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A B S T R A C T   

The COVID-19 outbreak has posed significant challenges to end-to-end global supply chain visibility and 
transparency, with city lockdowns, factory shutdowns, flight cancellations, cross-border closures, and other 
uncertainties, disruptions, and disturbances. To address these challenges, reliable and accurate spatial-temporal 
information of physical objects and processes is essential to understand the industrial context and predict po-
tential risks or bottlenecks for further decision-making. Product traverse both indoor (e.g., shopfloors and 
warehouses) and outdoor (during transportation) contexts. Despite significant advances in spatial-temporal 
traceability for outdoor environments using Global Positioning System (GPS) and Geographic Information Sys-
tems (GIS), satisfactory performance has not yet been achieved in indoor context, which accounts for the ma-
jority of operations. This limitation results in disjointed visibility and inaccessible transparency across the 
holistic supply chain. This research introduces universal and interoperable spatial-temporal elements for cyber- 
physical industrial 4.0 systems (CPIS) and develops a multi-modal bionic learning (MMBL) method for accurate 
and enduring indoor positioning. Proximity, mobility, and contextual reasoning mechanisms are designed to 
capture the interplay, evolution, and synchronization among objects at the operations level. To validate and 
evaluate the effectiveness of the proposed solution, we first conduct laboratory experiment and then apply the 
method in a real-life case company. Comparative analysis is conducted. MMBL clearly outperforms the other 
methods with 95% of the errors are within 3.41 m and maintains effectiveness after a year of use, which rep-
resents a significant step forward in achieving spatial-temporal traceability in CPIS.   

1. Introduction 

The purpose of Physical Internet (PI) is to manage the flow of 
physical object just as the data packets that transmitted in the Digital 
Internet (DI), which attracted much attention from various stakeholders 
including academics and practitioners [1]. It seeks to establish full 
interconnectivity among independent logistics networks and services 
through intelligent interoperability for resource and service sharing [2]. 
The work in [3] has reported several benefits of PI, including increased 
profits, lower prices, and reduced pollution, through the development of 
a highly interconnected global logistics system. While the DI provides 
commands such as the “PING” (Packet InterNet Groper) to determine 
reachability and “traceroute” to display possible routes and measure 
delays of data packets from source to destination, there is a lack of 

dedicated commands, standardized measuring and representation, and 
supportive analytics to monitor, track, and trace physical objects in the 
PI. The uncertainties and disturbances in interweaved indoor and out-
door global supply chain activities put a strain on the satisfactory de-
livery. The interrupted port operations, cancelled flights, delayed 
shipment arrivals and departures during COVID-19 outbreak have sub-
stantially constrained capacities and created serious operational jams 
and deadlocks at terminals and ports. Global supply chain logistics 
suffers from lacking end-to-end supply chain visibility, and information 
traceability and transparency [4]. The need for shared traceability to 
monitor performance among various parties is undoubtedly reinforced 
[5]. 

The Cyber-Physical Internet (CPI) is a term that emerged from the 
Hong Kong Theme-based Research Scheme Project, “SynchroHub: 
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Cyber-Physical Internet for Synchronizing Cross-Border Logistics Hubs 
in the Greater Bay Area (GBA)”. The goal of CPI is to establish a system 
for sending and receiving goods that is like sending and receiving 
messages within instant chat groups, with a focus on providing great 
spatial-temporal traceability for all group members. Compared to the PI, 
which mainly concentrates on the physical logistics interconnection 
aspect, CPI places more emphasis on spatial-temporal analytics. This is 
because not only does physical traceability form the foundation for 
explaining the synergy of resources, but many operational optimizations 
now depend more on real-time data to combat uncertainties and dis-
turbances for resilient decisions. 

Nowadays, the integration of industrial IoT, digital twin, 5G net-
works, and big data into cyber-physical Industry 4.0 systems (CPIS) has 
provided a foundation for data collection and analytics. The multi- 
modal sensory data generated by CPIS also provides potential spatial- 
temporal information about objects. This information includes the 
physical movements of products/materials, as well as the exact time and 
place of information and transaction generation. It serves as the 
fundamental conjunction point for the three flows - logistics flow, in-
formation flow and cash flow [6,7] in supply chain traceability. The 
standardized representation of specific objects’ real-time spa-
tial-temporal status provides intuitive visualization and sharing 
compatibility among stakeholders, which is essential for monitoring and 
rapid intervention during emergency situations (e.g., staff rescuing in a 
warehouse on fire). Traceability can also examine patterns of movement 
or interaction over time and contribute to identifying bottlenecks such 
as unreasonable layout and material flow routes. Proper traceability 
reasoning allows resources to understand their surroundings and take 
proactive actions (e.g., receiving/synchronizing tasks). Furthermore, we 
have observed that logistics hubs/delivery stations or assembly lines 
must build buffer spaces during peak hours to compensate for time 
fluctuations and uncertainties. The geographic distance among objects 
and their picking sequences not only affect time but also total cost. 
Therefore, good coordination between spatial and temporal dimensions 
is conducive to achieving zero-inventory [8] or even zero-warehousing 
[9]. 

However, challenges still exist in achieving spatial-temporal trace-
ability in CPIS. Firstly, the widely applied Global Positioning System 
(GPS) and Geographic Information Systems (GIS) have paved the way 
for spatial-temporal traceability for outdoor environments, while most 
supply chain activities occur indoors, such as manufacturing and 
warehousing operations. The lack of a universal expression, interoper-
ation, and sharing standard hinders spatial-temporal traceability for 
indoor environments. Secondly, in industrial settings, the multi-path 
effect and signal attenuation significantly degrade positioning accu-
racy. Additionally, changes in the environment over time can cause 
accuracy to plummet, requiring laborious and time-consuming calibra-
tion each time the environment changes, making the development of an 
environment-specific positioning model challenging. Thirdly, spatial- 
temporal information provides valuable insights for optimization and 
decision-making processes in CPIS at the operation level. However, the 
lack of insights into patterns and trends that occur over time and space 
hinders more informed and predictive decision-making. To address 
these challenges, the following research questions have been 
formulated:  

(1) What is the most appropriate representation standard to achieve 
shared and interoperable spatial-temporal traceability consid-
ering the shuttling of objects between indoor and outdoor 
environments?  

(2) How can accurate and reliable indoor positioning be achieved in 
an enduring manner using multi-modal data from CPIS?  

(3) How can spatial-temporal data be leveraged through reasoning 
mechanisms to support decision-making related to operations in 
CPIS? 

In this article, we address the aforementioned challenges by first 
defining and comparing basic spatial-temporal elements for geospatial 
traceability in both indoor and outdoor settings. We then propose a 
multi-modal bionic learning method inspired by biological cell evolu-
tion and mutation to achieve accurate and reliable indoor positioning. 
Finally, we introduce three types of spatial-temporal reasoning mecha-
nisms to generate insights and predictions that support intelligent 
decision-making in CPIS. To verify the effectiveness of our proposed 
solution, we implement the method in the shopfloor of a leading com-
puter equipment manufacturing company. 

This paper is organized as follows. Section 2 reviews spatial- 
temporal traceability related research in CPIS. Section 3 discusses the 
basic spatial-temporal elements for traceability with unified represen-
tation and measurements. Section 4 introduces the multi-modal indoor 
positioning method and related spatial-temporal reasoning mechanisms. 
The proposed solution is first tested in laboratory settings in Section 5 
and then verified and evaluated in a real-life case study in Section 6. 
Finally, Section 7 concludes the work. 

2. Literature review 

The literature on the spatial-temporal traceability for CPIS is exten-
sive, covering a range of topics from acquiring the spatial-temporal in-
formation to generating spatial-temporal related decision. In this paper, 
we review the existing literature on spatial-temporal traceability in 
terms of data expression and representation, indoor positioning in CPIS, 
and spatial-temporal related decision-making in CPIS applied areas. 

2.1. Spatial-temporal data expression and presentation 

The spatial-temporal data are data that imply space and time infor-
mation. For the spatial data, the problem of getting lost in outdoor en-
vironments has been significantly reduced with the use of GPS and GIS. 
These technologies have revolutionized the way we navigate and 
explore the outdoors, allowing us to accurately locate position on a map 
application and plan routes accordingly. The satellite-based positioning 
system locate the objects that equipped with specific chips with longi-
tude and latitude results through trilateration, a ranging method [10]. 
The normative geospatial data lays the foundation of today’s 
location-based service applications such as Yelp, Uber, Google Maps, 
among others. Even the logistics industry gains great benefits from 
outdoor transportation traceability through the GPS/GIS [11] as cus-
tomers can track their cargos with graph user interface. However, due to 
the long-wave signal degradation factors, GPS cannot work properly in 
indoor environments especially for shopfloor and warehouse where 
CPIS operates, which renders the sharing and interoperability for indoor 
spatial-temporal traceability non-standardized and inconsistent with 
outdoor system. Grids and Cartesian coordination system are regarded 
as commonly used method for geospatial data expression, presentation 
and manipulation which allows geospatial data to be organized, ana-
lysed, and visualized in a systematic way. The work in [12] label the 
environment with reference points and match the highest probability 
results to corresponding reference points. Cartesian coordination system 
is adopted in [13] to collect Received Signal Strength Indicator (RSSI) 
data and recurrent neural networks for accurate indoor localization with 
specific coordinates. The spatial distribution probability of tool in 
shopfloor is derived from the indoor positioning results using co-
ordinates [14]. The experiment area is partitioned into grids and then 
use integrated algorithm to decide the coordinates of object [15]. As for 
the temporal part, the positioning real timeliness is of great importance 
for making agile decisions. The sampling intervals, transmission delay, 
and computation efficiency have been widely discussed and optimized 
in the literatures [16–18]. Time windows are dynamic attributes that 
affect the solution effectiveness. Spatial-temporal data always linked 
with specific interests. The Point of Interest (PoI) data is utilized in [19] 
to capture human factors, where an attention model that merges the 

Z. Zhao et al.                                                                                                                                                                                                                                    



Journal of Manufacturing Systems 74 (2024) 16–29

18

representations from the geographic and PoI perspectives adaptively is 
proposed. The work of [20] defined time-aware PoI recommendation 
which the temporal information is incorporated. A multimodal 
fingerprint-based indoor positioning systems is developed in [21] for 
airports, the georeferenced PoIs in the airports are clearly identified for 
explicit navigation. 

Literature has yet to address the need for a unified spatial-temporal 
expression and presentation that enables consistent sharing and inter-
operability between indoor and outdoor settings. While longitude and 
latitude representation are commonly used for outdoor tracking, current 
literature tends to represent spatial-temporal data on a case-by-case 
basis, depending on the layout, structure, or operational context. Grid-
ing systems used in research also vary in size and shape, and the self- 
contained coordination system for indoor environments has limited 
interoperability with geographic coordinate systems. Furthermore, 
there is a lack of discussion in current research on the temporal re-
lationships between information real-timeliness from a technical 
perspective and decision-making time window from an operations 
perspective. 

2.2. Indoor positioning system for CPIS 

Although outdoor tracking has been successfully implemented for 
decades, the research on indoor tracking is still progressing slowly. In 
current context, indoor scenarios such as manufacturing, cross-docking, 
and warehousing are widely existed in CPIS. The overwhelming amount 
of data generated through a plethora of IoT enabled heterogeneous de-
vices post challenges to indoor tracking. The transformation from 
intricate spatial-temporal data to applicable and meaningful spatial- 
temporal information deserves more investigations. The position of 
picking staff is predicted in [22] for warehouse management through the 
RSSI values of Radio Frequency Identification (RFID). A feature 
selection-based back-propagation neural network that uses artificial 
immune system is proposed to learn the relationship between the RSSI 
values and position of picking staff. A RFID-enabled positioning system 
is proposed by [23] to locate the automated guided vehicles in smart 
factories. An IoT-enabled smart indoor parking system is proposed by 
[24] for monitoring the tractor and trailer of industrial hazardous 
chemical vehicles. The logistics sustainability can be achieved through 
reducing the searching and waiting times. The work of [25] develops a 
long short-term memory network-enabled tracking algorithm to locate 
the product trolleys via Bluetooth Low Energy (BLE). The 
spatial-temporal information of manufacturing resources is essential for 
factory logistics operations. A system is proposed by [26] to monitor 
worker movements on a construction site by collecting their raw 
spatial-temporal trajectory data and enriching it with the relevant se-
mantic information. The signals from beacons are transformed to loca-
tion coordinates. An IoT RFID data fusion procession algorithm is 
investigated by [27] based on spatial-temporal semantics. The data at 
same time but different space position and the data of same equipment 
(same space position) but different time are used for spatial fusion and 
time fusion respectively. The work in [28] clarified the graphical rep-
resentation of spatial and temporal operators in the middleware to 
detect and disseminate events in the IoT. The entity, resource, and ser-
vice models for the IoT domain is described by [29], global and local 
locations, temporal features are properties in the models for matching 
and integration purposes. The aerial vehicles and robots require the 
support of localisation and path planning to conduct operations in the 
manufacturing scenario [30]. A real-time localization of unmanned 
aerial vehicle is studied through computer vision capabilities [31]. An 
infrastructure free indoor positioning system is implemented in [32] for 
light object logistics and missing tool search of autonomous aerial robots 
in industrial manufacturing. 5G/visible light communications (VLC) 
tracking solutions in Industry 4.0 is reviewed by [33] from 
human-centric perspective. Compared to electromagnetic tracking so-
lutions, the 5G/VLC prevails in line-of-sight scenarios. A novel human 

localization method in [34] is developed for robotized warehouse, op-
erators wear vests equipped with visual sensors to localize the ground 
markers by fusing stereo visual-inertial odometry data and distance. 

Existing research focuses on transforming one of certain specific 
signals attached to a particular resource into location results, which is 
often limited to the individual sectors of operation. However, in CPIS, 
numerous sensors are equipped for various purpose, and more in-depth 
research is needed to leverage existing end nodes to improve positioning 
accuracy. Additionally, the widespread presence of metallic objects and 
concrete walls in CPIS significantly degrades the positioning accuracy, 
and the change of layouts affect the endurance of indoor positioning 
system [35], posing challenges to realizing long-term spatial-temporal 
traceability. 

2.3. Spatial-temporal reasoning and decision-making 

In recent years, the academia has witnessed a surge in the number of 
spatial-temporal traceability in technology-driven Industry 4.0 era. The 
traceability does not only consider the trace and track of the object, but 
also contains context related reasoning for real-time situation calcula-
tion and resilient responses on product safety, quality, and operator 
behaviours [36] for value-driven Industry 5.0. The work of [37] dis-
cusses how location and time can support smart manufacturing, move-
ment data and quality measurements are visualized and analysed using 
spatial-temporal analysis to compare behaviours. The spatial-temporal 
data are fed to the neural network frame for construction intelligent 
physical system [38]. The recurrent neural network structure is linked to 
predict the mobility of an object, and the 3D convolutions for modelling 
the relationships between objects. The work of [39] proposes event 
attributed spatial entity knowledge based to formalize spatial entities in 
a geographic region whose temporal attributes are events to answer the 
event-based queries on prediction of spatial process. Moreover, 
spatial-temporal information has also been considered for case-based 
reasoning in disaster management by measuring spatial-temporal simi-
larities [40]. 

Data generated in cyber-physical systems are dynamic, volatile, 
interdependent, containing rich spatial-temporal information, and they 
are critically important for real-time decision making [41]. A 
spatial-temporal out-of-order execution which divides the space and 
time scopes of a factory into finite areas and intervals to reduce 
complexity of optimization problem [42]. A hedging coordination in 
prefabricated housing production is studied in [43], the double handling 
cost is mitigated substantially through spatial-temporal method by 
reducing assembly time uncertainty and on-site congestion probability. 
A novel spatial-temporal analytics is developed to identify the high 
spatial-temporal correlated but indirect contact in the COVID-19 situa-
tion [44]. The spatial and temporal asynchronization in production and 
logistics may cause ineffective resource allocation, production sched-
uling and even safety threats to human operator. A dynamic 
spatial-temporal knowledge graph is introduced to allocate production 
logistics resources where the IoT big data is analysed to generate 
spatial-temporal information through deep learning [45]. The timely 
spatial-temporal traceability and visibility with cyber-physical syn-
chronization is actualized. An automated fault detection and isolation 
approach in [46] models the spatial/temporal production data with high 
accuracy. 

Many studies of resources synchronization and cooperation exploits 
the static attributes of resources (type, capacity, fixed cost, availability) 
while neglecting dynamic spatial-temporal relationships as it is hard to 
obtain and quantify. Spatial-temporal information implies the move-
ment rules and patterns of resources which can be inferred to valuable 
insights such as bottleneck identification and process optimization for 
managerial implications. Moreover, while current research on decision- 
making processes largely harnesses operations data, little attention has 
been devoted to enabling resources with contextual awareness through 
spatial-temporal data to self-understand the process and provide support 
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for making local decisions. 

3. Basic spatial-temporal elements in spatial-temporal analytics 

3.1. Spatial grids and temporal units 

The timeline is discretized with time windows. Likewise, a space is 
discretised into 2D grids or 3D cubes. Discrete grid systems are critical to 
analysing large spatial data sets, partitioning geospatial areas into 
identifiable grid cells to support efficient real-time location-based 
quiring services. A set of basic spatial primitives (e.g., point, line, 
polygon) is utilized to model and abstract reality accordingly. The 
referencing and indexing mechanisms provide reliable methods to ac-
cess, store and retrieve data. Discrete global grid systems such as Uber 
H3 and Google Map S2 have been validated with commercial success 
[47,48]. The industrial site is more complex and in a constant state of 
change than the urban society. However, most CPIS operations are 
carried out in large scale multi-storey indoor plants. Current discrete 
geospatial grid systems are deployed globally oriented to outdoor en-
vironments. The indoor spatial analytics require proper indexing system 
to identify both indoor and outdoor geolocation elements. 

One of the main differences between S2 and H3 is the choice of cell 
shape. S2 uses square cells while H3 uses hexagonal cells. Both systems 
do not need to understand the industrial site context. The important 
differences lie in neighbour traversal, subdivision, and visualization. 

Neighbour traversal: There are only three shapes that can form regular 
tessellations: equilateral triangles, squares, and hexagons. The pivot of 
the hexagon cell (HC) to other neighbours are equidistant while triangle 
and square cells have three or two different distances. Hexagons allows 
for simpler analysis of movement. The spatial temporal traceability of 
the industrial asset often concerns with the proximate assets to realize 
synchronous optimization. Compared to square raster, hexagon is 13% 
more efficient at sampling and 25% to 5% more efficient for common 
image processing algorithms [49]. 

Subdivision: Hexagons do not cleanly subdivide into seven finer 
hexagons. However, by alternating the orientation of grids a subdivision 
into seven cells can be approximated. Consider warehouse management 
as an example. Typically, the assignment of storage locations is deter-
mined based on the product category. The further division of the storage 
location is different product types but belonging to the same category. 
The inclusion relation is continuously inherited following a multilevel 
parent-child pattern. On the other hand, the smallest possible resolution 
should be indexed and is able to aggregate into larger resolutions. Even 
square grids can have perfect subdivision, however 7 hexagons 1/7th 
the area covering the exact same amount of area with a known amount 
of error. The shape can be approximated with 19.1 degrees of rotations. 
The average hexagon area is 0.9 m2 at maximum resolution level 15 in 
H3, which can satisfy the location accuracy in the industry applications. 
Furthermore, the localization accuracy in the Industry 4.0 varies ac-
cording to different operation requirements. 

Visualization: Hexagons can tessellate the plane regularly. The cells 
can appear distorted under Web Mercator Projection. According to [50], 
H3 cells have the same non-alignment with the map projection, but the 
effect is less noticeable to viewers for hexagons. In industrial operation 
level, the effect can be almost neglected. Moreover, users with different 
privileges can access to varying resolution levels. For example, the op-
erators in the organization may have access to higher resolution levels 
while the customer or partners who wish to track the products only can 
access to lower resolution levels since privacy concerns. 

However, the H3 system ignores elevation and treats all points with 
the same latitude and longitude as the same location. This poses a 
challenge in indoor environments where multi-storey shop floors or 
warehouses are commonly existed in CPIS. Inspired by the addressing of 
computer networks in Internet where Classless Inter—Domain Routing 
(CIDR) is fully utilised to divide IP address into a hierarchy of subnets of 
assorted sizes, we blend self-contained coordinate system into the H3 

griding system with extra height indicators in Fig. 1. The end devices on 
the Internet have IP addresses to identify network interface identifica-
tion and location addressing through router assignment. The physical 
address, a 12-digit hexadecimal number assigned to each device, is the 
unique identification for every end device. In the cyber physical 
internet, the location of the objects is estimated through positioning 
method using Cartesian coordination system. We first map the co-
ordinates derived from indoor positioning results to the H3 hexagon 
cells at predefined resolution levels according to accuracy requirements. 
The hexagon cells are like exact IP address in the computer networks 
where lower subnet mask in CIDR indicates larger covering area. Then, 
we label the hexagon cells that tessellate in the building with height 
indicator to show the level information. The gateway, acting as router in 
the computer networks, have ability to assign the positioning results of 
varied objects through embedded sensors and positioning engine. Each 
object equipped with wireless sensors carries a physical address as 
Media Access Control (MAC) address in datalink layer of computer 
networks. It is the unique identification for the object in CPIS. 

Fig. 2 depicts two types of time windows. The first pertains to the 
intervals at which IoT devices or sensors gather real-time data and up-
date the condition and state of the factory. We can describe this type of 
time intervals as heart beats τ of a smart factory as the signals/data/ 
information generated proactively following a certain rhythm. It de-
termines how real-time a factory is. Many researchers have concluded 
that there are basically three to four layers of IoT architecture from 
collecting raw data to generate meaningful information in Industry 4.0 
[51,52]. We take the location estimation as an example; the location of 
the moving objects is determined by the calculation results based on the 
received signal strength indicator (RSSI). There are also three parts of 
IoT supportive hardware at cloud, edge, and end side, respectively. The 
IoT tag that attached to specific object at end side emits signals in a 
certain frequency τb. Multiple RSSI readings collected by the gateway at 
edge side through constant sniffing are reported to centralized server in 
certain interval τg. The centralized server at cloud side receives the data 
from gateways and analyse to update the global moving object’s location 
status in interval τs. As the signals are prerequisites of the location 
estimation, even the interval of heart beats is adjustable at each side, but 
the interval must compile the following constraints: τb ≤ τg ≤ τs. 

The other type includes the time intervals at which the smart factory 
makes and updates its decisions following planning T , scheduling T 
and execution t regime. We describe this as decision time window of a 
smart factory. If t1 = τ1, this is the case where factory updates its real- 
time status and make its real-time decision at the same pace during 
execution level. If t1 = n × τ1 where n is integer, factory updates its 
status n times before making a decision. If the factory’s status is not 
updated (changed), there is no need to make another round of decision. 
A decision cycle is only triggered by changes of status due to one or more 
beats. We borrow the notation of CPU (Central Processing Unit) as the 
“brain” of CPIS. Likewise, CPU clock is introduced to measure the speed 
or frequency at which decisions are made. The CPU will assign and 
execute ready operations to suitable time periods which include at least 
one- or multiple-time windows. The planning interval T usually con-
siders longer period of time including setting goals and determining the 
overall strategy for achieving the goals, while the scheduling interval T 
is much shorter than planning interval. The scheduling usually considers 
the allocation of resources, machine utilization, and production line 
sequencing. The execution interval t is relatively small and very much 
related to real-time pointer for agile decision-making. Some computer 
manufacturers adopt fixed execution interval such as 2 h to conduct 
material preparation before production. This cycle repeats as the clock 
ticks just like the CPU clock. 

3.2. Spatial-temporal Points of Services (POS) 

A point of interest (PoI) is a specific point location that someone may 
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find useful or interesting and can be shared through location-based so-
cial networks such as Foursquare, Facebook Places, and dianping.com 
[53]. PoI data represent various venues in human society including 
shopping malls, coffee shop and parks and widely adopted in various 
web mapping platform especially location-based recommendation ap-
plications. The CPIS also concerns vast number of points where events 
and transactions conducted. In analogy to visiting the museum at its 
opening time, the trucks are only allowed to unload the freight during 
working hours of receivers. Earliness or tardiness not only affect the 
successful completion of the task, but also incur extra labour cost and 
expenditures. The spatial-temporal window of the PoS significantly 
affect internal and external operations planning, scheduling, and 
execution. We define the spatial-temporal point of service (PoS) is the 
place where industrial events or transactions conducted with 
time-awareness. 

PoS are dynamic. First, PoS of a spatial element change with time. 
For example, the machine located in a spatial element operates on 
component A at a time and on component B at another time. This is the 
norm in manufacturing systems. Second, some factory objects are mo-
bile rather than stationary. PoS of a mobile object may change from one 
location to another. For example, PoS of a trolley is to ‘load’ work-in- 

progress (WIP) items at the source machine centre and to ‘unload’ 
WIP items at the destination machine centre, and to “carry and move” on 
the path in between the two locations. Third, PoS of smart objects in 
CPIS may be mutually changed when they interact and/or interoperate 
with each other. For instance, human operators may conduct different 
tasks at different locations and times. Assuming the materials in work-
station (PoS) are waited to be packed, the human operator proceeds to 
workstation first, and provide packaging services there afterwards, the 
human operator become PoS for subsequent materials to be packed in 
the future. 

Inspired by the digital twin conception [54], we model the PoS and 
define it as MPoS = (ST,PE,VE,CN,Ss). The model of PoS consists of five 
parts. The ST refers to the spatial-temporal information including cur-
rent location, service starting and ending time, and historical data for 
storing, querying, and sharing. PE defines the physical entity which 
includes the functional information FI = (ID, name, FunctionDescription,
PiC) such as ID, name, functional description, and person in charge, etc., 
and resource-associated information RI = (ID,Type) as some of the point 
of service may associated with certain resources. The functional infor-
mation is usually static information, but the resources-associated in-
formation may be dynamic. For example, a storage location (without RI) 

Fig. 1. Addressing in Internet and Cyber-physical Internet.  

Fig. 2. Factory clock in CPIS.  
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is the PoS for keeping materials, a static CNC machine (with static RI) is 
the PoS for processing, and movable forklifts (with dynamic RI) are PoS 
for transporting materials. The VE part concentrates on the virtual entity 
of geometry visibility attributes such as shape, size, and display related 
behaviours. The CN specifies the connections between the physical and 
virtual entities through various IoT technologies and necessary network 
communications. The services Ss is highly correlated with the 
context-based operations. It analyses the data collected to infer implicit 
information such as real-time status of resources (idle, occupied or 
breakdown), level of proximity between the user to the PoS, and esti-
mated time or routes, etc. The services also contribute to the credible 
traceability sharing among different parties as the PoS plays the role of 
eyewitness during the spatial-temporal reasoning. 

4. Spatial-temporal traceability through multi-modal bionic 
learning in CPIS 

The core of spatial-temporal traceability is to identify the location 
and time of existence of an object. Cyber physical Industry 4.0 appli-
cations involve both indoor and outdoor operations. Global Navigation 
Satellite System (GNSS) such as Global Positioning System (GPS) and 
BeiDou Navigation Satellite System (BDS) can be readily used for out-
door wide-ranging positioning. In CPIS, operations are mostly con-
ducted indoors, especially for manufacturing and warehouse operations. 
For the majority of operations that occur indoors, a suitable indoor 
positioning system is essential. In this section, we first discuss the 
spatial-temporal traceability enabled by a multi-modal bionic learning- 
based indoor positioning system, which facilitates the precise and reli-
able localization of objects. The overall process of multi-modal bionic 
learning for indoor positioning system, which is analogous to the process 
of cell mutation, crossover, and evolution in biology is introduced. We 

then delve into the specifics of the multi-modal bionic learning (MMBL) 
algorithm used in IPS. We then propose mechanisms of spatial-temporal 
reasoning in the last of this section. 

4.1. Analogical process of multi-modal bionic learning for indoor 
positioning system 

In CPIS, different shop floors and warehouses in industrial parks may 
have different information communication technology infrastructures 
and shareholders. For example, the transportation among supply chain 
players usually involves outdoor transportation where GPS/BDS have 
certain merits and convenience. For the warehouse management, the 
RFID reading events, considered as reactive positioning, records the 
“process location” instead of absolute spatial-temporal information. BLE 
and Wi-Fi share the similar tracking principles as the access points 
deployed at fixed locations to capture the signals and send back to the 
server. The GNSS (GPS/BDS) and cellular positioning (5G/LTE) already 
have mature positioning mechanism with absolute coordinates but still 
imperative for feeding the model since the transformation of absolute 
coordinates to hexagon cells for unified analytics, compensation for 
single signal reasoning, and time synchronization. In this research, we 
integrate all the above-mentioned technologies which have potentials 
for directly or indirectly realizing spatial awareness and combine them 
as radio frequency feature collections (RFFC) for inferring the matched 
hexagon cell. 

Fig. 3 showcases the overall process of MMBL in the light of bio-
logical cell evolution. The left side of this Fig. tells the story of how the 
biology cell is cultivated, extracted, judged, and evolved, while the right 
side depicts the corresponding process implemented in the hexagon cell 
localization. MMBL consists of two stages, which are offline calibration 
stage and online prediction stage. 

Fig. 3. A biological analogy to MMBL process.  
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In the offline calibration stage, with the aim of correct identifying the 
type of each biology cell (muscle, epithelial, adipocytes, etc.), the fea-
tures of chromosome, DNA, and genes of the cells are supposed to be 
clearly extracted and labelled in the first place. The petri dish that cul-
tures the observes diverse cells is prepared with adding reagents. Varied 
types of cells are placed in the petri dish for further extraction and gene 
sequencing. Chromosomes are structures in cells that contain genetic 
information in the form of DNA, along with associated proteins and 
other chemical substances. Together, these components make up the 
fundamental building blocks of biological cells. DNA is the molecule that 
carries the genetic information that is passed down from one generation 
to the next, while genes are specific segments of DNA that code for 
specific traits or functions. The specific sequence of nitrogenous bases in 
a gene, which are adenine (A), thymine (T), guanine (G), and cytosine 
(C), provides unique and distinctive information that distinguishes one 
gene from another. For the hexagon cell positioning problem, the 
tracking area is first confirmed and tessellated with hexagon cells. A 
spatial-temporal gateway (STG) is a multi-source signal receiver with 
additional edge-computing capacity for analysing and categorizing 
initial readings. STGs are deployed in regular intervals in the tracking 
area, without the need for intentional coordinates marking. In this case, 
implementation is less laborious. Calibration tags are placed at the 
centre of each hexagonal cell to broadcast multi-modal specific radio 
frequency signals, such as Bluetooth Low Energy (BLE) or Wi-Fi, which 
can be received by the STGs. The mapping from the hexagonal cell to 
Cartesian coordinates is relatively simple and can be inferred from the 
regular graph tessellation. The STGs collect radio frequency readings 
during certain time windows and record them as dataset for model 
training. Some of the calibration tags which can be easily installed 
without affecting daily operations can be permanently deployed at fixed 
locations and redefined as reference tag for online prediction purpose. It 
is noteworthy that the RFFC has more than one source radio frequency 
features, and each type of the radio features is represented as signal DNA 
with a set of received signal strength indicator (RSSI) readings from all 
STGs to dedicated hexagon cell. Therefore, a segment of RSSI from single 
STG is formed as one single piece of gene. The RSSI is very jumpy in the 
industrial settings as the metallic objects and concrete walls cause multi- 
path and none-line-of-sight (NLOS) issues. Several signal filtering tech-
niques such as Kalman filters and particle filters are employed to smooth 
the fluctuating signals. 

During the online prediction stage, as analogous to identifying 
criminal suspect from DNA samples and contextual information in 
criminal investigation, we employ the pre-trained model to derive the 
location estimation through the online measurements of RFFC while 
simultaneously considering readings from reference tags which reflects 
onsite environmental factors. The changing layouts may significantly 
affect the environment-specific model performance. Therefore, we 
adopt small scale learning to keep the model understand the newest 
environment before location estimation. We observe the real-time RFFC 
from reference tags and make modifications to update the initial training 
set before the location prediction. The deep neural network-based model 
conducts small-scale re-learning to make weights and bias more 
approaching the on-site environment. After prediction, genes in DNAs 
may have mild change (evolve) or distinct change (mutate) according to 
the observation which brought by the environmental influences. The 
RFFC are also updated after each time of positioning with both correct 
labelled data and unlabelled data for further feature extraction [55]. 

4.2. Mathematical model of multi-modal bionic learning for indoor 
positioning system 

We consider a tracking area A with Ng deployed spatial-temporal 
gateways (STGs) and Q hexagon cells tessellated in. Spatial-temporal 
gateways are a type of IoT device that is specifically designed to cap-
ture and process spatial and temporal information from a variety of 
sensors. These gateways can receive signals from add-on sensors such as 

Bluetooth Low Energy (BLE), Wi-Fi, RFID, GPS modules, and other 
similar sensors. With their advanced processing capabilities, they are 
able to reason about the data they receive, identify patterns and make 
decisions based on the insights gained. We define Ng = Nb +Nw +Nr +No 

where Nb, Nw,Nr, No are the number of BLE, Wi-Fi, RIFD, and other 
sensors respectively. We exemplify the BLE signal calibration in the 
following details. Total Nct calibration tags are temporally deployed in 
the centre of hexagon cells to fulfil calibration task before online posi-
tioning. Each hexagon cell has a mapping relationship with Cartesian 
coordinates in two-dimensional environment. The position of calibra-

tion tags is defined as pc
q =

(
x′

q, y′
q

)
,q ∈ (1,2,…,Q). It is noteworthy that 

coordinates of the equally divided partitioning on regular graph is easy 
to be reasoned. The calibration tags emit different types of radio signals 
to nearby STGs. Each STGs collects the RSSI measurements broadcasted 
by the calibration tags. 

The rolling horizon H is divided into equal time windows τt , t =
1, 2…,T as real-timeliness pointer, one round of positioning is required 

to be finished within in τt . Let Γτt
nb

=
(

rτt
1,nb

, rτt
2,nb

,…, rτt
Q,nb

)
be the row 

vector of BLE RSSI received by STG nb from each hexagon cell from 1 to 
Q at time window τt, where rτt

nb (nct) is the filtered BLE RSSI value 
measured by STG nb from calibration tag nct at time window τt . Multiple 
rounds of calibration signals are required to collect to ensure the suffi-
cient training data. Unavailable signals are filled with very small value. 
For passive reading actions such as RFID, successful reading events are 
typically indicated by large RSSI values. With collection of various sig-
nals such as Wi-Fi Γnw , RFID Γnr or other sources Γno after multiple 

rounds, we transform training data set to Xtrain =

⎡

⎣
| | |

x(1) ⋯ x(m)

| | |

⎤

⎦,

Xtrain ∈ RNg×M from perspective of hexagon cell where x(m) defines mth 

training data from all STGs. The corresponding Ytrain =

⎡

⎣
| | |

y(1) ⋯ y(m)

| | |

⎤

⎦,Ytrain ∈ R2×M is the coordinates of the hexagon cell 

where the training data is collected and classified. To evaluate the 
model’s performance, we use k-fold cross validation in conjunction with 
a hold-out validation set. For each fold, we reserve 20% of the data as a 
separate validation subset to assess the model’s generalization ability. 
Many traditional ranging algorithms employs the log-distance path loss 
model to derive the distance according to the RSSI readings, however, in 
the industrial settings, different environment may significantly affect 
the path loss exponent rendering the estimation unreliable. 

The regression function of deep neural network is adopted to esti-
mate the (x, y) coordinates of the unknown targets. We define the action 
value of lth layer of the model as A[l] = σ(W[l]A[l− 1] + b[l]) , where W[l]and 
b[l] are the weight parameters and bias value of layer l. The activation 
function σ includes sigmoid f(x) = 1

(1+e− x)
and ReLU f(x) = max(0, x) is 

employed to introduce no-linearity into the neural network, which al-
lows it to learn and model complex relationships between input and 
output data. The output layer has only 2 neurons which represent the x 
and y values of the final location estimation results. 

The loss function between ground truth coordinates (x, y) and predict 
value (x̂, ŷ) is set as Mean Squared Error L = 1

M×
∑

i∈M
((xi − x̂i)

2
+

(
yi − ŷi

)2
), where M is the total number of training data in the dataset. 

The MSE is a commonly used loss function in regression analysis that is 
particularly relevant in the context of indoor positioning. MSE is 
preferred over other loss functions because it penalizes large errors more 
heavily than small errors, which is in line with the error tolerance re-
quirements in the indoor positioning process. Specifically in indoor 
positioning, a system is typically more tolerable of slight errors in 
location estimation, such as mispositioning to adjacent hexagon cells, as 
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compared to significantly distant estimations. Additionally, the MSE is 
differentiable, which makes it useful for gradient-based optimization 
algorithms. 

To minimize the loss values at each training epoch, gradient 
descendent is leveraged through backward propagation. The weights 

and bias of each layer is updated through W[l]′ = W[l] − γ • ∂L
∂W[l] and b[l]′ 

= b[l] − γ • ∂L
∂b[l] where γ is the learning rate. We use Adam (Adaptive 

Moment Estimation) to compute adaptive learning rates for each 
parameter in the model instead of fixed ones with slow convergence 
during optimization process. The algorithm calculates the first moment 
estimate of the gradient, which is the average of the gradient values, and 
the second moment estimate, which is the average of the square of the 
gradient values. These estimates are used to update the learning rates for 
each parameter. The adaptive learning rates help to accelerate the 
optimization process. 

Once the model has been trained to convergence, ensuring that there 
is no overfitting or underfitting issues, it can be deemed well-optimized. 
At this point, it is ready to make predictions during the online stage. 
However, accurately determining the location in industrial settings can 
be very challenging due to the variability of industrial layouts. This 
variability can lead to a significant degradation in location accuracy. 
Therefore, we retain some of the calibration tags to be reference tags 
which are easy to be placed and does not interfere with daily operations. 
The signals broadcasted from the reference tags each time during online 
stage reflects the onsite radio environment objectively. Hence, to enable 
the model to quickly adapt to the on-site environment, a model learning 
with limited updated training dataset before the online prediction is 
imperative. Let Xt−

ref be the radio signals collected from the reference tags 
before the online positioning timestamp t which we set as t− and Yt−

ref be 
the corresponding coordinates set of reference tags. We compare the 
labelled dataset in both Xt−

ref and Xtrain and distil the decay rate D before 
updating all training set Xtrain in Eqs. (1) and (2). 

D =
1

⃒
⃒Nref

⃒
⃒

∑

i∈Nref

(
Xt−

ref
(i)
− Xtrain

(i)

Xtrain
(i)

)

(1)  

Xt−
train = β(D • Xtrain)+ (1 − β) • Xtrain, β ∈ (0, 1) (2)  

where 
⃒
⃒Nref

⃒
⃒ denotes the total number of signal dataset from reference 

tag and β is the smoothing factor which typically determines the trade- 
off between the exploration of new values and the exploitation of pre-
vious knowledge. The training data set Xt−

train is therefore adjusted 
through β. A lightweighted model training is executed with the Xt−

train and 
Ytrain as input with limited learning time consumption. The trained 
model for online prediction is therefore more adaptable to the onsite 
environment. 

4.3. Mechanisms for spatial-temporal reasoning in CPIS 

To better quantify the spatial-temporal traceability after obtaining 
the precise location estimation, we propose spatial-temporal reasoning 
mechanisms to understand how the objects interplays, evolves, and 
synchronize in the CPIS for improved performance monitoring, uncer-
tainty/disturbance prediction, and resilient decision-making processes. 
Spatial-temporal reasoning refers to the cognitive ability to draw con-
clusions based on the spatial and temporal relationships between 
different objects or events. This involves understanding and interpreting 
patterns, sequences, and dependencies that occur over time and space. 
In a broader context, spatial-temporal reasoning can be used to predict 
future events, plan and optimize systems, and solve complex problems 
that involve elements distributed in time and space. In this subsection, 
proximity reasoning, mobility reasoning, and contextual reasoning 
under spatial-temporal traceability are illustrated. 

4.3.1. Proximity reasoning 
Proximity reasoning serves as a fundamental aspect of spatial anal-

ysis. It evaluates which objects are near each other, the degree of their 
closeness, the duration of their proximity, and the specific location 
where this proximity occurs. It can be leveraged to clarify the rela-
tionship between resources. Proximity reasoning is important for almost 
all types of internal logistics operations ensuring that the right resources 
are available at the right places in the right time window for the right 
intended context [56]. A basic formation of proximity problem is to 
identify objects that are within a proximate area. In a factory consisting 
of fixed-position assembly islands, we can apply proximity reasoning to 
synchronize assembly operations. An assembly operation can only be 
started if and only if all the necessary materials, machines and human 
operators are around the assembly island. To facilitate the efficiency of 
spatial queries and avoid ambiguous adjacency in Cartesian coordinate 
system. We leverage internal discrete hexagon planar grid system. It has 
3 coordinate axes i, j and k spaced 120◦ apart in Fig. 4 where (0, 0,0) is 
its origin. The internal spatial indexing of the hexagon cells has mapping 
relationship with external Cartesian coordinates indexing. We define the 
level of proximity (LoP) between two objects u and v at timestamp t in 
the following equation: 

LoPt(u,v)=
1
2

(⃒
⃒R

i Ht
(u)− R

i Ht
(v)
⃒
⃒+
⃒
⃒R

j Ht
(u)− R

j Ht
(v)
⃒
⃒+

⃒
⃒
⃒Rk Ht

(u)− R
k Ht

(v)
⃒
⃒
⃒

)
,LoP

∈N∗

(3) 

where the Ri Ht
(u) refers to the internal spatial indexing i coordinate of 

hexagon cell H in resolution level R that u located at time window t. The 
result of the level of proximity is positive integer. The LoP between the 
operator u in (9,− 5,− 4) and flat trolley v in(11,− 3,− 8) is 4 referring to 
the Eq. (3). In the fixed-position assembly island scenario, only if the LoP 
between assembly island and all the necessary materials, machines and 
human operators lowers than certain level the operation can be started.  
Fig. 5 shows that the production logistics of all required resources are 
completed and located within the adjacent HCs of fixed-position as-
sembly island located in (5,0, − 5), in this case, the operation start 
command can be executed. Different applications can be derived from 
the LoP between different type of resources. 

4.3.2. Mobility reasoning 
The mobility constitutes the spatial-temporal traceability as it im-

plies the action strategy of the objects for future analytics of layout 
optimization, bottleneck identification, and resource allocation 
improvement. The mobility has a narrow definition that describes the 
path of a mobile object in a given time window recording its locations 
and their points of services, regardless of what other objects it encoun-
ters on the path. In Fig. 4, the space-time path of forklift from ( − 2, 2,0)
to (4, − 1, − 3) is clearly marked with arrows in given time window. The 
direction of the arrow is determined by the time sequencies. The other 
form of mobility is a series of objects that go through a spatial element in 
given time window. Fig. 5 displays a spatial heat map of forklift mobility 
reasoning. Spatial elements with darker colours indicate that longer 
retention time of the objects. The resources’ retention time-the time it 
stays in the spatial units reflects the traffic routes, congestion points, or 
operational bottlenecks. Spatial heat map in different time window also 
reveals the operational behaviour of the resources in workshop which 
contributes to the layout optimization. The mobility reasoning visualizes 
a step-by-step process and how objects evolved spatial-temporally. 

4.3.3. Contextual reasoning 
Context refers to the surroundings, circumstances, environment, 

background, or settings that determine, specify, or clarify the meaning 
of an event or other occurrence. In CPIS, context endows spatial- 
temporal reasoning with operational purpose and meaning. In this 
research, PoS of a parental location are defined as the context of the PoS 
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of its child locations. For example, the PoS of an assembly island at a 
time is “assembly of the right wing of the airplane” which forms the 
context for all the materials, machines and human operators involved in 
this assembly operation. These objects fall into smaller spatial grids with 
more specific PoS. The parent-child location hierarchies can be con-
verted through the aggregation and subdivision of hexagon cells. 

Table 1 demonstrates the possible scenarios for contextual reasoning 
of spatial-temporal traceability in discrete manufacturing. It concerns 
the various types of resources by the nature of mobility. The location- 
fixed resource can be regarded as PoS in parent resolution level for 
other resources to visit. The reasoning of a moving machine (e.g. fork-
lift) to WIP materials located in the start/end of production line may 

Fig. 4. Proximity reasoning and space-time path mapping.  

Fig. 5. Spatial heat map of objects mobility reasoning.  

Table 1 
Possible scenarios for contextual reasoning of spatial-temporal traceability in discrete manufacturing.   

Fixed PoS Mobile PoS  

Man Machine Material Site Man Machine Material 

Man Shifting of duty Setup/Operation/ 
Maintenance 

QC/Stocktaking Homing/ Production 
logistics operation/ 
Geofencing 

Contact tracing Collaborative 
Operation/Task 
Allocation  

Machine Task handover Material handling Pick-up  Safety monitoring   
Material Replenishment/ Task 

handover 
Production 
preparation 

Replenishment/ 
Inbound  

Enterprise 
property security    
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infer the process monitoring of replenishment/pick-up operation. If both 
sides are moving resources, for example, a moving forklift carrying the 
materials, the timing of LoP change can be the action of loading and 
unloading. Without context, the mere spatial-temporal reasoning among 
objects cannot identity anomalies or draw any conclusions. 

5. Experimental study 

A laboratory experiment was conducted to evaluate the performance 
of the proposed MMBL method. The setup of the system and the data 
collection process are first described. This is followed by an illustration 
of the model construction and training process. Finally, the evaluation of 
the method and analysis of the results are presented. 

5.1. System setup and data collection procedure 

The testbed for the experiment was installed in the Cyber-Physical 
Internet Laboratory of the Department of Industrial & Systems Engi-
neering at The Hong Kong Polytechnic University. The laboratory spans 
approximately 80 square meters (8m×10m). It serves as a workspace 
and study area for 10 graduate students and 21 undergraduate students.  
Fig. 6(a) presents the lab’s layout, where four Raspberry Pi-enabled 
spatial-temporal gateways were set up for the experiment. Each of the 
STGs was mounted on a 2-meter-high telescopic tripod. For calibration 
purposes, roughly 120 hexagonal cells were created; at the centre of 
each cell, calibration tags mounted on half-meter tripods emitted BLE 
and Wi-Fi signals. These signals were received by the STGs, which were 
connected to a cloud server for data collection. Out of these tags, four 
were designated as reference tags to monitor signal characteristics in 
case of any changes in the layout. To emulate changes in an industrial 
setting’s layout, we modified the laboratory by adding several partition 
panels and test where the students seated randomly and used worksta-
tions. The partition panels influenced the reflection and refraction of the 
signals transmitted from the tags, and the presence of the human body 

also caused signal attenuation. Two modes of signals including BLE and 
Wi-Fi are collected respectively through the STGs. There is total 62,245 
pieces of RSSI data from 120 hexagonal cells collected for model 
training. 

5.2. Model construction and training 

All baseline models and MMBL were executed on a server equipped 
with an NVIDIA GeForce RTX 4080 graphics card. To prevent over-
fitting, a dropout layer with a dropout probability of 0.2 was employed. 
The batch size was set to 1000 for all methods, and the data were trained 
for a maximum of 1000 epochs, incorporating an early stopping mech-
anism to prevent overfitting. We partitioned the dataset, allocating 80% 
for training and 20% for 10-fold cross-validation. The MMBL model 
comprises five layers, specifically: one input layer, four hidden layers 
with 100, 500, 500, and 400 neurons each, and one output layer. The 
input layer is a 4-dimensional multi-modal RFFC as the collected data at 
each hexagon cell contains signals from 4 STGs, while the output layer 
outputs the estimated x, y coordinates of the location. The sigmoid acti-
vation function is applied in the first layer, with ReLU activation for the 
subsequent layers. The model employs Mean Squared Error (MSE) as the 
loss function, which calculates the mean Euclidean distance between the 
estimated and the actual ground truth coordinates. MSE is beneficial as 
it penalizes larger errors more significantly, aligning with the tolerance 
levels for location estimation inaccuracies. 

Machine learning methods typically outperform traditional geo-
metric approaches because they are more adept at capturing the corre-
lations between RSSI data and physical locations. Additionally, 
historical data can provide insights into the environmental loss char-
acteristics of the onsite situation [57]. To evaluate the performance of 
MMBL, we compared it with two different types of machine learning: 
artificial neural network(ANN) based methods, including Convolutional 
Neural Network (CNN) [58], Long Short Term Memory (LSTM) [13], as 
well as ensemble learning methods, including CatBoost [59] and 

Fig. 6. Layout and implementation scene of the laboratory testbed.  
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AdaBoost [60]. Same datasets are utilized for the model training. 

5.3. Laboratory testbed experiment results and evaluation 

Fig. 7 illustrates the comparison of location errors among different 
methods using a cumulative distribution function from the laboratory 
experiment. In the figure, MMBL demonstrates superior performance, 
with 95% of the location errors falling within 1.44 m. This is a marked 
improvement over CNN, which has 95% of errors within 3.91 m, and 
over LSTM, which has 95% of errors within 1.32 m. Furthermore, 99% 
of MMBL’s location errors are contained within 3.05 m in the laboratory 
setting. Given the reduced signal interference in the laboratory 
compared to the more challenging real-life Industry 4.0 environments, 
which are replete with metallic equipment and moving objects, MMBL’s 
location accuracy is considered satisfactory relative to other machine 
learning methods. 

Table 2 summarizes the positioning results obtained from different 
methods immediately after training the proposed model in a laboratory 
setting and after rearranging the layout with partition panels. This 
comparison underscores the robustness of the MMBL model. The data 
reveal that MMBL achieved the lowest mean error (ME) of 0.44 m 
immediately after training, outperforming CNN (1.98m), LSTM (1.07m), 
CatBoost (2.70m), and AdaBoost (1.96m). Even after the laboratory 
layout was rearranged, MMBL maintained an acceptable accuracy level, 
with a mean error increasing only slightly to 0.76 m. This degradation of 
0.32 m in ME was the smallest observed when compared to other 
baseline methods. Although the LSTM method initially had the closest 
accuracy to MMBL, it experienced a significant decline in accuracy, 
increasing from 1.07 m to 1.68 m without small-scale relearning before 
each prediction. Additionally, the standard deviation (SD) for MMBL 
was 1.10 m, lower than that of the other methods, indicating a more 
consistent location estimation. Overall, the results demonstrate that all 
the artificial neural network methods (MMBL, CNN, and LSTM) out-
performed the ensemble learning methods (CatBoost and AdaBoost). 
Further exploration of the model robustness for these methods is 
detailed in Fig. 8. 

Fig. 8 displays the results of a 10-fold cross-validation for the five 
methods using a boxplot, which was conducted to assess the stability of 
the models’ performance. Across 10 training iterations—each using a 
distinct subset of the training data—no outliers were observed for these 
methods. Notably, the median value of the LSTM model matched that of 
the MMBL, benefiting from the time-series information contained in the 
RSSI data collection. Although the ensemble learning method proved to 
be robust to variations in training, it did not yield satisfactory results in 

terms of location error. 

6. Case study 

To evaluate the effectiveness of the proposed methods for spatial- 
temporal traceability, the research team implemented the spatial- 
temporal traceability within a computer equipment manufacturing 
company located in the Greater Bay Area of China. An assembly line was 
selected as the test area, which was divided into hexagonal cells for the 
purpose of this study. STGs and calibration tags were employed for the 
purpose of offline calibration. The localization focus was on trolleys 
used for transporting WIP materials. Finally, the spatial-temporal 
traceability results is analysed. 

6.1. Implementation scenario 

The assembly line area in the computer manufacturing factory 
measures 56.0 m in length and 29.5 m in width, which results in a total 
floor area of approximately 1652 square meters. Operators assemble 
computer components on the main board from upstream production 
unit. RFID readers were installed at the starting point of the assembly 
line to record the accurate entry time. The assembled computer products 
will be stacked on the shelves of trolley. The products on trolleys will be 
delivered to designated testing area only if the testing order received. 
Hence, apart from transportation, the trolley is also regarded as buffer 
for temporary stowing of computer assets since no storage room are 
allowed. However, the trolleys are highly mobile which pose challenges 
for localization if transportation order arrives. Logistics operators must 
find the specific trolley, which is laborious and time-consuming. 
Coupled with that, the situation of assembly line either congested or 
unbalanced which cannot be clearly obtained and monitored. 

Fig. 9 describes the factory layout and deployment plan. We mapped 
190 hexagon cells (19 × 10) to cover the assembly line area with around 
2.95 m as its inner diameter. 3 RFID readers were originally deployed 
for recording the entry of the main board inside of a tray. 12 STGs are 
mounted from the ceiling using a telescoping pole where power over 
Ethernet is provided through. BLE tag with RFID antennas attached on is 
devised as smart tag to have ability of broadcasting signals while can be 
sensed by RFID readers simultaneously. Two modes of signal source 
served as input for the verification of MMBL. Total 190 smart tags are 
temporarily placed at the centre of each hexagon cell to broadcast sig-
nals for calibration purposes, and we retain 6 of tags as the permanent 
deployed reference tags for online prediction. Both RFID readers and 
STGs are able to upload scanned data to form datasets in the dimension 
of Rm×15 for offline and online stage where m is the numbers of pieces of 
data. Trolleys and trays are outfitted with smart tag for online prediction 
purpose. 

6.2. Result analysis 

The model was developed with the same parameter settings as the 
laboratory-based model but was adapted to handle different input di-
mensions, incorporating a total of 15 dimensions of collected data.  
Fig. 10 employs a cumulative distribution function to compare the 
location error across different methods. As shown in Fig. 10, MMBL 
significantly outperforms other methods, with 95% of the location errors 
contained within 3.41 m, which is more accurate than CNN (5.67m), 
LSTM (3.53m), and other gradient boosting methods. Additionally, 99% 
of the location errors for MMBL are within 4.70 m in industrial settings. 
These results suggest that MMBL possesses strong anti-interference ca-
pabilities when dealing with unstable RF environments. In the hexagon 
cell mapping process, the MMBL achieves an accuracy rate of over 90% 
for correct classification within its parent and adjacent levels when the 
inner diameter is greater than half of the 99% location error margin. 

Table 3 provides a summary of the positioning results from different 
Fig. 7. Comparison of cumulative distribution function of location error for 
different methods in laboratory experiment. 
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methods immediately after project implementation and following one 
year of operation. Initially, MMBL achieves the lowest mean error (ME) 
of 1.87 m, compared to CNN (2.66m), LSTM (2.14m), CatBoost (4.16m), 
and AdaBoost (3.31m). Remarkably, after one year, MMBL still displays 
impressive accuracy, with a mean error of 2.12 m, which is an 

improvement of over 40% relative to the other methods. The perfor-
mance of MMBL only degrades by 0.25 m, showcasing the best robust-
ness among the baseline methods. Although LSTM initially exhibits the 
closest accuracy to MMBL, it suffers a significant increase in mean error 
to 3.62 m without small-scale re-learning before each prediction. 
Furthermore, the standard deviation (SD) for MMBL is 1.20 m, lower 

Table 2 
Overall positioning results (in meters) in laboratory experiment.  

Method Instant Rearranged layout with partition panels  

ME (m) SD (m) P75 P95 P99 ME (m) SD (m) P75 P95 P99 

MMBL  0.44  0.34  0.49  1.44  3.05  0.76  1.10  0.98  1.92  3.79 
CNN[58]  1.98  1.22  2.70  3.91  4.88  2.62  1.98  3.41  4.66  6.04 
LSTM[13]  1.07  0.99  1.32  3.06  5.25  1.68  1.23  1.98  3.78  5.98 
CatBoost[59]  2.70  3.45  4.05  5.95  6.68  3.21  4.81  4.74  6.82  7.31 
AdaBoost[60]  1.96  1.35  2.41  4.02  4.51  2.49  2.18  3.21  4.61  5.10  

Fig. 8. Boxplot of 10-fold cross-validation for different methods in labora-
tory experiment. 

Fig. 9. Factory floor plan and deployment explanation.  

Fig. 10. Comparison of cumulative distribution function of location error for 
different methods in assembly line area. 
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than that of the other machine learning methods, indicating a more 
consistent location estimation. Detailed analyses of training efforts and 
model robustness for the three artificial neural network methods are 
presented in Fig. 11 and Fig. 12. 

Fig. 11 illustrates the convergence of the loss function during the 
training and validation phases for various ANN methods. By incorpo-
rating an early stopping mechanism, which halts training when perfor-
mance on the validation dataset begins to decline, overfitting is 
mitigated. The MMBL model demonstrates rapid convergence, requiring 
approximately 260 epochs to reach the point of minimum loss. This is 
significantly more efficient than both CNN and LSTM, which converge at 
965 epochs and 1000 epochs, respectively. 

Fig. 12 presents the results of 10-fold cross-validation for different 
methods in assembly line area using boxplot. We conduct 10 training 
iterations, each with a different subset of the training data, to evaluate 
the model’s performance stability. Under the industrial settings, the 
median value of MMBL is significantly lower than other methods. The 
LSTM, CatBoost, and AdaBoost are more than other models but exhibit 
higher location errors that MMBL. The proposed MMBL model shows 
low variance across the multiple training trials and consistently achieves 
lower location estimation errors. 

7. Conclusion 

This research first investigates the sharable and interoperable 
spatial-temporal elements in the cyber-physical internet inspired by the 
computer networks and computer architecture. Spatial-temporal point 
of services is elaborated and modelled to specify contextual events and 
transactions of industrial resources for spatial-temporal analytics. The 
MMBL model incorporating multiple existing sensors from CPIS is 
developed to estimate the location of objects in industrial settings as 
analogous to biological cells mutation and evolution. Reference tags 
with small-scale re-learning are developed for durable and reliable 

positioning. Three kinds of spatial-temporal reasoning are proposed to 
identify the pattern and rules through the spatial-temporal information 
of the objects which provides references for decision-making process. 
We implement the solution and benchmark MMBL against other ma-
chine learning based indoor positioning algorithms in both laboratory 
experiment and a real-life case study. Results shows that the MMBL has 
better performances than other models in terms of instant and long-term 
accuracy, convergence speed and robustness, which supports the spatial- 
temporal traceability for CPIS. 

The novelty of this research is threefold. Firstly, the proposed unified 
spatial-temporal elements link and standardize the indoor and outdoor 
spatial representations and temporal measurement for better interop-
erability and sharing across the global supply chain. Secondly, inspired 
by the mutation and evolution of bionic cells, the MMBL innovatively 
blends multi-modal signals from CPIS into a machine learning model to 
ensure accuracy and enduring effectiveness of indoor positioning. 
Thirdly, the spatial-temporal reasoning mechanisms contribute to 
mitigate the effects of uncertainties and disruptions that occur during 
operations. Insights extracted from seemingly unrelated spatial- 
temporal data support the resilience of real-time decision-making. 
These spatial-temporal reasoning mechanisms serve as a bridge, tran-
sitioning us from the technology-centric focus of Industry 4.0 to the 
value-driven perspective of Industry 5.0. 

Finally, several opportunities for future research can be identified as 
follows: Standard representation of spatial-temporal data provides uni-
fied interface for message sharing among encrypted method such as 
blockchain. Future research should come up with encrypted technology 
to handle the tempering, mutability, and repudiation issues for spatial- 
temporal traceability sharing purpose. The calibration of indoor posi-
tioning is labour-intensive and time-consuming, future research could 
be directed towards identifying the intrinsic connections to lower the 
calibration efforts. With the unprecedented large-scale application of 

Table 3 
Overall positioning results (in meters) in assembly line area.  

Method Instant After one year operation  

ME (m) SD (m) P75 P95 P99 ME (m) SD (m) P75 P95 P99 

MMBL  1.87  1.20  2.49  3.41  4.70  2.12  1.85  2.68  3.68  5.23 
CNN[58]  2.66  1.82  4.25  5.67  6.85  4.05  2.92  6.07  9.51  9.95 
LSTM[13]  2.14  1.27  2.70  3.53  5.82  3.62  2.12  3.45  5.81  7.64 
CatBoost[59]  4.16  6.46  7.18  8.99  9.31  6.92  6.65  7.62  9.45  9.97 
AdaBoost[60]  3.31  3.28  4.96  7.05  7.05  4.18  4.82  5.32  7.89  7.89  

Fig. 11. Convergence curves of three models on training and validation 
data sets. 

Fig. 12. Boxplot of 10-fold cross-validation for different methods in assembly 
line area. 
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industrial IoT, the real-time status of resources can provide online 
adjustment for dynamic scheduling as the spatial-temporal related un-
certainties and disturbances can be confirmed and mitigated to some 
degrees. The performance of dynamic scheduling can be further 
enhanced by considering spatial-temporal driven knowledge. 
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