
MAGPIE: Alignment Data Synthesis from Scratch by
Prompting Aligned LLMs with Nothing

Zhangchen Xu♠ Fengqing Jiang ♠ Luyao Niu♠ Yuntian Deng ♢

Radha Poovendran♠ Yejin Choi♠♢ Bill Yuchen Lin♢

♠University of Washington ♢Allen Institute for AI

https://magpie-align.github.io/
https://hf.co/magpie-align

Abstract

High-quality instruction data is critical for aligning large language models (LLMs).
Although some models, such as Llama-3-Instruct, have open weights, their align-
ment data remain private, which hinders the democratization of AI. High human
labor costs and a limited, predefined scope for prompting prevent existing open-
source data creation methods from scaling effectively, potentially limiting the
diversity and quality of public alignment datasets. Is it possible to synthesize
high-quality instruction data at scale by extracting it directly from an aligned
LLM? We present a self-synthesis method for generating large-scale alignment data
named MAGPIE. Our key observation is that aligned LLMs like Llama-3-Instruct
can generate a user query when we input only the left-side templates up to the
position reserved for user messages, thanks to their auto-regressive nature. We use
this method to prompt Llama-3-Instruct and generate 4 million instructions along
with their corresponding responses. We perform a comprehensive analysis of the
extracted data and select 300K high-quality instances. To compare MAGPIE data
with other public instruction datasets (e.g., ShareGPT, WildChat, Evol-Instruct,
UltraChat, OpenHermes, Tulu-V2-Mix), we fine-tune Llama-3-8B-Base with each
dataset and evaluate the performance of the fine-tuned models. Our results indicate
that in some tasks, models fine-tuned with MAGPIE perform comparably to the
official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data
points through supervised fine-tuning (SFT) and subsequent feedback learning.
We also show that using MAGPIE solely for SFT can surpass the performance of
previous public datasets utilized for both SFT and preference optimization, such
as direct preference optimization with UltraFeedback. This advantage is evident
on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench, and
importantly, it is achieved without compromising performance on reasoning tasks
like MMLU-Redux, despite the alignment tax.

1 Introduction

Large language models (LLMs) such as GPT-4 [1] and Llama-3 [40] have become integral to AI
applications due to their exceptional performance on a wide array of tasks by following instructions.
The success of LLMs is heavily reliant on the data used for instruction fine-tuning, which equips them
to handle a diverse range of tasks, including those not encountered during training. The effectiveness
of this instruction tuning depends crucially on access to high-quality instruction datasets. However,
the alignment datasets used for fine-tuning models like Llama-3-Instruct are typically private, even
when the model weights are open, which impedes the democratization of AI and limits scientific
research for understanding and enhancing LLM alignment.

To address the challenges in constructing such datasets, researchers have developed two main
approaches. The first type of method involves human effort to generate and curate instruction data

ar
X

iv
:2

40
6.

08
46

4v
1

 [
cs

.C
L

]
 1

2
Ju

n
20

24

https://magpie-align.github.io/
https://hf.co/magpie-align

WildChat

OpenHerm
es

Tulu V2 Mix

Ultra
Feedback

ShareGPT

Ma
gpi

e-A
ir

Ma
gpi

e-P
ro

Llama-3-In
stru

ct
5%

10%

25.08

22.66

9.94 9.91 9.73
10.90

18.36

22.92

15%

20%

25%

30%

Step 1 <|start_header_id|>user
<|end_header_id|>

LLM

<|start_header_id|>user
<|end_header_id|>

What materials should I
use to build a nest?

<|start_header_id|>
assistant<|end_header_id|>

Building a nest! That’s a
wonderful project! ……

Instruction

Response

Instruction: What materials
should I use to build a nest?
Response: Building a nest!
That’s a wonderful project!
……

What materials should I
use to build a nest?

Step 2

SFT Only

SFT + DPO
SFT + RLHF

Filters SFT

AlpacaEval 2
(Length Control)

MAGPIE

Evol In
stru

ct

14.62

Le
ng

th
 C

on
tr

ol
 W

in
 R

at
e

“Other birds collect twigs for their nests. Magpies acquire jewels for theirs.”

Figure 1: This figure illustrates the process of self-synthesizing instruction data from aligned LLMs
(e.g., Llama-3-8B-Instruct) to create a high-quality instruction dataset. In Step 1, we input only the
pre-query template into the aligned LLM and generate an instruction along with its response using
auto-regressive generation. In Step 2, we use a combination of a post-query template and another
pre-query template to wrap the instruction from Step 1, prompting the LLM to generate the query
for the second turn. This completes the construction of the instruction dataset. MAGPIE efficiently
generates diverse and high-quality instruction data. Our experimental results show that MAGPIE
outperforms other public datasets for aligning Llama-3-8B-base.

[14, 26, 64, 65, 66], which is both time-consuming and labor-intensive [37]. In contrast, the second
type of method uses LLMs to produce synthetic instructions [16, 31, 46, 47, 53, 55, 58, 59]. Although
these methods reduce human effort, its success heavily depends on prompt engineering and the careful
selection of initial seed questions. The diversity of synthetic data tends to decrease as the dataset size
grows. Despite ongoing efforts, the scalable creation of high-quality and diverse instruction datasets
continues to be a challenging problem.

Is it possible to synthesize high-quality instructions at scale by directly extracting data from advanced
aligned LLMs themselves? A typical input to an aligned LLM contains three key components: the pre-
query template, the query, and the post-query template. For instance, an input to Llama-2-chat could
be “[INST] Hi! [/INST]”, where [INST] is the pre-query template and [/INST] is the post-query
template. These templates are predefined by the creators of the aligned LLMs to ensure the correct
prompting of the models. We observe that when we only input the pre-query template to aligned
LLMs such as Llama-3-Instruct, they self-synthesize a user query due to their auto-regressive nature.
Our preliminary experiments indicate that these random user queries are of high quality and great
diversity, suggesting that the abilities learned during the alignment process are effectively utilized.

Based on these findings, we developed a self-synthesis method to construct high-quality instruction
datasets at scale, named MAGPIE (as illustrated in Figure 1). Unlike existing methods, our approach
does not rely on prompt engineering or seed questions. Instead, it directly constructs instruction
data by prompting aligned LLMs with a pre-query template for sampling instructions. We applied
this method to the Llama-3-8B-Instruct and Llama-3-70B-Instruct models, creating two instruction
datasets: MAGPIE-Air and MAGPIE-Pro, respectively.

Our MAGPIE-Air and MAGPIE-Pro datasets were created using 206 and 614 GPU hours, respectively,
without requiring any human intervention or API access to production LLMs like GPT-4. Addi-
tionally, we generated two multi-turn instruction datasets, MAGPIE-Air-MT and MAGPIE-Pro-MT,
which contain sequences of multi-turn instructions and responses. The statistics and advantages
of our instruction datasets compared to existing ones are summarized in Table 1. We perform a
comprehensive analysis of the generated data, allowing practitioners to filter and select data instances
from these datasets for fine-tuning according to their particular needs.

To compare MAGPIE data with other public instruction datasets (e.g., ShareGPT [10], WildChat [64],
Evol Instruct [58], UltraChat [16], OpenHermes [49], Tulu V2 Mix [24]) and various preference
tuning strategies with UltraFeedback [13], we fine-tune the Llama-3-8B-Base model with each
dataset and assess the performance of the resultant models on LLM alignment benchmarks such as
AlpacaEval 2 [33], Arena-Hard [32], and WildBench [34]. Our results show that models fine-tuned
with MAGPIE achieve superior performance, even surpassing the official Llama-3-8B-Instruct model
on AlpacaEval, which was fine-tuned with over 10 million data points for supervised fine-tuning
(SFT) and follow-up feedback learning. Not only does MAGPIE excel in SFT alone compared to
prior public datasets that incorporate both SFT and preference optimization (e.g., direct preference

2

Table 1: Statistics of instruction datasets generated by MAGPIE compared to other instruction datasets.
Tokens are counted using the tiktoken library [42].

Instruction
Source Dataset Name #Convs #Turns Human

Effort
Response
Generator #Tokens / Turn #Total Tokens

Synthetic
Alpaca [47] 52K 1 Low text-davinci-003 67.38±54.88 3.5M
Evol Instruct [58] 143K 1 Low ChatGPT 473.33±330.13 68M
UltraChat [16] 208K 3.16 Low GhatGPT 376.58±177.81 238M

Human

Dolly [14] 15K 1 High ChatGPT 94.61±135.84 1.42M
ShareGPT [66] 112K 4.79 High ChatGPT 465.38±368.37 201M
WildChat [64] 652K 2.52 High GPT-3.5 & GPT-4 727.09±818.84 852M
LMSYS-Chat-1M [65] 1M 2.01 High Mix 260.37±346.97 496M

Mixture
Deita [38] 9.5K 22.02 - Mix 372.78±182.97 74M
OpenHermes [49] 243K 1 - Mix 297.86±258.45 72M
Tulu V2 Mixture [24] 326K 2.31 - Mix 411.94±447.48 285M

MAGPIE

Llama-3-MAGPIE-Air 3M 1 No Llama-3-8B 426.39±217.39 1.28B
Llama-3-MAGPIE-Air-MT 300K 2 No Llama-3-8B 610.80±90.61 366M
Llama-3-MAGPIE-Pro 1M 1 No Llama-3-70B 478.00±211.09 477M
Llama-3-MAGPIE-Pro-MT 300K 2 No Llama-3-70B 554.53±133.64 333M

optimization with UltraFeedback [13]), but it also delivers the best results when evaluated against
six baseline instruction datasets and four preference tuning methods (DPO [44], IPO [2], KTO
[19], and ORPO [23] with the UltraFeedback dataset). These findings show the exceptional quality
of instruction data generated by MAGPIE, enabling it to outperform even the official, extensively
optimized LLMs.

2 MAGPIE: A Scalable Method to Synthesize Instruction Data

Overview of MAGPIE. In what follows, we describe our method, MAGPIE, to synthesize instruction
data for fine-tuning LLMs. An instance of instruction data consists of at least one or multiple
instruction-response pairs. Each pair specifies the roles of instruction provider and follower, along
with their instruction and response. As shown in Figure 1, MAGPIE consists of two steps: (1)
instruction generation, and (2) response generation. The pipeline of MAGPIE can be fully automated
without any human intervention. Given the data generated by MAGPIE, practitioners may customize
and build their own personalized instruction dataset accordingly (see Section 3 and Appendix B for
more details). We detail each step in the following.

Step 1: Instruction Generation. The goal of this step is to generate an instruction for each instance
of instruction data. Given an open-weight aligned LLM (e.g., Llama-3-70B-Instruct), MAGPIE crafts
an input query in the format of the predefined instruction template of the LLM. This query defines
only the role of instruction provider (e.g., user), and does not provide any instruction. Note that
the auto-regressive LLM has been fine-tuned using instruction data in the format of the predefined
instruction template. Thus, the LLM autonomously generates an instruction when the query crafted
by MAGPIE is given as an input. MAGPIE stops generating the instruction once the LLM produces
an end-of-sequence token. Sending the crafted query to the LLM multiple times leads to a set of
instructions. Compared with existing synthetic approaches [16, 31, 47, 53, 55, 58, 59], MAGPIE does
not require specific prompt engineering techniques since the crafted query follows the format of the
predefined instruction template. In addition, MAGPIE autonomously generates instructions without
using any seed question, ensuring the diversity of generated instructions.

Step 2: Response Generation. The goal of this step is to generate responses to the instructions
obtained from Step 1. MAGPIE sends these instructions to the LLM to generate the corresponding
responses. Combining the roles of instruction provider and follower, the instructions from Step 1, and
the responses generated in Step 2 yields the instruction dataset. Detailed discussion on the generation
configuration can be found in Appendix D.

Extensions of MAGPIE. MAGPIE can be readily extended to generate multi-turn instruction datasets
and preference datasets. In addition, practitioners can specify the task requested by the instructions.
We defer the detailed discussion on these extensions to Appendix A.

3

(a) Input Length of MAGPIE-Air (in tokens)

(b) Output Length of MAGPIE-Air (in tokens)

(c) Input Length of MAGPIE-Pro (in tokens)

(d) Input Length of MAGPIE-Pro (in tokens)

Figure 2: Lengths of instructions
and responses in MAGPIE-Air/Pro.

60 40 20 0 20 40 60

60

40

20

0

20

40

60

Alpaca Evol Instruct UltraChat Magpie

Figure 3: This figure compares the t-SNE plot of MAGPIE-Pro
with those of Alpaca, Evol Instruct, and UltraChat, each of
which is sampled with 10,000 instructions. The t-SNE plot of
MAGPIE-Pro encompasses the area covered by the other plots,
demonstrating the comprehensive coverage of MAGPIE-Pro.

3 Dataset Analysis

We apply MAGPIE to the Llama-3-8B-Instruct and Llama-3-70B-Instruct models to construct two
instruction datasets: MAGPIE-Air and MAGPIE-Pro, respectively. Examples of instances in both
datasets can be found in Appendix G. In this section, we present a comprehensive statistical analysis
of the MAGPIE-Air and MAGPIE-Pro datasets. An overview of the lengths of instructions and
responses of the data in MAGPIE-Air and MAGPIE-Pro is presented in Figure 2. In what follows,
we first assess the breadth of MAGPIE-Pro by analyzing its coverage. We then discuss the attributes
of MAGPIE-Pro, including topic coverage, difficulty, quality, and similarity of instructions, as well
as quality of response. Finally, we provide the safety analysis and cost analysis. Using our dataset
analysis, practitioners can customize and configure their own datasets for fine-tuning LLMs. In
Appendix B, we showcase the process of customizing and filtering an instruction dataset based on
our analysis. Specifically, we select 300K instances from MAGPIE-Pro and MAGPIE-Air-Filtered,
yielding datasets MAGPIE-Pro-300K and MAGPIE-Air-300K-Filtered, respectively.

3.1 Dataset Coverage

We follow the approach in [64] and analyze the coverage of MAGPIE-Pro in the embedding space.
Specifically, we use the all-mpnet-base-v2 embedding model1 to calculate the input embeddings,
and employ t-SNE [51] to project these embeddings into a two-dimensional space. We adopt three
synthetic datasets as baselines, including Alpaca [47], Evol Instruct [58], and UltraChat [16], to
demonstrate the coverage of MAGPIE-Pro.

Figure 3 presents the t-SNE plots of MAGPIE-Pro, Alpaca, Evol Instruct, and UltraChat. Each t-SNE
plot is generated by randomly sampling 10,000 instructions from the associated dataset. We observe
that the t-SNE plot of MAGPIE-Pro encompasses the area covered by the plots of Alpaca, Evol
Instruct, and UltraChat. This suggests that MAGPIE-Pro provides a broader or more diverse range
of topics, highlighting its extensive coverage across varied themes and subjects. We also follow the
practice in [53] and present the most common verbs and their top direct noun objects in instructions
in Appendix C, indicating the diverse topic coverage of MAGPIE dataset. Coverage analysis of
MAGPIE-Air can also be found in Appendix C.

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2

4

https://huggingface.co/sentence-transformers/all-mpnet-base-v2

3.2 Dataset Attributes

Attribute: Task Categories of Instructions.

We use Llama-3-8B-Instruct to categorize the instances in MAGPIE-Pro (see Figure 7 in Appendix
C.1 for detail). The prompts used to query Llama-3-8B-Instruct can be found in Appendix F. Our
observations indicate that over half of the tasks in MAGPIE-Pro pertain to information seeking,
making it the predominant category. This is followed by tasks involving creative writing, advice
seeking, planning, and math. This distribution over the task categories aligns with the practical
requests from human users [33].

(a) Statistics on Input Quality

(b) Statistics on Input Difficulty

Figure 4: The statistics of input dif-
ficulty and quality.

Attribute: Quality of Instructions. We use the Llama-3-
8B-Instruct model to assess the quality of each instruction in
MAGPIE-Air and MAGPIE-Pro, categorizing them as ‘very
poor’, ‘poor’, ‘average’, ‘good’, and ‘excellent’. We present
the histograms of qualities for both datasets in Figure 4-(a). We
have the following two observations. First, both datasets are
of high quality, with the majority of instances rated ‘average’
or higher. In addition, the overall quality of MAGPIE-Pro
surpasses that of MAGPIE-Air. We hypothesize that this is due
to the enhanced capabilities of Llama-3-70B compared with
Llama-3-8B.

Attribute: Difficulty of Instructions. We use the Llama-
3-8B-Instruct model to rate the difficulty of each instruction
in MAGPIE-Air and MAGPIE-Pro. Each instruction can be
labeled as ‘very easy’, ‘easy’, ‘medium’, ‘hard’, or ‘very hard’.
Figure 4-(b) presents the histograms of the levels of difficulty
for MAGPIE-Air and MAGPIE-Pro. We observe that the dis-
tributions across difficulty levels are similar for MAGPIE-Air
and MAGPIE-Pro. Some instructions in MAGPIE-Pro are more challenging than those in MAGPIE-Air
because MAGPIE-Pro is generated by a more capable model (Llama-3-70B-Instruct).

(a) Min Neighbor Distance of MAGPIE-Air

(b) Reward Difference of Base Model and Instruct Model

Figure 5: This figure summarizes
the minimum neighbor distances and
reward differences.

Attribute: Instruction Similarity. We quantify the similarity
among instructions generated by MAGPIE to remove repeti-
tive instructions. We measure the similarity using minimum
neighbor distance in the embedding space. Specifically, we
first represent all instructions in the embedding space using
the all-mpnet-base-v2 embedding model. For any given
instruction, we then calculate the minimum distance from the
instruction to its nearest neighbors in the embedding space
using Facebook AI Similarity Search (FAISS) [17]. The min-
imum neighbor distances of instructions in MAGPIE-Air after
removing repetitions are summarized in Figure 5-(a).

Attribute: Quality of Responses. We assess the quality of
responses using a metric named reward difference. For each
instance in our dataset, the reward difference is calculated as
r∗− rbase, where r∗ is the reward assigned by a reward model
to the response in our dataset, and rbase is the reward assigned
by the same model to the response generated by the Llama-3 base model for the same instruction. We
use URIAL [35] to elicit responses from the base model. A positive reward difference indicates that
the response from our dataset is of higher quality, and could potentially benefit instruction tuning.
In our experiments, we follow [29] and use FsfairX-LLaMA3-RM-v0.1 [57] as our reward model.
Our results on the reward difference are presented in Figure 5-(b).

3.3 Safety Analysis

We use Llama-Guard-2 [48] to analyze the safety of MAGPIE-Air and MAGPIE-Pro. Our results
indicate that both datasets are predominantly safe, with less than 1% of the data potentially containing
harmful instructions or responses. Please refer to Appendix C.2 for detailed safety analysis.

5

3.4 Cost Analysis

We perform experiments on a server with four NVIDIA A100-SXM4-80GB GPUs, an AMD EPYC
7763 64-Core Processor, and 512 GB of RAM, using the VLLM inference framework [28]. The
models are loaded in the bfloat16 format.

When creating the 3M MAGPIE-Air dataset, our MAGPIE spent 1.55 and 50 hours to generate the
instructions (Step 1) and responses (Step 2), respectively. For the 1M MAGPIE-Pro dataset, MAGPIE
used 3.5 and 150 hours to generate the instructions (Step 1) and responses (Step 2), respectively.
Compared to existing approaches to create instruction datasets, the pipeline of MAGPIE is fully
automated without any human intervention or API access to advanced commercial models such as
GPT-4 [1]. Consequently, MAGPIE is cost-effective and scalable. On average, implementing MAGPIE
on a cloud server2 would incur costs of $0.12 and $1.1 per 1,000 data instances for MAGPIE-Air and
MAGPIE-Pro, respectively.

3.5 Additional Analysis

Additional dataset analysis, including the impact of generation configurations on the quality and
difficulty of the generated instructions, is detailed in Appendix C.3.

4 Performance Analysis

In this section, we evaluate the quality of datasets generated by MAGPIE by utilizing them to fine-tune
model families including Llama-3 [40] and Qwen1.5 [3].

4.1 Experimental Setups.

Baselines for Instruction Tuning. We compare the family of datasets generated by MAGPIE with
six state-of-the-art open-source instruction tuning datasets: ShareGPT [10], WildChat [64], Evol
Instruct [58], UltraChat [16], OpenHermes [49], and Tulu V2 Mix [24]. ShareGPT and WildChat
are representative human-written datasets containing 112K and 652K high-quality multi-round
conversations between humans and GPT, respectively. Evol Instruct and UltraChat are representative
open-source synthetic datasets. Following [39], we use the 208K sanitized version of Ultrachat
provided by HuggingFace3. OpenHermes and Tulu V2 Mix are crowd-sourced datasets consisting of
a mix of diverse open-source alignment datasets, with 243K and 326K conversations, respectively.
We note that to ensure fair comparison involving datasets of different sizes, we provide the results
of MAGPIE-Pro-200K-Filtered and MAGPIE-Pro-100K-Filtered, which contains the first 200K and
100K conversations from MAGPIE-Pro-300K-Filtered. Detailed discussion on how to generate these
datasets can be found in Appendix B.

Baselines for Instruction and Preference Tuning. We compare the models fine-tuned using data
generated by MAGPIE with preference optimization baselines, including DPO [44], IPO [2], KTO
[19] and ORPO [23]. Specifically, we follow [39] and use the models fine-tuned with the UltraChat
dataset (for instruction tuning) and Ultrafeedback dataset (for preference optimization) [13].

Fine-Tuning Details. We follow [50] and use a cosine learning rate schedule with an initial learning
rate of 2× 10−5 when fine-tuning Llama-3 and Qwen1.5 models. The maximum sequence length
is 8192. The fine-tuning process is conducted using four NVIDIA A100 GPUs with 80G memory,
and the effective batch size is 32. The models are fine-tuned for 2 epochs. We follow the official
instruction templates of each model.

Evaluation Benchmarks. We evaluate the performance of the fine-tuned models using two widely-
adopted instruction-following benchmarks: AlpacaEval 2 [33] and Arena-Hard [32]. AlpacaEval
2 consists of 805 representative instructions chosen from real user interactions. Arena-Hard is an
enhanced version of MT-Bench [66], containing 500 challenging user queries. Both benchmarks
employ a GPT evaluator to assess responses generated by the model of interest and a baseline model.
Specifically, we use GPT-4-Turbo (1106) and Llama-3-8B-Instruct as baselines for AlpacaEval 2. By
default, Arena-Hard uses GPT-4 (0314) as its baseline model.

2https://lambdalabs.com/service/gpu-cloud
3https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k

6

https://lambdalabs.com/service/gpu-cloud
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k

Table 2: This table compares the performance of models instruction-tuned on the Llama-8B base
models using our datasets and baseline datasets. We observe that models fine-tuned with our datasets
significantly outperform those fine-tuned with baseline datasets of the same order of magnitude in
terms of data size. In addition, our fine-tuned models achieve comparable performance to the official
aligned model, despite only undergoing SFT with a much smaller dataset. Numbers in bold indicate
that MAGPIE outperforms the official Llama-3-8B-Instruct model.

Alignment Setup
(Base LLM = Llama-3-8B) #Convs

AlpacaEval 2 Arena-Hard
GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR(%)

SFT +ShareGPT [10] 112K 9.73 7.2 0.81 27.26 18.32 1.18 6.5
+Evol Instruct [58] 143K 8.52 6.25 0.76 20.16 14.98 1.1 5.1
+OpenHermes [49] 243K 9.94 6.27 0.73 29.19 17.92 1.16 4.4
+Tulu V2 Mix [24] 326K 9.91 7.94 0.86 24.28 18.64 1.18 5.4
+WildChat[64] 652K 14.62 10.58 0.92 34.85 26.57 1.32 8.7
+UltraChat [16] $ 208K 8.29 5.44 0.71 23.95 15.12 1.11 3.6

+*PO +UltraFeedback (DPO) [13, 44] 64K 18.36 17.33 1.14 44.42 42.36 1.46 14.8
+UltraFeedback (IPO) [2, 13] 64K 17.46 16.13 1.11 41.66 38.45 1.43 14.2
+UltraFeedback (KTO) [13, 19] 64K 15.81 14.62 1.05 41.33 38.32 1.42 12.2
+UltraFeedback (ORPO) [13, 23] 64K 13.23 12.57 0.99 30.62 28.27 1.35 10.9

SFT +MAGPIE (Ours)
Air-300K-Raw 300K 21.99 21.65 1.21 48.63 48.06 1.42 15.8

Air-300K-Filtered 300K 22.66 23.99 1.24 49.27 50.8 1.44 14.9
Pro-300K-Raw 300K 21.65 22.19 1.2 49.65 50.84 1.42 15.9

Pro-100K-Filtered 100K 20.47 24.52 1.25 47.92 52.75 1.43 17.2
Pro-200K-Filtered 200K 22.11 26.02 1.26 51.17 56.76 1.41 15.9
Pro-300K-Filtered 300K 25.08 29.47 1.35 52.12 53.43 1.44 18.9

Llama-3-8B-Instruct (SFT+RLHF) >10M4 22.92 22.57 1.26 50 50 - 20.6

Metrics. We adopt two metrics to measure the capabilities of instruction-following of fine-tuned mod-
els. The first metric is the win rate (WR), which calculates the fraction of responses that are favored
by the GPT evaluator. This metric is applied in both benchmarks including AlpacaEval 2 and Arena-
Hard. The second metric is the length-controlled win rate (LC) [18], a debiased version of WR.

Reasoning &
Planning

Creative
Tasks

Coding
& Debugging

Info Seeking
Math & Data

Figure 6: This figure shows the performance
breakdown by category of MAGPIE-Pro and
baselines on WildBench.

The GPT evaluator considers the lengths of responses
generated by the baseline model and model under
evaluation when computing LC. By accounting for
response length, LC reduces its impact on the win
rate. This metric is specifically applied to the Al-
pacaEval 2 benchmark [33].

Detailed Experimental Setups. We provide more
detailed descriptions of our experimental setups, in-
cluding more fine-tuning details and decoding hyper-
parameters in Appendix D.

4.2 Experimental Results

MAGPIE datasets outperform others.

In Table 2, we first compare the performance of
Llama-3 models fine-tuned with datasets generated
by MAGPIE against those fine-tuned with baseline
datasets. Using the AlpacaEval 2 evaluation bench-
mark, we observe that both LC and WR of our fine-
tuned models surpass those fine-tuned with baseline
instruction datasets, regardless of the choice of the
baseline model. This indicates that the datasets generated by MAGPIE are of higher quality, leading to
significantly enhanced instruction-following capabilities. A similar observation is made when using
the Arena-Hard evaluation benchmark. We highlight that the Llama-3 models fine-tuned with datasets
generated by MAGPIE outperform even those models that have undergone preference optimization

4https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

7

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Table 3: This table compares the performance of models instruction-tuned on the Qwen base models
using the MAGPIE-Pro-300K-Filtered dataset and the official instruction-tuned models. The Qwen
base model enhanced with MAGPIE consistently outperforms the official instruction-tuned model.

Alignment Setup
AlpacaEval 2

GPT-4-Turbo (1106) Official Aligned Model as Ref.

LC (%) WR (%) SD LC (%) WR (%) SD

Qwen1.5-4B Qwen1.5-4B-Chat 5.89 4.74 0.67 50 50 -
Base Model + MAGPIE 9.1 10.96 0.93 68.09 72.42 1.42

Qwen1.5-7B Qwen1.5-7B-Chat 14.75 11.77 0.97 50 50 -
Base Model + MAGPIE 15.10 18.51 1.14 46.28 58.53 1.44

(e.g., instruction tuning combined with DPO), which emphasizes the high quality of data generated
by MAGPIE.

To investigate the advantages of MAGPIE across different task categories, we also compare the
performance of models fine-tuned with MAGPIE-Pro compared with baseline datasets using Wild-
Bench benchmark [34]. This benchmark consists of 1024 tasks carefully selected from real-world
human-LLM conversation logs. The results are demonstrated in Figure 6. We observe that MAGPIE
consistently outperforms baseline datasets across categories.

Models fine-tuned with data generated by MAGPIE achieve comparable performance to the
official aligned model, but with fewer data. In Table 2, we compare the performance of models
fine-tuned with data generated by MAGPIE against the official aligned model (Llama-3-8B-Instruct).
We observe that the Llama-3-8B base model fine-tuned with data from MAGPIE outperforms Llama-
3-8B-instruct using the AlpacaEval 2 benchmark. For example, using the MAGPIE-Pro-300K-Filtered
dataset to fine-tune the Llama-3-8B base model results in WC 29.47% against GPT-4-Turbo (1106).
Furthermore, when Llama-3-8B-Instruct is chosen as the baseline model of AlpacaEval 2, we observe
that WC of Llama-3-8B base models fine-tuned with data from MAGPIE exceeds 50%, indicating a
preference for our fine-tuned models over the official aligned model. Finally, we highlight that our
fine-tuning process uses no more than 300K data, whereas the official aligned models are fine-tuned
with more than 10M data samples. This demonstrates the high quality of the data generated by
MAGPIE. Using the Arena-Hard benchmark, we observe that a 1.7% difference between the WR
achieved using our fine-tuned model and the official aligned model. We attribute this discrepancy
to the fraction of coding-related instructions in our dataset. We believe that this gap could be easily
bridged as we increase the size of datasets.

Both data quantity and quality matter to capabilities of instruction-following. In what follows,
we compare within the family of datasets generated by MAGPIE in Table 2. These datasets differ
in sizes, deployment of filtering, and models used to generate data. We observe that as the size of
dataset increases, the performance of fine-tuned model improves, indicating that data quantity plays a
critical role in enhancing instruction-following capabilities. Furthermore, the model fine-tuned with
MAGPIE-Pro-300K-Filtered outperform those fine-tuned with the same amount of raw data. This
demonstrates the effectiveness of our filtering technique, and underscores the importance of data
quality. Finally, we observe that the models fine-tuned with MAGPIE-Pro consistently outperform
those fine-tuned with MAGPIE-Air. The reason is that MAGPIE-Pro is generated by the more capable
model, i.e., Llama-3-70B-Instruct.

MAGPIE can enhance the performance of other backbone models. Table 3 illustrates the efficacy
of MAGPIE when applied to generate instruction dataset and fine-tune other backbone models, i.e.,
Qwen1.5-4B and Qwen1.5-7B. The results demonstrate that our fine-tuned models achieve better
performance than the official aligned models, which have undergone instruction and preference tuning.
These results underscore the effectiveness of MAGPIE and the quality of its generated instructions.

Additional Experimental Results. We defer additional experimental results and analysis of MAGPIE-
Air-MT and MAGPIE-Pro-MT to Appendix E.1. Additionally, the performance of MAGPIE across
various other benchmarks is reported in Appendix E.3.

5 Related Work

LLM Alignment. Instruction tuning [56] and preference tuning [5] are widely used to align the
responses of LLMs with human values. Instruction tuning utilizes an instruction dataset to fine-tune

8

LLMs, where each instruction data consists of one turn or multiple turns of instructions and desired
responses. The performance of instruction tuning heavily relies on the quality of instruction data
[47, 53, 67]. Preference tuning further improves responses of LLMs using reinforcement learning
human feedback (RLHF) [5] or preference optimization [2, 19, 23, 44] based on a preference dataset.

Alignment Dataset Construction. We classify the existing methods of creating datasets for model
alignment into two main categories: human interactions with LLMs and synthetic instruction gen-
eration. To create datasets for alignment, previous studies have collected human interactions with
LLMs [14, 64, 65, 66, 26]. However, manually crafting instructions is not only time-consuming
and labor-intensive, but may also incorporate toxic content [64]. Another category of approaches
[53, 47, 58, 59, 55, 46] focus on prompting LLMs to generate synthetic instruction datasets, begin-
ning with a small set of human-annotated seed instructions and expanding these through few-shot
prompting. However, these methods face a diversity challenge, as few-shot prompting often results in
new instructions that are too similar to the original seed questions [31]. To enhance coverage, some
research [16, 31] summarizes world knowledge and employs it to generate synthetic datasets. We
note that our MAGPIE dataset also belongs to the synthetic dataset. However, we leverage the prompt
template with no requirement for seed questions or prompt engineering.

Compared to the above two main categories, alignment data can also be generated by transforming
existing data [54, 45, 20]. However, the constrained variety of NLP tasks in these datasets may impede
the ability of tuned LLMs to generalize in real-world scenarios [31]. There are also mixture datasets
(e.g., [24, 49, 38, 67]) that combine or select high-quality instruction data from various existing
open-source instruction datasets to enhance coverage [24, 49] and/or improve overall performance
[38, 67]. There are also data construction methods focusing on improving the reasoning and math
abilities [61, 62], which can be further merged with MAGPIE for creating a better mixture of data for
instruction tuning.

Training Data Extraction. Language models have the capability to memorize examples from
their training datasets, potentially enabling malicious users to extract private information [8, 7, 9].
Pioneering work [27, 9, 41] has demonstrated that it is possible to extract private pre-training data
from BERT [15], GPT-2 [43], and ChatGPT [1], respectively. Yu et al. [60] propose several tricks
including adjusting sampling strategies to better extract training datasets from language models.
Recently, Kassem et. al. [25] propose a black-box prompt optimization method that uses an attacker
LLM to extract high levels of memorization in a victim LLM. Wang et al. [52] leverage membership
inference attack (MIA) to extract fine-tuning datasets from fine-tuned language models. Bai et al. [4]
extracts the training dataset of production language models via special characters (e.g., structural
symbols of JSON files, and , # in emails and online posts). Different from the prior work, we aim to
create publicly available alignment datasets with minimal human effort by leveraging the remarkable
generation capabilities of LLMs, rather than extracting private training data from LLMs.

6 Limitations and Ethical Considerations

Limitations. In certain scenarios, users may aim to fine-tune LLMs using domain-specific instruction
data. Investigating how to configure MAGPIE to efficiently generate the desired domain-specific
instructions (e.g., math problems) is subject to our future work. Also, there is still a gap between
Magpie-tuned LLMs and official Llama-3-Instruct on datasets such as WildBench and MMLU, which
suggest that we should focus on producing harder reasoning tasks and feedback learning data.

License and Legality. The instruction datasets generated by MAGPIE in this paper are subject to
CC BY-NC license and Meta Llama 3 Community license. While users are permitted to distribute,
adapt, and further develop our method MAGPIE, it is the responsibility of the users to apply MAGPIE
to LLMs in compliance with the associated license agreement. We hereby disclaim any liability for
misuse of data generated by users of MAGPIE.

Societal Impact and Potential Harmful Consequences. The primary objective of this paper is
to develop a scalable method to synthesize instruction data to enhance the instruction-following
capabilities of LLMs, and thus align them with human values. However, the data generated by
MAGPIE may contain harmful instructions and/or responses, which may lead to unsafe behaviors if
used raw in instruction tuning. Our empirical evaluations indicate that such harmful data instances
constitute less than 1% of the dataset. To mitigate this risk, we develop a filtering technique in
Appendix B to identify and remove these instances.

9

7 Conclusion

In this paper, we developed a scalable method, MAGPIE, to synthesize instruction data for fine-tuning
large language models. MAGPIE leveraged the predefined instruction templates of open-weight LLMs
and crafted a prompt specifying only the role of instruction provider. Given the crafted prompt, the
LLM then generated detailed instructions due to their auto-regressive nature. MAGPIE then sent the
generated instructions to the LLM to generate corresponding responses. These pairs of instructions
and responses constituted the instruction dataset. We used Llama-3-8B-instruct to label the instruction
dataset and developed a filtering technique to select effective data instances for instruction tuning.
We fine-tuned the Llama-3-8B base model using the selected data, and demonstrated that the fine-
tuned model outperformed those fine-tuned using all baselines. Moreover, our fine-tuned models
outperformed the official aligned model, Llama-3-8B-Instruct, which has been instruction-tuned
and preference-optimized using more than 10M data instances. This highlighted the quality of the
instruction data synthesized by MAGPIE.

8 Acknowledgement

The research of Z. Xu, F. Jiang, L. Niu, and R. Poovendran is partially supported by the National
Science Foundation (NSF) AI Institute for Agent-based Cyber Threat Intelligence and Operation
(ACTION) under grant IIS 2229876. The research of Y. Choi is partially supported by the National
Science Foundation (NSF) under grant DMS-2134012 (Scaling Laws of Deep Learning) and the
Office of Naval Research (ONR) under grant N00014-24-1-2207 (Symbolic Knowledge Distillation
of LLMs for All: Diverse Scales, Skills, and Values).

This work is supported in part by funds provided by the National Science Foundation, Department of
Homeland Security, and IBM. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the NSF or its
federal agency and industry partners.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning
from human preferences. In International Conference on Artificial Intelligence and Statistics,
pages 4447–4455. PMLR, 2024.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[4] Yang Bai, Ge Pei, Jindong Gu, Yong Yang, and Xingjun Ma. Special characters attack: Toward
scalable training data extraction from large language models. arXiv preprint arXiv:2405.05990,
2024.

[5] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath,
Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine
Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann,
and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from
human feedback, 2022.

10

[6] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https:
//huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard, 2023.

[7] Stella Biderman, Usvsn Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raff. Emergent and predictable memorization in large language
models. Advances in Neural Information Processing Systems, 36, 2023.

[8] Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and Florian Tramèr.
What does it mean for a language model to preserve privacy? In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency, pages 2280–2292, 2022.

[9] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training
data from large language models. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2633–2650, 2021.

[10] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

[11] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[13] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan
Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback.
arXiv preprint arXiv:2310.01377, 2023.

[14] Databricks. Databricks dolly-15k, 2023.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[16] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

[17] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

[18] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

[19] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

[20] Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Better
synthetic data by retrieving and transforming existing datasets. arXiv preprint arXiv:2404.14361,
2024.

[21] Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
et al. Are we done with mmlu? arXiv preprint arXiv:2406.04127, 2024.

[22] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

11

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

[23] Jiwoo Hong, Noah Lee, and James Thorne. Reference-free monolithic preference optimization
with odds ratio. arXiv preprint arXiv:2403.07691, 2024.

[24] Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing
climate: Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

[25] Aly M Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin
Choi, Sherif Saad, and Santu Rana. Alpaca against vicuna: Using llms to uncover memorization
of llms. arXiv preprint arXiv:2403.04801, 2024.

[26] Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer
Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen,
and Alexander Mattick. Openassistant conversations - democratizing large language model
alignment. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems, volume 36, pages 47669–47681. Curran
Associates, Inc., 2023.

[27] Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, and Mohit Iyyer.
Thieves on sesame street! model extraction of bert-based apis. In International Conference on
Learning Representations, 2020.

[28] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[29] Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating
reward models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

[30] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth international conference on the principles of knowledge representation and reasoning,
2012.

[31] Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang,
Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data
(almost) from scratch: Generalized instruction tuning for language models. arXiv preprint
arXiv:2402.13064, 2024.

[32] Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, and
Ion Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, April 2024.

[33] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

[34] Bill Yuchen Lin, Khyathi Chandu, Faeze Brahman, Yuntian Deng, Abhilasha Ravichander,
Valentina Pyatkin, Ronan Le Bras, and Yejin Choi. Wildbench: Benchmarking language models
with challenging tasks from real users in the wild, 2024.

[35] Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi
Chandu, Chandra Bhagavatula, and Yejin Choi. The unlocking spell on base llms: Rethinking
alignment via in-context learning. arXiv preprint arXiv:2312.01552, 2023.

[36] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
human falsehoods. arXiv preprint arXiv:2109.07958, 2021.

[37] Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng,
Daiyi Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data
for language models. arXiv preprint arXiv:2404.07503, 2024.

12

https://github.com/tatsu-lab/alpaca_eval

[38] Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. In The
Twelfth International Conference on Learning Representations, 2024.

[39] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

[40] Meta. Llama 3. https://ai.meta.com/blog/meta-llama-3/, 2024.

[41] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ip-
polito, Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee.
Scalable extraction of training data from (production) language models. arXiv preprint
arXiv:2311.17035, 2023.

[42] OpenAI. Tiktoken. https://github.com/openai/tiktoken, 2024.

[43] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[44] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[45] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush.
Multitask prompted training enables zero-shot task generalization. In International Conference
on Learning Representations, 2022.

[46] Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming
Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
minimal human supervision. Advances in Neural Information Processing Systems, 36, 2023.

[47] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[48] Llama Team. Meta llama guard 2. https://github.com/meta-llama/PurpleLlama/
blob/main/Llama-Guard2/MODEL_CARD.md, 2024.

[49] Teknium. Openhermes dataset, 2023.

[50] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[51] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[52] Jeffrey G Wang, Jason Wang, Marvin Li, and Seth Neel. Pandora’s white-box: Increased
training data leakage in open llms. arXiv preprint arXiv:2402.17012, 2024.

[53] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated in-
structions. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13484–13508, Toronto, Canada, 2023. Association
for Computational Linguistics.

13

https://ai.meta.com/blog/meta-llama-3/
https://github.com/openai/tiktoken
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md

[54] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir
Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh
Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A,
Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via
declarative instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang, editors, Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 5085–5109, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics.

[55] Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T Le, Jin Miao, Zizhao Zhang, Chen-Yu
Lee, and Tomas Pfister. Codeclm: Aligning language models with tailored synthetic data. arXiv
preprint arXiv:2404.05875, 2024.

[56] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2022.

[57] Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong
Zhang. Iterative preference learning from human feedback: Bridging theory and practice for
rlhf under kl-constraint, 2024.

[58] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

[59] Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model
with parameter-efficient tuning on self-chat data. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 6268–6278, Singapore, December 2023. Association for Computational
Linguistics.

[60] Weichen Yu, Tianyu Pang, Qian Liu, Chao Du, Bingyi Kang, Yan Huang, Min Lin, and
Shuicheng Yan. Bag of tricks for training data extraction from language models. In International
Conference on Machine Learning, pages 40306–40320. PMLR, 2023.

[61] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning. ArXiv,
abs/2309.05653, 2023.

[62] Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from
the web, 2024.

[63] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[64] Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
1m chatGPT interaction logs in the wild. In The Twelfth International Conference on Learning
Representations, 2024.

[65] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zhuohan Li, Zi Lin, Eric Xing, Joseph E. Gonzalez, Ion Stoica, and Hao
Zhang. LMSYS-chat-1m: A large-scale real-world LLM conversation dataset. In The Twelfth
International Conference on Learning Representations, 2024.

[66] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

[67] Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma,
Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural
Information Processing Systems, 36, 2023.

14

A MAGPIE Extension

In this section, we explore the extension of MAGPIE. We first outline the process for constructing a
multi-turn dataset (MAGPIE-MT). We then discuss methods for controlling instruction tasks using
MAGPIE. Finally, we will briefly discuss how to develop a preference optimization dataset based on
MAGPIE.

A.1 Building Multi-Turn MAGPIE

To construct MAGPIE-MT, we initially follow Steps 1 and 2 to generate the first turn of instruction and
response. For subsequent turns, we append the pre-query template to the end of the full prompt from
the previous round of communication. We have observed that the model may occasionally forget its
role as the user, especially for the 8B model. To mitigate this, we employ a system prompt designed to
control the behavior of the LLM and reinforce its awareness of the multi-round conversation context.
The full prompt for building the instructions of MAGPIE-MT can be found in Figure 11 in Appendix
F. We follow the procedure described in Step 2 of Section 2 to generate responses and yield the
multi-turn instruction dataset.

A.2 Control Instruction Tasks of MAGPIE

In some scenarios, users may wish to fine-tune large language models (LLMs) using domain-specific
instruction data, such as code or mathematical content, to enhance performance within specific
domains. In this section, we introduce a lightweight and effective method to control the task category
of generated instructions. Our approach involves guiding LLMs through the system prompt by
specifying that it is a chatbot tailored for a particular domain and outlining the types of user queries it
might encounter. We provide an example of a system prompt designed to control the generation of
math-related instructions, as illustrated in Figure 12 within Appendix F.

A.3 Building Preference Optimization Dataset with MAGPIE

MAGPIE can be readily adapted to create preference datasets by integrating responses generated
by the instruct model with those from the base model. Specifically, utilizing the reward difference
outlined in Section 3, a preference dataset can be assembled by designating the response from the
instruct model as the preferred response, and the response from the base model as the less preferred
one, provided that r∗ − rbase > 0. We will soon open-source MAGPIE-PO, a preference optimization
dataset to further align LLMs with human preferences.

B Filter Setups

In this section, we explore potential filter configurations for selecting high-quality instructional data
for fine-tuning purposes. We provide the following metrics to enable users to customize their filtered
MAGPIE dataset:

1. Input Length: The total number of characters in the instructions.

2. Output Length: The total number of characters in the responses.

3. Task Category: The specific category of the instructions. See Appendix C.1 for details.

4. Input Quality: The clarity, specificity, and coherence of the instructions, rated as ‘very
poor’, ‘poor’, ‘average’, ‘good’, and ‘excellent’.

5. Input Difficulty: The level of knowledge required to address the task described in the
instruction, rated as ‘very easy’, ‘easy’, ‘medium’, ‘hard’, or ‘very hard’.

6. Minimum Neighbor Distance: The embedding distance to the nearest neighbor. Can be
used for filtering out repetitive or similar instances.

7. Reward: Denoted as r∗. See Section 3 for details. This metric can be used to filter out
low-quality responses, such as repetitions or refusals.

8. Reward Difference: Denoted as r∗ − rbase. See Section 3 for details.

15

We provide several off-the-shelf configurations, as demonstrated in Table 4. We defer the detailed
performance analysis of each filter configuration for MAGPIE-Pro to Appendix E.2.

Table 4: Different filter configurations we provide. We note that the Output Length filter is applied
last. Specifically, this filter selects the k instances of the longest responses. In our experiments, we
empirically set τ1 = −12, and τ2 = 0.

Source Dataset Filter Name #Convs Input
Length

Output
Length

Task
Category

Input
Quality

Input
Difficulty

Min Neighbor
Distance Reward Reward

Difference

MAGPIE-Air Filter 300K - Longest - ≥ good ≥ medium > 0 - > τ2

MAGPIE-Pro

Filter 300K - Longest - ≥ average - > 0 > τ1 -
Filter2 300K - Longest - ≥ good ≥ easy > 0 > τ1 -
Filter3 300K - Longest - - - > 0 > τ1 -
Filter4 300K - Longest - ≥ good ≥ easy > 0 - > τ2
Filter5 338K - - - ≥ good ≥ easy > 0 > τ1 -
Filter6 200K - Longest - - 50% easy + 50% > easy > 0 > τ1 -

C More Dataset Analysis

This section provides additional dataset analysis, complementing the discussions in Section 3.

C.1 Additional Analysis on Dataset Coverage and Attributes.

Task Categories of MAGPIE-Pro and MAGPIE-Air. Figure 7 illustrates the task category distribu-
tions for MAGPIE-Pro and MAGPIE-Air, as labeled by Llama-3-Instruct. We observe that the task
category distributions of these two datasets are largely similar, however, MAGPIE-Pro exhibits a
higher percentage of creative writing tasks.

Information

Seeking

C
r
e
a
tiv

e

W
r
itin

g

AdviceSeeking

Planning

Math
Reaso

ning
Bra

in
st

or
m

in
g

E
d
it
in

g

C
o
d
in
g
 &

 D
e
b
u
g
g
in
g

R
o
le
 P

la
y
in

g

O
th

e
rs

D
a
ta

 A
n
a
ly

s
is

N
o
n
e

(a) Task categories of MAGPIE-Pro.

Information

Seeking

A
d
v
ic
e

S
e
e
k
in
g

Planning

Math

Cre
ativ

e W
rit

ing

Codin
g &

 D
eb

uggin
gO

th
er

s

B
ra

in
st
o
rm

in
g

R
o
le
 P
la
y
in
g

R
e
a
s
o
n
in
g

D
a
ta

 A
n
a
ly

s
is

E
d
it
in

g

(b) Task categories of MAGPIE-Air.

Figure 7: This figure visualizes the task category of MAGPIE-Pro and MAGPIE-Air by topic tags.

Visualization of Root Verbs and Their Direct Noun Objects. Figure 8 visualizes the top common
root verbs and their direct noun objects of MAGPIE-Air dataset. This indicates the diverse topic
coverage of MAGPIE-Air.

C.2 Additional Safety Analysis

Table 5 illustrates the percentage of different unsafe categories of MAGPIE-Air and MAGPIE-Pro,
as labeled by Llama-Guard-2 [48]. We have two key observations. First, the proportion of data
containing potentially harmful queries is minimal, with less than 1% for both datasets. Second, the
majority of unsafe responses fall into the category of specialized advice, which includes responses
that may offer specialized financial, medical, or legal advice, or suggest that dangerous activities or
objects are safe.

16

haveplan

write

ne
ed

ex
pe
rie

nc
e

ex
pl
ai
n create

provide do

build

give

take
start

make
use
see
get

purchase
consider

design

trouble

dataset

friendissue

problem

trip

party
wedding
vacation
project

story

nov
el

scr
ipt

ess
ay

bo
ok help

ki
nd

lis
t

sc
rip

t
ty
pe iss
ue

pa
in

pr
ob

le
m

sy
m
pt
om

lot

co
nc

ep
t

difference
im

portance
process
principle

gam
e

w
orld

character
story
system

exam
ple

inform
ation
list

explanation
sum

m
ary

research
project report

paper
study

game
house

model
home
app

advice
task

example
kind

list

step
course

class
trip

care

job
business

project
blog

channel

game
change

list
story

type

type
kind
tool

strategy
model

lo
tvideo

ad

article
show

problem
laptop

lo
t

friend
project

laptop
home

smartphone

tv

house

change
career

factor
project

trip

system
world
game

website
restaurant

Figure 8: This figure demonstrates the top 20 most common root verbs (shown in the inner circle)
and their top 5 direct noun objects (shown in the outer circle) within the MAGPIE-Air dataset. This
indicates that MAGPIE encompasses a broad range of topics.

Table 5: This table shows the percentage of different unsafe categories of MAGPIE-Air and MAGPIE-
Pro tagged by Llama-Guard-2 [48] model.

Dataset Safe Violent
Crimes

Non-Violent
Crimes

Sex-Related
Crimes

Child Sexual
Exploitation

Specialized
Advice Privacy Intellectual

Property
Indiscriminate

Weapons Hate Suicide &
Self-Harm

Sexual
Content Others

MAGPIE-Air 99.128% 0.001% 0.073% 0.003% 0.000% 0.636% 0.022% 0.026% 0.038% 0.001% 0.002% 0.009% 0.062%
MAGPIE-Pro 99.347% 0.001% 0.049% 0.002% 0.000% 0.446% 0.015% 0.074% 0.014% 0.001% 0.004% 0.011% 0.036%

C.3 Ablation Analysis on Generation Configurations

1 0.995 0.99
Top-p

1
1.

1
1.

2
Te

m
pe

ra
tu

re

3.192 3.294 3.293

3.121 3.180 3.178

2.882 2.902 2.975
2.6

2.8

3.0

3.2

3.4

Av
er

ag
e

Qu
al

ity
 S

co
re

(a) Average Quality Scores of
MAGPIE-Air

1 0.995 0.99
Top-p

1
1.

1
1.

2
Te

m
pe

ra
tu

re

2.213 2.226 2.224

2.268 2.237 2.258

2.295 2.283 2.269

2.20

2.22

2.24

2.26

2.28

2.30

Av
er

ag
e

Di
ffi

cu
lty

 S
co

re

(b) Average Difficulty Scores of
MAGPIE-Air

1 0.995 0.99
Top-p

1
1.

1
1.

2
Te

m
pe

ra
tu

re

0.328 0.329 0.317

0.412 0.403 0.389

0.501 0.492 0.477

0.30

0.35

0.40

0.45

0.50

0.55

Av
er

ag
e

M
in

im
um

 N
ei

gi
bo

r D
ist

an
ce

(c) Average Minimum Neighbor
Distances of MAGPIE-Air

Figure 9: This figure illustrates the impact of varying decoding parameters on the quality, difficulty,
and diversity of generated instructions. We observe that while higher temperature and top-p values
may decrease the overall quality, they tend to increase both the difficulty and diversity of the
instructions.

Ablation Analysis on Decoding Parameters. We conduct an ablation analysis on the decoding
parameters used in generating instruction with MAGPIE. Specifically, we use three different tem-
peratures (i.e., 1, 1.1, and 1.2) and top-p values (i.e., 1, 0.995, and 0.99) during Step 1 of MAGPIE.
We use three metrics, Average Quality Score, Average Difficulty Score and Average Minimum
Neighbor Distance to characterize the quality, difficulty, and diversity of instructions using different
decoding parameters. The Average Quality Score is calculated by averaging the ratings of all data
within a specific temperature-top-p pair, on a scale from 1 (‘very poor’) to 5 (‘excellent’). Similarly,
the Average Difficulty Score is rated on a scale from 1 (‘very easy’) to 5 (‘very hard’). The Average

17

Minimum Neighbor Distance is calculated by averaging the minimum neighbor distances, as defined
in Section 3, for all data generated using the same decoding parameters.

(a) Comparison of Input Quality w/wo System Prompts

(b) Comparison of Input Difficulty w/wo System Prompts

Figure 10: This figure compares the
input quality and difficulty with and
without system prompts.

The findings are summarized in Figure 9. We observe that
higher temperature and top-p values may slightly decrease the
overall quality of instructions, while simultaneously increasing
the difficulty and remarkably enhancing the diversity of the in-
structions generated. The selection of these hyper-parameters
should be tailored to the user’s specific requirements, balanc-
ing the trade-offs between quality, difficulty, and diversity.

Ablation Analysis on the System Prompt. Figure 10 com-
pares the use of system prompt compared with not using it in
Step 1 of MAGPIE. Since the Llama-3 model does not have an
official system prompt, we use the default system prompt from
Vicuna [10]: A chat between a curious user and an artificial
intelligence assistant. The assistant gives helpful, detailed,
and polite answers to the user’s questions. We observe that
using a system prompt generally results in a decrease in the
overall quality of instructions, and the instructions are easier.
Consequently, we recommend not appending system prompts
in default settings.

D Detailed Experimental Setups

D.1 Experimental Setups for Generating MAGPIE-Air and MAGPIE-Pro

As detailed in Appendix C.3, varying decoding parameters in Step 1 can significantly influence the
quality, difficulty, and diversity of the generated instructions. To optimize the trade-offs among
these attributes, we employ diverse decoding parameters for the generation of MAGPIE-Air and
MAGPIE-Pro. Table 6 presents the configurations of MAGPIE-Air and MAGPIE-Pro, showcasing how
diverse decoding parameters shape each dataset.

We employ greedy decoding to generate responses in Step 2 for MAGPIE-Air and MAGPIE-Pro. The
intuition is that the word with the highest probability is more likely to originate from the model’s
training dataset.

Table 6: This table demonstrates the configurations of generating instructions of MAGPIE-Air and
MAGPIE-Pro datasets with varying decoding parameters.

Dataset Decoding Parameters Total #Convs
Temperature Top-p #Convs

MAGPIE-Air

1.0 1.00 300K

3M

1.0 0.995 300K
1.0 0.990 300K
1.1 1.00 300K
1.1 0.995 300K
1.1 0.990 300K
1.2 1.00 300K
1.2 0.995 300K
1.2 0.990 300K

1.25 1.00 100K
1.25 0.995 100K
1.25 0.990 100K

MAGPIE-Pro

1.0 1.00 300K

1M1.1 0.995 300K
1.2 0.995 300K

1.25 0.990 100K

18

D.2 Experimental Setups for Instruction Tuning

Supervised Fine-Tuning Hyper-parameters. Table 7 demonstrates the detailed supervised fine-
tuning hyper-parameters. These experiments were conducted using Axolotl5.

Table 7: This table shows the hyper-parameters for supervised fine-tuning.

Hyper-parameter Value

Learning Rate 2× 10−5

Number of Epochs 2
Number of Devices 4
Per-device Batch Size 1
Gradient Accumulation Steps 8
Effective Batch Size 32
Optimizer Adamw with βs = (0.9, 0.999) and ϵ = 10−8

Learning Rate Scheduler cosine
Warmup Steps 100
Max Sequence Length 8192

Decoding parameters for evaluation benchmarks. For Arena-Hard [32] and WildBench [34], we
follow its default setting and use greedy decoding for all settings. For AlpacaEval 2 [33] which
allows the model provider to specify decoding parameters, we also employ greedy decoding in
all experiments with a slightly increased repetition penalty (RP = 1.2) to mitigate the potential
repetitive outputs during the generation.

E Additional Experimental Results

E.1 Performance of MAGPIE-MT

Table 8 compares the performance of MAGPIE-Air-MT and MAGPIE-Pro-MT with their respec-
tive single-turn counterparts. We observe that the multi-turn datasets have enhanced performance,
particularly in the Arena-Hard benchmark.

Table 8: This table compares the performance of the multi-turn versions, MAGPIE-Air-MT and
MAGPIE-Pro-MT, with their single-turn counterparts. All models are instruction-tuned on the Llama-
8B base models.

Dataset
AlpacaEval 2 Arena-Hard

GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR (%)

MAGPIE-Air Single-Turn 22.66 23.99 1.24 49.27 50.80 1.44 14.9
MT 22.98 24.02 1.27 49.63 51.42 1.40 15.5

MAGPIE-Pro Single-Turn 25.15 26.50 1.30 50.52 52.98 1.43 18.9
MT 24.21 25.19 1.28 52.92 54.80 1.41 20.4

E.2 Ablation Analysis on Filter Designs

We conduct an ablation analysis on various filter designs within MAGPIE-Pro to assess their impact
on the performance of supervised fine-tuned models. The results are presented in Table 9. We observe
that different filtering strategies yield optimal performance on different benchmarks, and no single
filter consistently achieves the best performance across all benchmarks. Therefore, determining how
to select instructional data to enhance the performance in supervised fine-tuning is an interesting
topic for future research.

5https://github.com/OpenAccess-AI-Collective/axolotl

19

https://github.com/OpenAccess-AI-Collective/axolotl

Table 9: This table compares the performance of different filter designs within MAGPIE-Pro. All
models are instruction-tuned on the Llama-8B base models.

Dataset and Filter
AlpacaEval 2 Arena-Hard

GPT-4-Turbo (1106) Llama-3-8B-Instruct

LC (%) WR (%) SD LC (%) WR (%) SD WR (%)

MAGPIE-Pro

Filter 25.08 29.47 1.35 52.12 53.43 1.44 18.9
Filter 2 25.15 26.50 1.30 50.52 52.98 1.43 18.9
Filter 3 23.90 25.21 1.25 51.45 53.64 1.41 18.3
Filter 4 24.20 25.33 1.27 52.43 54.34 1.43 17.9
Filter 5 24.85 25.12 1.26 52.12 53.43 1.44 18.4
Filter 6 23.20 28.43 1.26 51.34 57.29 1.41 17.9

E.3 Performance of MAGPIE on More Benchmarks

We report the performance of models fine-tuned using MAGPIE-Air and MAGPIE-Pro, evaluated
across a range of tasks featured on the Huggingface Open LLM Leaderboard [6] in Table 10. The
tasks includes MMLU [22], ARC [11], HellaSwag [63], TruthfulQA [36], Winogard [30], and
GSM8K [12]. We also perform experiments on MMLU-Redux [21] with zero-shot prompting. We
use the default greedy decoding with RP = 1 for all setups. Our experimental results demonstrate
that models fine-tuned with MAGPIE-Air and MAGPIE-Pro achieve comparable performance to the
official instruct model and other baselines despite the alignment tax.

Table 10: This table compares the performance of models instruction-tuned on MAGPIE-Air and
MAGPIE-Pro against baselines and official instruct model across various downstream benchmarks.
All models are instruction-tuned on the Llama-8B base models.

Alignment Setup MMLU (5) ARC (25) HellaSwag (10) TruthfulQA (0) Winograd (5) GSM8K (5) MMLU-Redux (0)
ShareGPT 66.03 58.45 81.50 52.34 74.03 48.67 50.68

Evol Instruct 65.62 60.75 82.70 52.87 76.16 42.91 52.73
OpenHermes 65.42 62.29 82.15 50.85 75.61 47.16 46.07
Tulu V2 Mix 66.34 59.22 82.80 47.99 76.16 58.07 46.97

WildChat 65.95 59.22 81.39 53.18 75.30 48.75 52.59
UltraChat 65.23 62.12 81.68 52.76 75.53 50.57 50.75

MAGPIE-Air-300K-Filtered 64.45 61.01 79.90 53.48 72.38 52.24 52.34
MAGPIE-Pro-100K-Filtered 65.31 60.32 81.18 51.11 73.32 50.42 52.56
MAGPIE-Pro-200K-Filtered 64.98 61.26 80.71 51.82 73.16 47.76 51.44
MAGPIE-Pro-300K-Filtered 64.25 60.41 80.52 52.46 73.32 47.92 52.16

Llama-3-8B-Instruct 67.82 61.52 78.67 52.47 72.14 71.72 58.60

F Prompt Templates

F.1 Prompt Templates for MAGPIE Extension

This section presents the prompt template used to generate MAGPIE-MT and control instruction tasks,
as detailed in Figure 11 and Figure 12, respectively.

F.2 Prompt Templates for Evaluation

Here, we present the prompt template employed to generate task categories, quality, and difficulty, as
detailed in Figure 13, Figure 14, and Figure 15, respectively. The placeholder input represents the
instructions to be evaluated.

20

Prompt for generating MAGPIE-MT

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful Al assistant. The user will engage in a multi−round conversation with you,
asking initial questions and following up with additional related questions. Your goal is
to provide thorough, relevant and insightful responses to help the user with their
queries.<|eot_id|><|start_header_id|>user<|end_header_id|>

{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{response}<|eot_id|><|start_header_id|>user<|end_header_id|>

Figure 11: Prompt for generating MAGPIE-MT. The placeholder {instruction} and {response}
are from the first turn.

Prompt for controlling instruction tasks

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are an AI assistant designed to provide helpful, step−by−step guidance on solving math
problems. The user will ask you a wide range of complex mathematical questions. Your
purpose is to assist users in understanding mathematical concepts, working through
equations, and arriving at the correct solutions.<|eot_id|><|start_header_id|>user<|
end_header_id|>

Figure 12: Prompt for controlling instruction tasks. In this example, we control LLMs to generate
instructions related to math.

21

Prompt for generating task categories

Instruction
Please label the task tags for the user query.

User Query
‘‘‘{input}‘‘‘

Tagging the user input
Please label the task tags for the user query. You will need to analyze the user query and

select the most relevant task tag from the list below.

all_task_tags = [
"Information seeking", # Users ask for specific information or facts about various topics.
"Reasoning", # Queries require logical thinking, problem−solving, or processing of

complex ideas.
"Planning", # Users need assistance in creating plans or strategies for activities and

projects.
"Editing", # Involves editing, rephrasing, proofreading, or other tasks related to the

composition of general written content.
"Coding & Debugging", # Users seek help with writing, reviewing, or fixing code in

programming.
"Math", # Queries related to mathematical concepts, problems, and calculations.
"Role playing", # Users engage in scenarios requiring ChatGPT to adopt a character or

persona.
"Data analysis", # Requests involve interpreting data, statistics, or performing analytical

tasks.
"Creative writing", # Users seek assistance with crafting stories, poems, or other

creative texts.
"Advice seeking", # Users ask for recommendations or guidance on various personal or

professional issues.
"Brainstorming", # Involves generating ideas, creative thinking, or exploring possibilities.
"Others" # Any queries that do not fit into the above categories or are of a miscellaneous

nature.
]

Output Format:
Note that you can only select a single primary tag. Other applicable tags can be added to

the list of other tags.
Now, please output your tags below in a json format by filling in the placeholders in <...>:
‘‘‘
{{

"primary_tag": "<primary tag>",
"other_tags": ["<tag 1>", "<tag 2>", ...]

}}
‘‘‘

Figure 13: Prompt for generating task categories

22

Prompt for generating quality of instructions

Instruction
You need to rate the quality of the user query based on its clarity, specificity, and coherence.
The rating scale is as follows:

− very poor: The query is unclear, vague, or incoherent. It lacks essential information and
context.

− poor: The query is somewhat unclear or lacks important details. It requires significant
clarification.

− average: The query is moderately clear and specific. It may require some additional
information for a complete understanding.

− good: The query is clear, specific, and mostly well−formed. It provides sufficient context for
understanding the user’s intent.

− excellent: The query is very clear, specific, and well−articulated. It contains all the
necessary information and context for providing a comprehensive response.

User Query
‘‘‘{input}‘‘‘

Output Format
Given the user query, you first need to give an assessment, highlighting the strengths and/or

weaknesses of the user query. Then, you need to output a rating from very poor to
excellent by filling in the placeholders in [...]:

‘‘‘
{{

"explanation": "[...]",
"input_quality": "[very poor/poor/average/good/excellent]"

}}
‘‘‘
’’’

Figure 14: Prompt for generating quality of instructions

Prompt for generating difficulty of instructions

Instruction
You first need to identify the given user intent and then label the difficulty level of the user

query based on the content of the user query.

User Query
‘‘‘{input}‘‘‘

Output Format
Given the user query, in your output, you first need to identify the user intent and the

knowledge needed to solve the task in the user query. Then, rate the difficulty level of
the user query as ‘very easy‘, ‘easy‘, ‘medium‘, ‘hard‘, or ‘very hard‘.

Now, please output the user intent and difficulty level below in a json format by filling in the
placeholders in [...]:

‘‘‘
{{

"intent": "The user wants to [....]",
"knowledge": "To solve this problem, the models need to know [....]",
"difficulty": "[very easy/easy/medium/hard/very hard]"

}}
‘‘‘

Figure 15: Prompt for generating difficulty of instructions

23

G MAGPIE Examples

In this section, we demonstrate several representative instructions from MAGPIE-Pro with different
task categories.

Information Seeking

A few days ago, I was at a restaurant and I got a cup of coffee. However, when I went to take
a sip, I realized it was a little too hot. So, I decided to let it cool down for a few minutes. As I
waited, I noticed that coffee is actually two different colors. The part that was closest to the
surface of the coffee is a lighter color, and the part that is deeper is a darker color. Have you
ever observed this phenomenon before?

Reasoning

You have 3 switches but they are not labeled. Each switch corresponds to one of three light
bulbs in a room. Each light bulb is either on or off. You can turn the switches on and off as
many times as you want, but you can only enter the room one time to observe the bulbs. How
can you figure out which switch corresponds to which light bulb?

Planning

You are the Founder of a Financial Planning Company. As a professional financial advisor,
you are scheduled to meet a new client tomorrow. Specifically, what are you planning to do to
prepare for this meeting?

Editing

What is the best way to re-write the sentence: "We call this the ‘core’ product or the ‘core’
offering" using proper quotation marks and avoiding the word "this"?

Coding & Debugging

Write a Python program that calculates the total cost of a customer’s order. The program
should ask for the customer’s name, the number of items they want to purchase, and the price
of each item. It should then calculate the total cost by multiplying the number of items by the
price of each item and adding 8% sales tax. The program should display the customer’s name,
the number of items, the price of each item, and the total cost, including sales tax.

Math
In the following problem, please use integers to solve it. A water tank has 1000 L of water.
On the first day, 1/5 of the water was drained. On the second day, 3/10 of the remaining water
was drained. On the third day, 2/5 of the remaining water was drained. On the fourth day, 3/4
of the remaining water was drained. How many liters of water are left after the fourth day?

Role Playing

In this game, you will be the host, and I will be the contestant. You will ask me a series of
questions, and I will try to answer them correctly. The questions will be multiple choice, and
I will have a 25% chance of getting the correct answer if I just randomly guess. However, I
am a clever contestant, and I will try to use logic and reasoning to increase my chances of
getting the correct answer.

24

Data Analysis

The personnel manager at a company is tasked with finding the average salary of new hires.
She has collected data on the salaries of 13 new hires. She wants to know if there is a
statistical difference between the average salary of new hires and the national average salary.
The national average salary is $45,000. The sample of new hires has a mean salary of $42,800
and a standard deviation of $4,200.

Creative Writing

Write a paragraph about a mythical creature that you created. The creature is small, no larger
than a house cat. It has shimmering scales that reflect light, and can emit a soft, pulsing glow
from its body. It has large, round eyes that seem to see right through you, but with a gentle
kindness. It has a soft, melodious voice, and can communicate with humans through a form
of telepathy.

Advice Seeking

How do you handle stress and overwhelm?

Brainstorming

Can you give me some ideas for a spontaneous, fun and memorable birthday celebration for
my partner?

Others
What does "sdrawkcaB" mean?

25

	Introduction
	Magpie: A Scalable Method to Synthesize Instruction Data
	Dataset Analysis
	Dataset Coverage
	Dataset Attributes
	Safety Analysis
	Cost Analysis
	Additional Analysis

	Performance Analysis
	Experimental Setups.
	Experimental Results

	Related Work
	Limitations and Ethical Considerations
	Conclusion
	Acknowledgement
	Magpie Extension
	Building Multi-Turn Magpie
	Control Instruction Tasks of Magpie
	Building Preference Optimization Dataset with Magpie

	Filter Setups
	More Dataset Analysis
	Additional Analysis on Dataset Coverage and Attributes.
	Additional Safety Analysis
	Ablation Analysis on Generation Configurations

	Detailed Experimental Setups
	Experimental Setups for Generating Magpie-Air and Magpie-Pro
	Experimental Setups for Instruction Tuning

	Additional Experimental Results
	Performance of Magpie-MT
	Ablation Analysis on Filter Designs
	Performance of Magpie on More Benchmarks

	Prompt Templates
	Prompt Templates for Magpie Extension
	Prompt Templates for Evaluation

	Magpie Examples

