var),
constraints=[

scipy.optimize.LinearConstraint(A1, 0, b1),
scipy.optimize.LinearConstraint(A2, 0, b2),
scipy.optimize.LinearConstraint(A3, 0, b3)

],
bounds=scipy.optimize.Bounds(lb=0, ub=1),
integrality=1

).x
if int(sum(x)) < len(valid_hj):

return None

interpret solution
H = [list() for _ in range(M)]
J = [list() for _ in range(N)]
for j in range(N):

6

J[j] = [list() for _ in range(T)]
for h in range(M):

if (h, j) not in valid_hj:
continue

for t in range(T):
if x[hjt_to_i(h, j, t)] == 1.0:

H[h].append((j, t))
J[j][t].append(h)

return (H, J)

return solve_expo(t_max)
binary search:
a, b = 1, t_max
while a < b-1:

m = int(np.ceil((a+b)/2))
soln = solve_expo(m)
if soln is None: # failure

a = m+1
else: # success

b = m

check when 2 left
if a == b:

t = a
else:

if solve_expo(a) is None:
t = b

else:
t = a

return optimal solution
H, J = solve_expo(t)
return (t, H, J)

4 Tests
4.1 Simple Example 1
Suppose we have a hackathon with 3 contestants and 3 judges.

• Hack 1 wants to be judged in categories 1 and 2
• Hack 2 wants to be judged in categories 2 and 3
• Hack 3 wants to be judged in category 3

Supose that categories 1 and 2 can judge 1 person at a time, and category 3 can judge 2 people at
a time.

Clearly, this hackathon only requires 2 time periods; running the algorithm yields this result.

7

(NOTE: remember that everything is 0-indexed.)

[153]: hc = [
[0, 1],
[1, 2],
[2]

]
cap = [1, 1, 2]

[154]: abstract_expo_alg(hc, cap, 5)

[154]: (2,
[[(0, 1), (1, 0)], [(1, 1), (2, 0)], [(2, 1)]],
[[[], [0]], [[0], [1]], [[1], [2]]])

4.2 Simple Example 2
Suppose we have a hackathon with 5 contestants and 3 judges.

• Hack 1 wants to be judged in categories 1, 2, and 3
• Hack 2 wants to be judged in categories 1, 2, and 4
• Hack 3 wants to be judged in categories 2, 5
• Hack 4 wants to be judged in categories, 1, 2, and 3
• Hack 5 wants to be judged in categories 1 and 3
• Hack 6 wants to be judged in categories, 1, 2, and 3

Supose that the limits for judging categories 1, 2, 3, 4, 5 are 2, 2, 1, 3, 1, respectively.

The most popular categories can judge fairly quickly (categories 1 and 2 each have 4 participants,
but can judge 2 at a time). We cannot finish judging in 2 time steps, because most of the hacks
need to be judged in 3 categories. However, unfortunately categories 1, 2, and 3 are so popular that
they cannot jointly cover everyone in 3 time steps with the restrictions; 4 time steps are necessary.

[160]: hc = [
[0, 1, 2],
[0, 1, 3],
[1, 4],
[0, 1, 2],
[0, 2],
[0, 1, 2]

]
cap = [2, 2, 1, 3]

[161]: abstract_expo_alg(hc, cap, 5)

[161]: (4,
[[(0, 2), (1, 3), (2, 1)],
[(0, 3), (1, 1), (3, 0)],
[(1, 2)],
[(0, 3), (1, 1), (2, 0)],

8

[(0, 0), (2, 3)],
[(0, 1), (1, 3), (2, 2)]],

[[[4], [5], [0], [1, 3]],
[[], [1, 3], [2], [0, 5]],
[[3], [0], [5], [4]],
[[1], [], [], []]])

[]:

9

	BitCamp Expo Algorithm Development
	BitCamp Dataset EDA
	2022 Dataset
	2019 Dataset
	Comments

	Algorithm
	Mathematical Description
	Input/Output Description
	Algorithm Code

	Tests
	Simple Example 1
	Simple Example 2

