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Abstract: Wildfire spread models are an essential tool for mitigating catastrophic effects associated 

with wildfires. However, current operational models suffer from significant limitations regarding 

accuracy and transferability. Recent advances in the availability and capability of Earth observation 

data and artificial intelligence offer new perspectives for data-driven modeling approaches with the 

potential to overcome the existing limitations. Therefore, this study developed a data-driven Deep 

Learning wildfire spread modeling approach based on a comprehensive dataset of European wild-

fires and a Spatiotemporal Graph Neural Network, which was applied to this modeling problem for 

the first time. A country-scale model was developed on an individual wildfire time series in Portugal 

while a second continental-scale model was developed with wildfires from the entire Mediterranean 

region. While neither model was able to predict the daily spread of European wildfires with suffi-

cient accuracy (weighted macro-mean IoU: Portugal model 0.37; Mediterranean model 0.36), the 

continental model was able to learn the generalized patterns of wildfire spread, achieving similar 

performances in various fire-prone Mediterranean countries, indicating an increased capacity in 

terms of transferability. Furthermore, we found that the spatial and temporal dimensions of wild-

fires significantly influence model performance. Inadequate reference data quality most likely con-

tributed to the low overall performances, highlighting the current limitations of data-driven wildfire 

spread models. 

Keywords: wildfire spread; deep learning; remote sensing; time series; graph-based modeling; 

mediterranean 

 

1. Introduction 

Wildfires are natural disasters that shape our ecosystems [1], and they are frequently 

associated with negative effects on the environment [1,2], economy [3], infrastructure [4], 

and human lives [5]. Globally, climatic changes are leading to an intensification of fire 

activity and fire weather conditions [6], which are especially present in the fire-prone 

Mediterranean region, where research projects an increase in the frequency, size, and in-

tensity of wildfires over the next decade [7,8]. This growing threat necessitates innovative 

strategies for wildfire management in the Mediterranean region [9]. In this context, wild-

fire spread models are an essential tool for predicting and understanding wildfire behav-

ior [10], providing critical insights that enable fire management authorities and emer-

gency responders to make informed decisions regarding evacuation plans, resource allo-

cation, and fire suppression strategies [11]. 

A wildfire spread model predicts the behavior and propagation of a wildfire by con-

sidering the complex interactions of various environmental factors, e.g., weather condi-

tions, terrain, fuel, and land cover [10,12,13]. Traditionally, conventional wildfire spread 

models have been based on physical [14], semi-empirical [15], empirical, or simulation 
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models [16]. Physical models simulate the physical and chemical processes of wildfires 

but are not intended for operational use [14]. Semi-empirical models, such as the widely 

used Rothermel model [17], combine physical principles with statistical methods and are 

more practical for operational applications [11,15]. However, they face challenges in het-

erogeneous environments [10], require specialized input data, and are difficult to transfer 

to regions outside their development context [15,18]. Purely empirical or simulation mod-

els, despite their use in operational systems [11], have limitations, such as high computa-

tional costs and dependency on input data [16], leading to inaccuracies and transferability 

issues [19]. Until today, no operationally used conventional wildfire spread model 

achieved satisfactory results under all situations in a timely and accurate manner while 

offering a complete solution for fire management activities [12,15,18]. 

Recent advances in the availability and capability of Earth observation data, artificial 

intelligence, and computational resources have resulted in an unprecedented quantity 

and quality of wildfire spread-related data products [11,19]. This provides a novel oppor-

tunity for the development of data-driven wildfire spread models that have the potential 

to overcome the prevailing accuracy and transferability issues of conventional wildfire 

spread models [19,20]. However, data-driven approaches are only being slowly adopted 

in the research field of wildfire spread modeling [19]. 

Deep Learning (DL) architectures can learn highly complex and non-linear depend-

encies from large amounts of data [21] and should therefore apply to the wildfire spread 

modeling problem; however, DL is still considered experimental in this research field [19]. 

Qiao et al. [22] used a transformer-based neural network to simulate the wildfire spread 

backwards in order to identify the location of the initial ignition point. Only a few studies 

have used DL techniques to model the forward propagation of wildfires. Hodges and Lat-

timer [23] formulated the wildfire spread prediction as an image segmentation problem, 

while similar studies by Radke et al. [24] and Huot et al. [25] developed a Convolutional 

Neural Network (CNN) based on various environmental variables to predict the wildfire 

spread in small test regions in the USA. However, these studies did not achieve sufficient 

results and were solely focused on making spatial predictions, neglecting the temporal 

component of the wildfire spread process. On the other hand, some studies tried to model 

the spread of wildfires using time-series-adapted DL learning techniques, e.g., Recurrent 

Neural Networks (RNNs) [26–29], but did not incorporate spatial information into the 

modeling process. Only the study of Burge et al. [30] accounted for the spatiotemporal 

nature of wildfires by applying a Convolutional Recurrent Neural Network (ConvRNN). 

Their spatiotemporal wildfire spread model achieved high accuracies but was only devel-

oped on artificial wildfire data. 

A great challenge in the spatiotemporal modeling of wildfire spread lies in the crea-

tion of a dataset that displays individual wildfires in both the spatial and temporal dimen-

sions. An efficient way to represent such data is through spatiotemporal graphs. A spatio-

temporal graph consists of a collection of nodes which can hold dynamically changing 

data features. The graph’s nodes are connected through edges, which define the relation-

ship between the nodes [21]. The theory of graphs has already been used in wildfire ap-

plications. Jiang et al. [31] used an irregular graph to predict the propagation time of a 

wildfire, while Yemshanov et al. [32] tried to identify the critical nodes of a graph for ef-

fective fuel reduction treatments. Ge et al. [33] built a spatiotemporal knowledge graph to 

predict wildfire occurrence in a test region in China, while Chen et al. [34] used a similar 

approach to forecast the total burned area in a Portuguese national park. 

To apply DL techniques to spatiotemporal graph data, Spatiotemporal Graph Neural 

Networks (STGNNs) have been developed over the last decade. STGNNs implement a 

spatial (e.g., a Graph Convolutional Network (GCN)) and a temporal modeling compo-

nent (e.g., an RNN) to simultaneously learn spatial and temporal data dependencies 

within a graph [21]. This allows for modeling spatiotemporal systems with high accuracy 

and efficiency [21] and results in improved results in various domains, e.g., traffic fore-

casting, recommendation systems, or social network analysis [35,36]. The application of 
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STGNNs for modeling natural hazards is, however, still limited, with only a few studies 

focusing on the prediction of urban floodings [37], typhoon intensity [38], or the location 

and magnitude of earthquakes [39]. However, no study has yet applied STGNNs to model 

the daily wildfire spread on a regional or continental scale in Europe. 

Inspired by the new opportunities arising from the increasing data availability and 

advances in the development of spatiotemporal DL techniques, this study built a data-

driven DL-based wildfire spread model to predict the daily spread of European wildfires. 

In a research field where data-driven methods are only slowly being adopted, this study 

uses a STGNN to model the wildfire spread for the first time. For this, a comprehensive 

dataset containing the daily burned areas of wildfires in Europe from 2016 to 2022, cou-

pled with relevant wildfire driver variables, was built and used to train two different mod-

els. 

First, a country-scale STGNN model was developed for Portugal by training and test-

ing on a Portuguese wildfire time series from 2016 to 2022. With this, we tested the general 

ability of a STGNN architecture and assessed how the spatial and temporal dimensions 

of wildfires influence the model performance. 

Secondly, a STGNN model was developed for the entire Mediterranean region by 

training and testing it on wildfire time series from 2016 to 2022 from various Mediterra-

nean countries. This addresses the existing transferability issues of conventional models 

by leveraging the generalizing power of DL techniques. The Mediterranean model was 

therefore used to assess how the performance of a generalized wildfire spread model var-

ies in different countries with varying environmental conditions and fire regimes. 

2. Data and Materials 

A comprehensive dataset including the daily time series of European wildfires from 

2016 to 2022 was constructed for this study. Daily burned area perimeters of individual 

wildfires mapped by the burned area detection algorithm of the German Aerospace Cen-

ter (DLR) [40] were combined with a set of dynamic and static predictor variables. The 

discrete H3 Hexagonal Hierarchical Geospatial Indexing System (hereafter referred to as 

“H3 grid system”) [41] was used to combine the input variables in a uniform grid covering 

Europe. The H3 grid system represents the Earth’s surface using discrete hexagonal cells 

in different hierarchical spatial resolutions. Each H3 cell has a unique identifier that en-

codes the positional information, facilitating spatial queries and neighbor identifications. 

In addition, the hexagonal cell geometry is particularly valuable for spatial modeling be-

cause of the six equally distanced neighbors [42], which is why other studies have used 

discrete hexagonal grid systems to model the behavior of wildfires [32,43]. 

2.1. Input Variables 

2.1.1. Burned Area Perimeters 

The wildfire time series dataset (2016–2022) is built upon the individual burned area 

perimeters derived from a satellite-based burned area monitoring system developed by 

the DLR [40]. The system uses the Sentinel-3 constellation (S3) Ocean and Land Color In-

strument (OLCI) to map the daily burned area perimeters in Europe at 300 m spatial res-

olution. The monitoring system processes each available S3 satellite scene, which are ac-

quired during the daily overflights over Europe. The mapping procedure utilizes active 

fire data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible 

Infrared Imaging Radiometer Suite (VIIRS) sensors in combination with an S3-based pre- 

and post-fire Normalized Difference Vegetation Index (NDVI) derived from the red and 

near-infrared (NIR) bands. Using this contextual information, a growing Morphological 

Active Contour region derives the daily burned area perimeters, which are progressively 

refined with each newly acquired S3 scene (for a detailed description of the methodology, 

see Nolde et al. [40]). All detected daily burned area perimeters mapped by the S3 burned 

area monitoring system from 2016 to 2022 in Europe were selected for this study. By 
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labeling each wildfire with a unique identifier, contiguous daily burned area perimeters 

representing a wildfire’s spatial expansion over time were created. 

2.1.2. ERA5-Land—Historic Weather Data 

The behavior of wildfires is closely related to the prevailing weather conditions [44]. 

While wind direction and speed are the main factors driving a fire across a landscape 

[13,45], other meteorological variables, such as temperature, precipitation, or relative hu-

midity, correlate with fuel moisture content, which affects the total burned area and the 

rate of fire spread [29,46]. Therefore, historical weather information, matching the date of 

the burn, was included in the wildfire time series dataset. This information was retrieved 

from the ERA5-Land dataset [47] of the European Center for Medium-Range Weather 

Forecasts (ECMWF). The ERA5-Land dataset offers a continuous record of weather varia-

bles from 1950 to the present day at an hourly temporal resolution and a 0.1° horizontal 

resolution. The main meteorological driver variables for wildfires were selected for the 

entire region of Europe from 2016 to 2022, including the total precipitation [m], 2 m tem-

perature [K], 2 m dewpoint temperature [K], 10 m u-component of wind [ms−1], and 10 m 

v-component of wind [ms−1]. 

2.1.3. Fire Weather Index 

Fuel moisture is an important driver of wildfires, as it determines the combustibility 

of the available fuel. It is highly variable over time and closely linked to the preceding 

weather conditions [13]. To incorporate this dynamic wildfire driver variable into the 

wildfire time series dataset, the global Fire Weather Index (FWI) product [48] of the 

ECMWF is used. The FWI assesses the wildfire danger under the preceding and current 

weather conditions by calculating and combining fuel moisture and fire behavior codes 

[49]. For this, it considers the temperature, humidity, wind speed, and precipitation. The 

used FWI product is calculated from the historical ERA5 meteorological variables and 

produces daily numerical estimations of the wildfire danger at a spatial resolution of 0.25° 

[48]. For this study, the daily FWI from 2016 to 2022 was acquired for the extent of Europe. 

2.1.4. Active Fire Data 

Information on active fires or hotspots sensed by the VIIRS sensor on the Suomi Na-

tional Polar-Orbiting Partnership (Suomi-NPP) satellite was included in the wildfire time 

series dataset. The VIIRS active fire product [50] delineates the thermal anomalies up to 

twice a day (depending on the latitude) on a sub-pixel level at 375 m spatial resolution in 

nadir. Five high-resolution bands, covering the visible to infrared wavelengths (0.64 μm–

11.45 μm), are used to detect the hotspots and calculate their respective Fire Radiative 

Power (FRP) [MW], measuring the radiative energy emission rate per unit of time [50]. 

This provides important information for the wildfire spread modeling process, as it helps 

to visualize the active flaming front and thermal characteristics of a fire over time [27]. 

2.1.5. Fuel Type 

A critical variable for wildfire spread models is the fuel type, which serves as a proxy 

for the combustibility of a landscape [51]. Therefore, the global fuel type classification 

product of Pettinari and Cuvieco [51] was integrated into the dataset. This product maps 

six main fuelbeds—trees, shrubs, grasses, woody surface fuels, litter, and ground fuels—

in different biomes resulting in a total of 274 fuelbed classes. The classification was gener-

ated from various remote sensing land cover products and regional Land Use and Land 

Cover (LULC) databases (for a detailed description of the methodology, see [51]). The fuel 

type classification was downloaded for the extent of Europe and encoded into the wildfire 

time series dataset as a static variable. 
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2.1.6. CORINE Land Cover 

The distribution of LULC types in a landscape indicates differences in the availability 

of fuel and reveals landscape heterogeneity, which highly influences the propagation of a 

fire (e.g., urban areas, roads, or water bodies can act as a natural barrier [32,52]). 

To include such information in the wildfire time series dataset, the 2018 CORINE 

Land Cover (CLC) classification [53] provided by the Copernicus Land Monitoring Ser-

vice (CLMS) was downloaded for the extent of Europe. The CLC has a spatial resolution 

of 100 m and consists of 44 LULC classes, including artificial surfaces (e.g., urban areas, 

industrial sites), agricultural areas (e.g., arable land, pastures), forests, semi-natural areas 

(e.g., broadleaved forests, heathland), wetlands (e.g., marshes, peat bogs), and water bod-

ies (e.g., rivers, lakes). 

2.1.7. Digital Elevation Model 

A landscape’s topography strongly influences the behavior of a wildfire. Slopes or 

local topographic winds can drastically increase the fire’s rate of spread [10,13]. The alti-

tudinal level and aspect of a slope are strongly connected to the fuel type and fuel mois-

ture content [13]. For this reason, a Digital Elevation Model (DEM) was used to incorpo-

rate topographic information into the wildfire time series dataset. The globally available 

Copernicus GLO-90 DEM of the European Space Agency (ESA) [54] was therefore down-

loaded at 90 m spatial resolution for the extent of Europe. 

2.2. Feature Engineering and Construction of Wildfire Time Series 

An individual Area of Interest (AOI) was created for each European wildfire that oc-

curred from 2016 to 2022. This was established based on the size of each fire’s burned area 

perimeter on the last day of fire activity. All H3 hexagonal cells of the resolution 9 (approx. 

350 m cell diameter) in this area represented a wildfire’s AOI within the discrete H3 grid 

system. To spatially expand a wildfire’s AOI beyond the burned area perimeter, a buffer 

ring of one H3 cell was added to the AOI’s edge H3 cells. 

The burn status of an AOI over time was then defined by intersecting the centroids 

of all H3 cells with the respective burned area perimeter derived by the S3 burned area 

monitoring system. If a cell was burned at a time step 𝑡𝑛,, it was labeled accordingly and 

maintained its status over the following days of the time series. The variable “burned” 

therefore displayed the accumulated daily burned area over time (see Figure 1a). Addi-

tionally, a second burned area variable (“burned_new”) was introduced that indicated if a 

previously unburned cell on day 𝑡𝑛  was burned on the following day 𝑡𝑛+1 . The 

“burned_new” variable therefore represented wildfire propagation over time (see Figure 

1b). Occasionally, some burned area time series contained days without any detected 

burned areas due to cloud or smoke contaminations in the S3 scenes. To ensure the conti-

nuity of a daily sequence in every wildfire time series, days without any detected burned 

area were filled with the burned area of the previous day. To encode this case in the wild-

fire time series dataset, a variable “no_observation” was set for all cells of the AOI. 
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Figure 1. Burned area variables within the H3 grid for an example wildfire AOI. (a) Time series of 

the total burned area (variable “burned”). (b) Time series of the daily new burned cells displaying 

the wildfire propagation (variable “burned_new”). 

Feature engineering was conducted for some of the ERA5-Land weather variables. 

The hourly 2 m temperature and 2 m dewpoint temperature were used to calculate the 

hourly relative humidity [%]. The hourly wind speed [ms−1] and direction [°] were calcu-

lated from the hourly u- and v- wind components. The wind direction was further reclas-

sified into eight classes of 45° intervals. To match the daily resolution of the burned area 

time series while still preserving the diurnal variation of some weather variables, daily 

descriptive statistics were computed based on the hourly weather variables, as detailed in 

Table 1. The daily aggregated weather statistics and the FWI raster layers were then con-

verted to the H3 grid system and joined to the cells of each wildfire AOI. 

Hotspot points were intersected with each daily H3 cell of each wildfire AOI. The 

daily count of intersecting hotspots per cell was included in the dataset (see Table 1). In 

addition to the number of active fires, thermal information was incorporated into the da-

taset by including the daily FRP values for each H3 cell. If a cell contained more than one 

hotspot, the FRP values were aggregated to daily descriptive statistics (see Table 1). 

Feature engineering was also applied to the temporally static variables. The DEM 

was used to calculate the slope and aspect. All static variables (fuel type, CLC, elevation, 

slope, and aspect) were then converted into H3 cells and joined to the cells of each fire 

AOI. The new H3 cell values were determined by using a majority aggregation function 

for the discrete classification variables (fuel type, CLC) and a mean aggregation function 

for the continuous topographic layers (elevation, slope, aspect) (see Table 1). 

Table 1. Input features of the reference dataset for wildfire spread modeling. 

Feature Class Feature Name Feature Description Unit 

Burned area 

burned_new New burned H3 cells of day 𝑡𝑛+1 (target) Binary 

burned Total burned H3 cells of the morning of day 𝑡𝑛 Binary 

no_observation All H3 cells of a day 𝑡𝑛 if no wildfire activity was detected in fire AOI Binary 

Meteorological 

t2m_min Daily minimum air temperature at 2 m above the land surface K 

t2m_max Daily maximum air temperature at 2 m above the land surface K 

t2m_mean Daily mean air temperature at 2 m above the land surface K 

t2m_std Daily standard deviation air temperature at 2 m above the land surface K 

tp_min Daily minimum precipitation m 

tp_max Daily maximum precipitation m 

tp_mean Daily mean precipitation m 

tp_std Daily standard deviation precipitation m 

tp_sum Daily sum of precipitation m 
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rh_min Daily minimum relative humidity % 

rh_max Daily maximum relative humidity % 

rh_mean Daily mean relative humidity % 

rh_std Daily standard deviation relative humidity % 

ws10_min Daily minimum wind speed at 10 m above the land surface ms−1 

ws10_max Daily maximum wind speed at 10 m above the land surface ms−1 

ws10_mean Daily mean wind speed at 10 m above the land surface ms−1 

ws10_std Daily standard deviation wind speed at 10 m above the land surface ms−1 

wd10_mode Daily mode wind direction at 10 m above the land surface ° 

Fire Danger Index FWI Daily FWI Unitless 

Hotspots 

n_hotspots Total number of hotspots Count 

frp_min Daily minimum FRP MW 

frp_max Daily maximum FRP MW 

frp_mean Daily mean FRP MW 

frp_std Daily standard deviation FRP MW 

frp_sum Daily sum of FRP MW 

Fuel fuel_type Mode of fuel type class Integer 

Land Use/Land Cover clc Mode of CLC class Integer 

Topography 

elevation Mean elevation m 

slope Mean slope ° 

aspect Mean aspect ° 

After feature engineering and data aggregation, consecutive daily time series of all 

H3 cells in a fire’s AOI were constructed. The time series are also displayable as a three-

dimensional datacube, with the 1st dimension being the H3 cells within the fire’s AOI, the 

2nd dimension being the dynamic (burned area variables, ERA5-Land weather statistics, 

FWI, hotspot statistics), and static (fuel type, CLC, elevation, slope, aspect) variables and 

the 3rd dimension being the daily timesteps (see Figure 2). Finally, such a datacube was 

built for each wildfire event in Europe from 2016 to 2022. 

 

Figure 2. Datacube representation of a wildfire time series containing all H3 cells (c) (1st dimension), 

with all static and dynamic features (X) (2nd dimension) over the time steps (t) (3rd dimension). The 

datacube can also be represented as an ordered sequence of two-dimensional H3 grids over time. 
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3. Methodology 

3.1. Experimental Setup 

Based on the comprehensive wildfire time series dataset, we developed a data-driven 

DL model to predict the next day’s burned area of European wildfires. For this task, a 

graph-based DL architecture was chosen. STGNNs can solve complex spatiotemporal 

modeling problems by combining a spatial modeling component (e.g., GCN) with a tem-

poral modeling component (e.g., RNN) to simultaneously learn multidimensional pat-

terns from data [21]. This has resulted in superior results compared to traditional DL ar-

chitectures in a variety of research fields [36]. In theory, this architecture can be applied to 

the complex and non-linear wildfire spread process, where multiple fire driver variables 

interact along different temporal and spatial scales [10,13,55]. 

Given the prevailing accuracy and transferability limitations of established semi-em-

pirical and empirical wildfire spread models, a data-driven approach using such an 

STGNN architecture can be expected to yield improved results. To test this assumption, 

the following experimental setup was chosen. 

The first model was developed on a country-scale to test the general applicability of 

a STGNN architecture for wildfire spread modeling. We selected Portugal as a test region, 

as it is one of the most fire-prone countries in Europe and experienced substantial wildfire 

events during the period 2016−2022 [56]. The respective STGNN was trained and tested 

with the historic wildfire time series from this period. The development of the Portugal 

model also allowed us to retrieve insights about the model’s predictive capabilities con-

cerning a wildfire’s spatial and temporal dimensions. 

Following this, a second STGNN wildfire spread model was developed for the entire 

Mediterranean region. This model was trained on the historic wildfire time series of vari-

ous Mediterranean countries with differing environmental conditions and fire regimes. 

With this, the generalization and transferability of the developed data-driven approach 

could be assessed. 

3.2. Pre-Processing and Reference Data Sampling 

We created two separate reference datasets for both a Portugal and Mediterranean 

study region. The Portugal AOI was defined by the country’s boundary (see Figure S1). 

The Mediterranean AOI was defined by using the Köppen–Geiger climate zone classes 

BSk (arid, steppe, cold arid), Csa (temperate, dry summer, hot summer), Csb (temperate, 

dry summer, warm summer), and Cfa (temperate, no dry season, hot summer) [57], which 

predominantly cover the fire activity in the Mediterranean [56] (see Figure S2). 

To exclude too small and short fire time series, all wildfires that occurred in each AOI 

between 2016 and 2022 were filtered by size and length. A fire was included in the Portu-

gal or Mediterranean reference dataset if the burned area perimeter at the final stage of 

burning covered a minimum of ten H3 cells and the fire was active for a minimum of five 

days. Furthermore, all fires with no or only sporadic growth were excluded from the ref-

erence datasets by applying a moving average filter over the time of a wildfire time series. 

After filtering, the Portugal and Mediterranean reference datasets included 332 and 3020 

wildfire time series, respectively. 

The STGNN model is trained with equal-length input sequences. To maintain this, 

all wildfire time series with more than the minimum five days of activity were trimmed 

to equal-length sequences of five days. To prevent a loss of data while also augmenting 

the total number of samples in the reference datasets, a rolling window approach using a 

step size of one day was applied to each time series. Thus, wildfire time series with more 

than five days of activity were split into multiple artificial time series with an equal length 

of five days. After this temporal trimming process, the total number of samples in the 

Portugal and Mediterranean reference datasets increased to 1181 and 11,082, respectively 

(see Table 2). 
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Table 2. Sample distribution in Portugal and Mediterranean reference datasets. 

 Portugal Mediterranean 

Training (70 %) 821 7686 

Validation (15 %) 183 1736 

Testing (15 %) 177 1660 

∑ 1181 11,082 

All variables included in the reference datasets are transformed to a range between 0 

and 1 using minimum−maximum scaling. Consecutively, all wildfire time series are con-

verted to spatiotemporal graph structures. A spatiotemporal graph 𝐺𝑡 is defined as: 

𝐺𝑡 = (𝑉, 𝐸, 𝐴, 𝑋𝑡) (1) 

where 𝑉  represents a set of nodes (vertices), 𝐸  represents a set of edges between the 

graph’s nodes, 𝐴 represents the adjacency matrix, which mathematically describes the 

connections between nodes, and 𝑋𝑡 describes a feature matrix containing a feature vector 

for each node at a timestep 𝑡. Within the H3 grid system, the conversion of the wildfire 

time series is straightforward. For each time step 𝑡 in a time series, a graph object is re-

trieved by using all H3 cells of wildfire AOIs as nodes 𝑉. Edges 𝐸 and the respective ad-

jacency matrix 𝐴 are delineated by identifying each cell’s six first-order neighboring cells 

within the H3 grid system (see Figure 3). The graphs are implemented with self-loops for 

all nodes, ensuring that each node’s features are included in the graph convolution, and 

undirected edges without weighting, allowing for a bidirectional information flow be-

tween nodes. Lastly, the daily graph’s nodes were populated with the feature matrices of 

the respective days. The variable “burned_new”, representing the daily wildfire spread, is 

defined as the node’s target variable. This results in a time series of fixed graph structures 

with dynamically changing node features for each wildfire event in the Portugal and Med-

iterranean reference datasets. 

 

Figure 3. Different data representations of the burned area of a wildfire in Portugal. Background: 

Sentinel-2 RGB image from the 07.08.2020. (a) Burned area perimeter derived by the Sentinel-3 map-

ping algorithm. (b) Burned area perimeter displayed in H3 cells (resolution 9). (c) Burned area pe-

rimeter displayed as a graph. 

Training, validation, and testing datasets were created from the Portugal and Medi-

terranean reference datasets using a 70:15:15 split (see Table 2). Sampling for the training, 

validation, and testing datasets was conducted using stratified random sampling consid-

ering the seasonality (summer, winter), year, and location of the wildfire time series. 
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3.3. Model Architecture and Training 

Given the limited research on STGNN architectures for modeling natural hazards, 

we chose a STGNN from the traffic forecasting domain, where STGNNs proved to be a 

capable methodology [35]. The process of wildfire propagation and traffic systems indeed 

have some parallels regarding their spatiotemporal behavior, as they experience similar 

spatial-growing patterns and non-linear temporal changes [10,35]. For this reason, the 

well-known Temporal Graph Convolutional Network (TGCN) architecture developed by 

Zhao et al. [58] was selected to be applied to the wildfire spread modeling problem. The 

TGCN can model spatiotemporal dependencies using multivariate features and showed 

strong performances in predicting traffic flows [36]. Figure 4a describes the TGCN archi-

tecture schematically. A detailed mathematical description of the architecture can be 

found in [58]. The TGCN consists of a spatial component that obtains and transforms the 

node features in a defined neighborhood within the graph using a spectral graph convo-

lution. This is followed by a temporal component, where an RNN receives the outputs of 

the spatial component to learn the temporal dependencies between the graph’s nodes. 

At first, the TGCN receives a graph structure at the time step Xt as input and passes 

it to the spatial modeling component (see Figure 4b). This consists of an implementation 

of the GCN by Kipf and Welling [59] which uses a spectral filter in the Fourier domain on 

the graph’s nodes to capture spatial features between all nodes in the first-order neigh-

borhood (Figure 4(b.1,b.2)). In the TGCN, a stack of three subsequent GCN layers is used 

to increase the spatial component’s receptive field up to the third-order neighborhood 

nodes [58] (see Figure 4(b.3)). This results in a new feature-embedding matrix containing 

transformed feature vectors for each node. 

 

Figure 4. Schematic display of the STGNN wildfire spread model and its subcomponents. (a) Work-

flow of the STGNN model. (b) Spatial subcomponent of the TGCN model with a schematic 
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representation of the graph convolution process of the GCN (b.1,b.2) and the GCN layer stacking 

(b.3). (c) Temporal subcomponent of the TGCN with a schematic representation of the GRU cell. 

The temporal component implements a Gated Recurrent Unit (GRU) first introduced 

by Cho et al. [60] (see Figure 4c). The GRU addresses the vanishing gradient problem of 

traditional RNNs through gated mechanisms for memorizing past input information. It 

receives the output feature-embedding matrix of the GCN for a time step 𝑋𝑡, as well a 

hidden state ℎ𝑡−1  from the previous time step 𝑡 − 1 . An update gate 𝑢𝑡  controls how 

much of the previous hidden state ℎ𝑡−1 should be retained and how much of the new 

information from the input should be added to the current hidden state ℎ𝑡. The reset gate 

𝑟𝑡 works in tandem with the update gate to control how much of the past information the 

model should forget when calculating the updated hidden state ℎ𝑡. The input 𝑋𝑡 and the 

scaled previous hidden state ℎ𝑡−1 are then used to calculate a candidate hidden state 𝑐𝑡. 

The final hidden state ℎ𝑡 is then computed from the previous hidden state ℎ𝑡−1 and the 

candidate hidden state 𝑐𝑡. The output of the temporal component is transformed by a 

Rectified Linear Unit (ReLU) activation function and passed to a Fully Connected (FC) 

layer with 16 neurons which produces the final one-dimensional output for each of the 

graph’s nodes (Figure 4a). Finally, binary classification results are achieved by scaling 

each node’s output between 0 and 1 using a Sigmoid function and quantization with a 

threshold of 0.5. 

The model was developed and trained using the Pytorch Geometric Temporal library 

(v0.54.0) [61]. Hyperparameter tuning was performed for the Portugal and Mediterranean 

models using a grid search of potential values for learning rate, batch size, and output 

channels (number of neurons in the FC layer). This resulted in the optimal learning rate 

(0.00001), batch size (1) and output channel number (16) for both the Portugal and Medi-

terranean models. Both models were trained for 2500 epochs with an early stopping with 

a patience of 10 epochs using stochastic gradient descent. Since both the Portugal and 

Mediterranean datasets were highly imbalanced, a customized binary cross-entropy loss 

function (weig. BCE) was used to account for this: 

𝑤𝑒𝑖𝑔. 𝐵𝐶𝐸 =  −(𝑤1 × 𝑦 × log(𝑝) + 𝑤0  × (1 − 𝑦) ×  log(1 − 𝑝)) (2) 

where 𝑤1 and 𝑤0 are the weights for the positive and negative class, 𝑦 is the reference 

label, and 𝑝 is the predicted sigmoid probability of the positive class that is the output 

for each node. The weights for the positive and negative class were calculated based on 

the inverse class frequency, resulting in the weights 𝑤0 = 0.53 (unburned) and 𝑤1 = 8.54 

(burned). 

Figure 5 displays the model training workflow schematically. The models perform a 

binary node classification to predict the newly burned cells for each future day. The de-

pendent targets are the newly burned cells (“burned_new”) of the day 𝑡𝑛+1, which are pre-

dicted using the independent features 𝑋  of the current day 𝑡𝑛 . For every epoch, the 

model iterates over the temporal dimension of a training wildfire time series, receiving 

the input of the first day 𝑋𝑡1
 and an empty hidden state ℎ0. Based on the input features 

of the first day 𝑋𝑡1
, the STGNN cell then produces a prediction ŷ𝑡2

 for the next day, la-

beling all cells that will be affected by the wildfire’s propagation. Furthermore, an updated 

hidden state ℎ1 is passed onto the next STGNN cell, preserving the temporal information 

from previous time steps. The daily weighted loss is calculated using the prediction ŷ𝑡2
 

and the reference y𝑡2
 of the respective day 𝑡2.The mean batch loss 𝐿𝑚𝑒𝑎𝑛𝑏

 is computed 

after all 𝑛 iterations and used to update the model’s weights. 
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Figure 5. Model workflow in training and testing mode. 

3.4. Model Testing and Evaluation 

The respective testing datasets were used to evaluate the performance of the Portugal 

and Mediterranean models. The developed model framework allowed predictions of the 

wildfire spread up to 𝑛 −  1 days, with 𝑛 being the input length of a wildfire time series 

(5 days). In testing mode, the model received the first day of a testing wildfire time series 

and produced subsequent predictions for the next four days (see Figure 5). For each daily 

prediction, the following accuracy metrics were calculated: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

𝐹1-𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

𝐼𝑜𝑈 =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=  

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 (6) 

All metrics were set between 0 and 1 and were chosen by their suitability in imbal-

anced binary classification problems and computed for both the positive and negative 

predictions using the respective true positive (TP), false positive (FP), and false negative 

(FN) samples. Because of the spatiotemporal nature of the wildfire spread predictions, a 

more complex validation framework was needed to assess the true predictive capabilities 

of the Portugal and Mediterranean models. 

On numerous prediction days, edge cases arose without any positive samples, either 

being caused by excessively overpredicting the wildfire spread (e.g., all cells are predicted 

positive but the testing cells are all negative) or by perfectly predicting only true negatives 

(e.g., the model correctly predicted that, on a particular day, no wildfire spread occurs). 
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Both scenarios lead to no data values when computing the accuracy metric precision, re-

call, and F1-score for the positive class. To obtain a more meaningful accuracy assessment 

and account for both these edge case scenarios, the macro-average was calculated for each 

of the accuracy metrics. The macro-average computed the unweighted mean of the posi-

tive and negative class accuracy metrics. In the imbalanced reference datasets, the macro-

average therefore weighted the underrepresented (positive) class more heavily, which al-

lowed for a more valid evaluation of the daily wildfire spread predictions. 

To produce comparable accuracy metrics between the models, the accuracy assess-

ment was conducted on three different levels. At Level-1, the daily prediction accuracy for 

an individual test wildfire was calculated by the macro-average of all accuracy metrics 

(precision, recall, F1-score, IoU) (see Table 3). At Level-2, the model performance in pre-

dicting the entire time series of an individual wildfire was computed by calculating the 

fire’s weighted macro-mean accuracy metrics (see Table 3). This referred to the weighted 

average of the daily macro-mean accuracies from Level-1 over the entire wildfire time 

series. Since days with substantial wildfire spread were viewed as more important, the 

daily union of the positive class was used as a weight during the calculation of the Level-

2 accuracy metrics (see Table 3). To assess the model performances on the entire testing 

dataset, the Level-3 overall weighted macro-mean was calculated. This was achieved by 

computing the average of all Level-2 fire-weighted macro-mean accuracy metrics (see Ta-

ble 3). 

Table 3. Used evaluation techniques to assess the model performance at different scales. 

Name Level Scale Formula Description 

Daily macro 

mean 
Level-1 Day 𝑚𝑎𝑐𝑟𝑜-𝑚𝑒𝑎𝑛𝑎𝑐𝑐𝑡𝑖

=  
𝑎𝑐𝑐𝑡𝑖

𝑐𝑙𝑎𝑠𝑠 0 + 𝑎𝑐𝑐𝑡𝑖

𝑐𝑙𝑎𝑠𝑠 1

2
 

Accuracy on each 

prediction day of a 

fire 

Fire-weighted 

macro mean 
Level-2 Fire 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜-𝑚𝑒𝑎𝑛𝑎𝑐𝑐𝑓𝑖𝑟𝑒

=  
∑ 𝑤𝑡𝑖

𝑚𝑎𝑐𝑟𝑜-𝑚𝑒𝑎𝑛𝑎𝑐𝑐𝑡𝑖

𝑛
𝑖=1

∑ 𝑤𝑡𝑖

𝑛
𝑖=1

 
Accuracy of a pre-

dicted fire time series 

Overall 

weighted 

macro mean 

Level-3 Test dataset 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜-𝑚𝑒𝑎𝑛𝑎𝑐𝑐𝑡𝑒𝑠𝑡𝑠𝑒𝑡

=  
∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜-𝑚𝑒𝑎𝑛𝑎𝑐𝑐𝑓𝑖𝑟𝑒

𝑛𝑓𝑖𝑟𝑒𝑠

𝑗=1

𝑛𝑓𝑖𝑟𝑒𝑠

 

Accuracy of the test 

dataset 

4. Results 

4.1. Overall Model Performance 

The Portugal model achieved overall weighted macro mean accuracy metrics (Level-

3) of 0.59 (precision), 0.69 (recall), 0.57 (F1-score), and 0.37 (IoU) (see Table 4). Because of 

its robustness and balanced evaluation between false positive and false negative predic-

tions, the IoU was chosen as the main accuracy metric for evaluating the model perfor-

mance. The Portugal model trained for the maximum 2500 epochs with a continuous loss 

decrease (see Figure S3). 

Table 4. Overall model performance of the Portugal and Mediterranean model. 

 Portugal Model Mediterranean Model 

Overall weig. macro mean precision 0.59 0.59 

Overall weig. macro mean recall 0.69 0.67 

Overall weig. macro mean F1-score 0.57 0.55 

Overall weig. macro mean IoU 0.37 0.36 

Figure 6 exemplifies the prediction results of the Portugal model for an individual 

wildfire time series. For this wildfire, the Portugal model achieved an above-average 

weighted macro-mean IoU (Level-2) of 0.57. Although significant overpredictions in the 
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first two days are visible, the model was able to capture the general behavior of the fire 

and predicted the rapid increase in the burned area at the start of the time series. 

Comparing different fire seasons in Portugal, the model achieved similar median fire-

weighted macro-mean accuracies (Level-2) over all fire seasons, ranging from 0.39 to 0.51 

(see Figure 7). The fire seasons 2016, 2019, and 2022 showed the lowest accuracies with 

median fire-weighted macro-mean IoU values below 0.45. The best and most robust re-

sults were achieved with wildfires from the 2018 and 2021 fire seasons with median IoU 

values of 0.49 and 0.51, respectively. 

The training process of the Mediterranean model was interrupted after 1834 epochs 

due to a stagnation of the loss (see Figure S4). Overall accuracy metrics showed similar 

but slightly worse accuracies compared to the Portugal model’s results with 0.59 (preci-

sion), 0.67 (recall), 0.55 (F1-score), and 0.36 (IoU) (see Table 4). Despite some regional per-

formance differences, the Mediterranean model predicted the spread of wildfires in most 

fire-active countries with robust accuracies (see Figure 8). The best results were achieved 

on wildfires in Spain with an overall weighted macro-mean IoU (Level-3) of 0.44, closely 

followed by the fire-prone countries of Greece (0.43), France (0.39), and Portugal (0.39). 

Wildfire spread in Italy and Eastern European countries (e.g., Bosnia Herzegovina, Mon-

tenegro, Albania, Serbia, Romania, and Moldova) could only be predicted with lower ac-

curacies with IoU values below 0.34. Compared to the overall weighted macro-mean IoU 

of the Portugal model (0.37), the Mediterranean model could predict Portuguese wildfires 

with slightly higher accuracies of 0.39. 

 

Figure 6. Wildfire spread prediction of the Portugal model for an example test fire in 2019. 
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Figure 7. Overall performance of the Portugal model per fire season. 

 

Figure 8. Overall performance of the Mediterranean model per country. The number in each country 

refers to the respective number of wildfires in the Mediterranean reference dataset. 

Like the Portugal model, the Mediterranean model achieved similar performances 

for all fire seasons for each country (see Figure 9). No particular fire season showed a 

significant increase or decrease in the model’s performance. Most wildfires in the fire-

prone countries of Spain, France, Greece, Italy, and Portugal could be predicted with an 

overall weighted macro-mean IoU (Level-3) between 0.4 and 0.6 independent of the fire 

season. 
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Figure 9. Overall model performance of the Mediterranean model per country and fire season. 

4.2. Model Performances Based on Spatial and Temporal Wildfire Dimensions 

The Portugal model showed increasing accuracies up to a daily spread size of approx. 

50 H3 cells (approx. 5 km2) (see Figure 10a). After this optimum fire spread size, a signifi-

cant decrease in IoU values was observed. However, the small total number of extremely 

large wildfire spread days (>100 H3 cells) prevents any clear statement about the model 

performance on such wildfire spread events. The same increase, until an optimum daily 

wildfire spread size of approx. 50 H3 cells, was also visible in the results of the Mediter-

ranean model (see Figure 10b). However, after this optimum size, the Mediterranean 

model predictions did not show a decrease in the prediction accuracies and stagnated 

around 0.6. For both the Portugal and Mediterranean results, both models achieved the 

lowest IoU values on days without any wildfire spread, confirming a significant overpre-

diction bias until an optimum of approx. 50 H3 cells. The same trend was also visible when 

evaluating the daily Mediterranean model performance on a country level (see Figure S5). 

Additionally, the Portugal and Mediterranean model predictions of an entire indi-

vidual wildfire time series (fire-weighted macro-mean IoU, Level-2) were compared to the 

total burned areas of a wildfire. For both models, no significant trends in performance 

changes regarding the burned area could be identified (see Figure S6). This suggests that 

the final burned area of a wildfire does not influence the model’s predictive ability. 

The effect of a wildfire’s temporal behavior was assessed by comparing the daily 

macro mean IoU (Level-1) of the Portugal and Mediterranean models with the subsequent 

prediction days of a wildfire time series. In Figure 11a, the distribution of the daily macro-

mean IoU values for all tested Portuguese wildfires is displayed over the four prediction 
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days. The Portugal model achieved the lowest median IoU values (approx. 0.4) on the first 

prediction day. After this, the prediction accuracies increasingly improved to approx. 0.45 

on the second day, approx. 0.47 on the third day, and approx. 0.48 on the fourth day. The 

same trend is visible for the Mediterranean model, achieving a similar range of median 

macro-mean IoU values over the four prediction days (see Figure 11b). Overall, the results 

indicate that, with an ongoing prediction time series, both models tend to predict the wild-

fire spread more accurately. This trend is also confirmed when comparing the results of 

the Mediterranean model in individual European countries (see Figure S7). 

 

Figure 10. Model performance per daily wildfire spread size (number of new burned H3 cells). Each 

predicted wildfire is represented as a point. The blue line represents the trend line with the 95% 

confidence level interval (grey). (a) Portugal model. (b) Mediterranean model. 

 

Figure 11. Model performance per prediction day. (a) Portugal model. (b) Mediterranean model. 

5. Discussion 

5.1. Performance of the Spatiotemporal Graph Neural Network 

Overall, the Portugal and Mediterranean STGNN models did not achieve satisfactory 

accuracies measured by the precision, recall, F1-score, and IoU (see Table 4). Despite 
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capturing the general spread trend for most test wildfires (e.g., see Figure 6), major inac-

curacies in the exact predictions of the wildfire expansion occurred. However, both mod-

els could achieve relatively high overall weighted macro-mean recall values (Portugal 

model: 0.69, Mediterranean model: 0.67) (see Table 4), showing that the models’ abilities 

to avoid false negative predictions are good. This is crucial, as missed wildfire spread de-

tections can have serious consequences, while false positive predictions can be adjusted 

without any serious consequences [18]. Both models’ lower overall weighted macro-mean 

precision values (0.59) (see Table 4) indicate a significant overprediction bias. In compari-

son to other operationally used wildfire spread models, which often suffer from a serious 

underprediction bias [62], the overprediction errors of the STGNN are potentially less se-

vere. 

The reasons for the low overall accuracies are also partially related to the evaluation 

method. The implemented weighting technique emphasizes the model’s ability to detect 

large wildfire spread events, as precise information about such days is crucial for wildfire 

suppression strategies [11]. However, this weighting procedure also decreases the overall 

accuracy metrics, as frequently occurring overpredictions are strongly penalized. The 

temporal accuracy of the predictions is also difficult to assess. For many wildfires, the 

Portugal and Mediterranean models correctly predicted the newly burned cells with a 

time lag of one day (e.g., see Figure 6). Although this scenario produces low statistical 

performance metrics, the predictions can still be useful for wildfire suppression assess-

ments, as the model was able to predict that the correct cells will burn eventually. This 

behavior is, however, not accounted for in the accuracy assessment. Similar problems 

were also experienced in the study of Radke et al. [24], underlining that the statistical 

evaluation of spatiotemporal wildfire spread models is not entirely representative of their 

usability. 

A fair quantitative comparison of the STGNN model results to other wildfire spread 

models is difficult. Most DL-based studies produce no comparable outputs (e.g., numeri-

cal rate of spread predictions [28,29]) or were developed in small study areas and are dif-

ficult to transfer to the Mediterranean environment [23–26,29]. A comparison to other con-

ventional wildfire spread models (e.g., semi-empirical, empirical, or simulation models) 

is also difficult as these models need highly specialized input data [15,18] which are not 

available for larger study regions like Portugal or the Mediterranean. 

The performance assessment of the Portugal and Mediterranean wildfire spread 

models should be considered in the broader context of the research field. In general, state-

of-the-art wildfire spread models contain significant uncertainties and overall results do 

not compare to other modeling problems in terms of accuracy. A benchmark of operation-

ally used semi-empirical and empirical wildfire spread models highlighted that, out of all 

the tested models, only 3% produce exact results with a mean absolute percentage error 

(MAPE) < 2.5%, with some models reaching a MAPE of up to 310% [62]. A more recent 

benchmark compared newer conventional modeling approaches to established wildfire 

spread models, reporting an overall increase in the newer models’ accuracy. However, all 

models still resulted in a MAPE of >33% in various fuel environments [20]. These bench-

marks put this study’s results into context. Although the overall accuracy metrics of the 

Portugal and Mediterranean models seem low, they are within the expected ranges of this 

research domain. Comparable studies using DL methods [24,25,31] or semi-empirical and 

empirical modeling approaches [20,62] achieved similar accuracy measures. This high-

lights the need for more research on this modeling problem, although Alexander and Cruz 

[18] remark that the complexity of the wildfire spread process might prevent future mod-

els from reaching accuracies as high as in other modeling domains. Despite their accuracy 

limitations, wildfire spread models are still useful in the operational context providing 

more of a guideline instead of being used as an absolute decision-making tool [18]. 

Given this stated complexity and non-linearity of the wildfire spread process 

[10,13,55], future modeling approaches based on DL techniques might be advantageous. 

Studies using spatially adapted DL models (e.g., CNNs) [24,25] or time series DL models 
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(e.g., LSTM, GRU) [26–28] could outperform standard Machine Learning or simulation 

models but still did not achieve high overall accuracies. The low overall performances 

might result from the focus of their models on either the spatial or temporal dimension of 

a wildfire. Although the developed STGNN model did not outperform all of these studies, 

the equal influence of the spatial and temporal dimension of a wildfire has a non-negligi-

ble effect on the model performance which has been demonstrated in this study and was 

also mentioned in the study of Burge et al. [30]. Alternatively, compared to spatiotemporal 

adapted GNNs, Burge et al. [30] showed that using a spatiotemporal ConvRNN can pro-

duce promising results with high IoU values > 0.84. However, this performance was only 

achieved on artificially simulated wildfire data. 

Using other STGNN architectures might have resulted in enhanced results in this 

study. Within the traffic forecasting domain, spatial convolutions achieved superior re-

sults over spectral convolutions [35], whereas the latter was implemented in the used 

TGCN [58]. Also, attention-based GNNs showed improved performances compared to 

GCN-based methods, but mostly for long-term forecasting problems [35,36]. As this work 

features the first usage of STGNNs for the application of wildfire spread modeling, no 

significant statements about performance-enhancing STGNN architectures for this spe-

cific modeling problem can be given. Future work should therefore focus on systematic 

tests to find optimal STGNN components, which could lead to an enhancement of wildfire 

spread model performances. 

5.2. Influence of Dimensions of a Wildfire 

The spatial dimensions of the wildfire spread showed an effect on the Portugal and 

Mediterranean model performances, where the daily macro-mean IoU increased with 

larger daily wildfire spread sizes up to an optimum of approx. 50 H3 cells (approx. 5 km2) 

(see Figure 10). Similar results were also reported by Radke et al. [24]. Regarding the ex-

pected intensification of the Mediterranean fire regime [6,11], this ability proves suitable 

for future applications. The reported overprediction bias was especially visible on days 

without any or with only a small wildfire spread. These results align with other empirical 

[63] or DL-based [24] wildfire spread models. Analyzing the density distribution of the 

daily spread sizes reveals that for both the Portugal and Mediterranean reference datasets, 

days with a spread size of less than five H3 cells are the predominantly occurring situa-

tion, while days without any wildfire spread are the most common scenario (see Figure 

S8). This is explainable by the natural behavior of wildfires, which tend to spread signifi-

cantly on a small number of days while on the majority of days only small or no spread is 

observable [63]. Furthermore, the high total number of days with very small or no wildfire 

spread can also result from missed burned area detections by the S3 burned area monitor-

ing system due to clouds or smoke. The large uncertainties of the Portugal and Mediter-

ranean model on days with small wildfire spread size combined with the high frequency 

of such days potential explains the overall low accuracy metrics. 

The Portugal and Mediterranean models showed a clear performance increase with 

continued prediction days (see Figure 11) highlighting the temporal influence on the mod-

els’ performances. As anticipated, this behavior aligns with the hypothesis that the 

STGNN model improves its predictive ability throughout a wildfire time series as it re-

ceives more input data with each new prediction day. Since technical restrictions in this 

study only allowed predicting the future four days of a wildfire time series, further work 

should test if this behavior continues on longer wildfire time series. However, the trend 

that the model continuously improves its predictive ability over time is counterproductive 

to the usability of such a model in an operational context, where emergency responders 

need accurate information about the wildfire’s propagation just after the ignition when 

containment measures are still the most effective [32]. 
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5.3. Transferability 

A significant challenge in operationally used wildfire spread models is the transfer-

ability to other environments, as semi-empirical and empirical models are highly depend-

ent on the environment in which they were calibrated [15,18]. The Mediterranean model 

tried to address this issue by generalizing the wildfire spread over all Mediterranean fire 

regions. Although the model could only achieve mediocre overall accuracies, model per-

formance between different countries with differing environmental conditions and fire 

regimes was similar (see Figure 8). The best performances of the Mediterranean model 

were achieved in Spain, France, and Portugal (see Figures 8 and 9). These countries also 

experienced the largest average wildfire sizes [56] and the highest fire spread rates [64] 

over the last decade. These observations align with the model’s ability to predict larger 

wildfire spread rates more precisely. 

The lowest performances were observed in Italy and the Balkan region. One expla-

nation for this is the high number of agricultural fires, which are the most frequent type 

of wildfire in, e.g., Italy [56]. These prescribed burnings are mostly controlled, small in 

size, and do not experience large spread rates [65]. For the Mediterranean reference da-

taset, Italy showed the highest number of wildfires while also having one of the smallest 

median burned areas over all fire seasons (see Figures S9 and S10). As the Mediterranean 

model suffers from an overprediction bias on days with small wildfire spread, this might 

explain the lower overall accuracies in the countries that experienced many but very small 

fires. 

Surprisingly, the Mediterranean model could outperform the Portugal model in pre-

dicting the spread of Portuguese wildfires, achieving an overall weighted macro-mean 

IoU of 0.39 compared to 0.37, respectively. This might be an effect of the larger training 

dataset available for the Mediterranean model which helped the model to see a larger 

variety in the data. 

Results of the Mediterranean model also showed no significant performance differ-

ences comparing different wildfire seasons of Mediterranean countries (see Figure 9) de-

spite large differences in their fire activity and fire sizes (see Figures S9 and S10). A quali-

tative comparison of different environmental conditions between Mediterranean coun-

tries also showed no clear model performance trends. The Mediterranean model per-

formed best in Spain, Greece, and Portugal with overall weighted macro-mean IoU values 

of 0.44, 0.43 and 0.39, respectively. The similar performance in Spain and Portugal might 

result from the resemblance in the forest structure and dominant species in central and 

northern Portugal and the northwestern and northern parts of Spain, where large, homog-

enous stands of Eucalyptus globulus and other pine species are found [66,67]. However, 

Greece shows large differences to the environmental characteristics of Portugal or Spain, 

experiencing much hotter and drier summers while being covered predominantly by 

sparsely populated forest stands with mixed-in shrubland vegetation [9]. The fact that the 

model performed similarly well in Greece highlights the promising potential of data-

driven methods to overcome the current transferability issues of wildfire spread models 

by exploiting the generalization abilities of spatiotemporal DL architectures. 

It needs to be noted that the exact effects of vegetational or climatic characteristics in 

different Mediterranean regions on the model performance can not be assessed at country-

level. However, this study adapted the national classification of the Copernicus EMS—

European Forest Fire Information System (EFFIS) [56] to compare the model performances 

between Mediterranean countries. Quantitative estimations of the effects of environmen-

tal conditions on the performance of a generalized wildfire spread model would require 

analysis on a much smaller geographic scale, which was beyond the scope of this study. 
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5.4. Dataset Limitations 

Although recent advances in the availability and capability of Earth observation data 

translated into improvements in newer wildfire spread models [19,20], the quality and 

availability of reference data are still the main limitations for currently used operational 

models [18]. High-quality reference data are still notoriously scarce while ground truth 

on the behavior of wildfires at an adequate spatial and temporal resolution does not exist 

[16,19]. Therefore, satellite-derived burned area mapping products are the most common 

source for large-scale wildfire spread reference data [64]. However, these sources do not 

represent true ground truth data and come with other limitations regarding the spatial 

and temporal resolution. Due to the lack of reference data, many studies try to evaluate 

their models using the outputs of operationally used semi-empirical or empirical models 

as a reference [23,24,31]. While this approach is reasonable given the limited availability 

of ground truth data, it remains highly questionable, especially when considering the sig-

nificant uncertainties in all operational products (MAPE > 33%) [20]. For this reason, the 

results and evaluation of wildfire spread models should always be read carefully and 

within context. 

In this study, we created a historic wildfire time series dataset of European wildfires 

from satellite-derived burned area perimeters and multiple relevant wildfire driver vari-

ables. Comparable datasets exist but do not incorporate all relevant wildfire driver varia-

bles or provide burned areas in a lower spatial resolution [25,64]. In contrast to other stud-

ies that focused on small study areas with varying environmental conditions (e.g., [24,28]) 

or relied on experimental or simulated wildfire datasets (e.g., [29,30]), the used reference 

dataset stands out because it includes the satellite-derived daily burned area of real-world 

historical wildfires spanning the entire Mediterranean region from 2016 to 2022. Never-

theless, the reference dataset has some limitations that may have affected the performance 

of the model. 

The developed STGNN models are biased towards the S3 mapped burned area pe-

rimeters which served as the target variable. Although Nolde et al. [40] showed good 

agreement of the S3 burned area perimeters with other burned area products, the trans-

ferability of the model onto another burned area dataset from a different imaging source 

is not given and should be tested. Furthermore, the dataset did not contain any infor-

mation on the type of wildfire. Therefore, it was not possible to differentiate between sur-

face fires, crown fires, or prescribed agricultural burnings, which could have been benefi-

cial to the learning process of the STGNN.  

Moreover, noise contained in the burned area time series is probably one of the main 

reasons for the low statistical accuracies. Time series without a consecutive spread over 

multiple days are frequent in the burned area dataset. This introduced data gaps which 

had to be filled artificially to assure equal-length input sequences for the STGNN model. 

Such data gaps can result from missed burned area detections due to cloud and smoke 

cover. If consecutive days of cloud or smoke contamination are present in the S3 imagery, 

then the burned area perimeter of the next cloud-free observation is usually bolstered by 

the accumulated undetected burned area expansion of the previous cloudy days. This can 

lead to confusion for a model because the data indicates that a large wildfire spread oc-

curred within one day although it was the product of multiple previous days. Such a prob-

lem was also reported by Radke et al. [24], which was solved by only using wildfires with 

consecutive daily burned areas. To retain a high number of data samples, we use a copy-

ing procedure which is encoded in the dataset by the “no_observation” variable (see Table 

1). A more sophisticated solution for this problem would be the incorporation of daily 

cloud coverage information into the dataset. However, days without wildfire spread do 

not automatically result from missed detections due to cloud contamination of the satellite 

scene. Wildfires tend to grow in a non-linear manner, which can result in only a few large 

spread events during the wildfire activity [63]. However, such non-linear wildfire spread 

events are highly correlated to the prevailing weather conditions and fuel availability 

[13,63], which are encoded in the reference dataset. Moreover, the relatively high recall 
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values (Portugal model 0.69, Mediterranean model 0.67) and the increasing predictive ac-

curacy with larger daily wildfire spread sizes (see Figure 10) suggest that the model ade-

quately accounts for this behavior. 

Some wildfires within the reference dataset contain noise in the form of multiple in-

dependent burning cells, resulting in the heterogeneous growth of the burned area over 

time. Figure S11 displays an example fire where, on the second day of the time series, an 

independent burned area occurs that is not connected to the burned area perimeter of the 

previous day. This can result from spotting, where burned residuals can be transported 

by wind or flames and ignite a new fire ahead of the current flaming front [13]. Spotting 

fires are very difficult to model [16] and frequently lead to underprediction errors within 

wildfire spread models [18]. Another reason for the heterogenous burned area could result 

from near-simultaneous ignitions at different locations due to anthropogenic activity (e.g., 

arson). It is also possible that the two individual burned area perimeters are part of a 

larger, homogenous burned area perimeter which is partially covered by clouds and 

smoke and therefore cannot be correctly derived by the S3 mapping processer. Such cases, 

although occurring infrequently within the dataset, are not accounted for during the mod-

eling process and potentially lead to confusion in the predictions. 

The spatial resolution of the STGNN model is defined by the H3 cell resolution 9 

(approx. 350 m cell diameter), which was selected since it matched the spatial resolution 

of the burned area perimeters derived by S3. This can suppress small-scale variations in 

the landscape variables. For instance, the cell aggregation of the CLC classes is performed 

using the most frequent class within each H3 cell. This leads to the suppression of un-

derrepresented LULC classes that may influence the wildfire spread, e.g., streets or rivers 

that can act as fire barriers [32,52]. To include these features while maintaining the selected 

cell resolution, proxy variables, like street density per cell, can be included. The street 

density also shows a suppressing influence on the total burned area of wildfires [46], 

which highlights the importance of such small-scale features for wildfire behavior. The 

weather variables (e.g., temperature, relative humidity, precipitation) and FWI should not 

be affected by the H3 cell resolution, since weather phenomena usually occur on larger 

geographic scales. However, local wind systems or orographic channeling can influence 

wildfire behavior [13], an aspect which is not accounted for in the wildfire time series 

dataset. 

Additional variables containing information about fuel characteristics can enhance 

the modeling performance. In this study, only a cell’s predominant fuel class from an ex-

isting fuel classification product [51] is included in the reference dataset. Fuel characteris-

tic variables like canopy bulk density, canopy cover, or crown height have been success-

fully used for modeling wildfire spread [30]. Furthermore, many studies also include 

spectral indices derived from Earth observation data, e.g., NDVI or Normalized Burn Ra-

tio (NBR), in wildfire spread models [24,25]. 

6. Conclusions 

This study developed a data-driven, Deep Learning (DL)-based wildfire spread mod-

eling approach by using a Spatiotemporal Graph Neural Network (STGNN) trained on a 

comprehensive wildfire time series dataset of European wildfires from 2016 to 2022. In a 

research field where current operational models contain large uncertainties and the usage 

of data-driven methods is only slowly being adopted, the proposed methodology pro-

vides a novel approach to account for the spatiotemporal nature of the wildfire spread 

process. 

Overall, the models for Portugal and the Mediterranean region were only able to 

model the next day’s wildfire spread with mediocre accuracy. While being able to predict 

the general trend of wildfire expansions, the models suffered from significant overpredic-

tion bias, especially on days with smaller or no wildfire spread. A fair quantitative com-

parison to other studies could not be made due to differences in modeling outputs and 

the adaptation of other models to a specific region or dataset. However, based on a 
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qualitative comparison, the achieved accuracies were in line with other DL-based model-

ing approaches and are within the expected ranges of this modeling domain, where large 

uncertainties still prevail in the state-of-the-art wildfire spread models. This highlighted 

the need for more research to understand the complex wildfire spread process and find 

solutions to translate this knowledge into advanced models. 

This study demonstrated that both the spatial and temporal dimensions of wildfire 

spread can have a strong influence on a model’s predictive capability. Results showed that 

the STGNN was able to predict larger wildfire spread up to an optimum spread size of 50 

H3 cells (approx. 5 km2) with increasing accuracy. Regarding the expected increase in 

wildfire size and intensity in the Mediterranean, the ability to accurately predict larger 

wildfire spread is beneficial. Furthermore, this study showed that the temporal evolution 

of a wildfire had a positive effect on the model performance. However, more research is 

needed to find alternative modeling frameworks that can predict the wildfire spread with 

high accuracies at the start of a wildfire time series, as this would provide crucial infor-

mation for effective wildfire suppression measurements. 

While not intended to replace established and operationally used wildfire spread 

models, this study addressed their prevailing transferability issues by developing a con-

tinental-scale, data-driven modeling approach. Since the STGNN model could achieve 

similar performances in various fire-prone Mediterranean countries, this showed that a 

data-driven modeling approach might produce more robust results when applied to var-

ying environmental conditions. This helped form a promising methodology for develop-

ing more comprehensive and transferable wildfire spread models. However, more re-

search is needed to assess the effects of local-scale environmental conditions on the per-

formance of such generalized wildfire spread models. 

The availability and quality of reference data seem to be the most limiting factors for 

the application of data-driven wildfire spread models. For this modeling problem, basi-

cally no ground truth data are available, while large-scale reference datasets, mostly de-

rived from Earth observation data, come with many quality deficits regarding the spatial 

and temporal resolution. The developed historic wildfire time series reference dataset has 

proven to be a comprehensive dataset for modeling the behavior of wildfires on a daily 

and continental scale. However, inaccuracies in the satellite-based burned area perimeters 

or spatial data aggregations introduce noise into the dataset, which is probably the main 

reason for the insufficient overall accuracies of the developed STGNN models. Supported 

by these findings, future research must therefore focus on further improving the availa-

bility and quality of wildfire-related data products to provide a solid foundation for mod-

eling wildfire spread based on promising data-driven methodologies that could poten-

tially overcome the prevailing accuracy and transferability problems of established wild-

fire spread models. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/fire7060207/s1. 

Author Contributions: Conceptualization, M.R. and M.N.; methodology, M.R. and M.N.; software, 

M.R; validation, M.R.; formal analysis, M.R.; investigation, M.R.; data curation, M.R.; writing—orig-

inal draft preparation, M.R.; writing—review and editing, M.N., T.R. and T.U.; visualization, M.R.; 

supervision, M.N., T.R. and T.U. All authors have read and agreed to the published version of the 

manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: All data generated in this study is available upon request from the 

corresponding author. The Sentinel-3 burned area perimeters can be accessed and visualized at 

https://services.zki.dlr.de/fire (accessed on 12 June 2024). The ERA5-Land and FWI datasets can be 

accessed and downloaded from the Copernicus Climate Data Store (ERA5-Land: https://cds.cli-

mate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land (accessed on 12 June 2024); FWI: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-fire-historical-v1 (accessed on 12 June 



Fire 2024, 7, 207 24 of 26 
 

 

2024)). Hotspot data is available through FIRMS (https://firms.modaps.eosdis.nasa.gov/active_fire/ 

(accessed on 12 June 2024)). The global fuel classification can be downloaded from the respective 

publication (https://doi.org/10.5194/bg-13-2061-2016 (accessed on 12 June 2024)). CLC is available 

for download from the CLMS (https://land.copernicus.eu/en/products/corine-land-cover/clc2018 

(accessed on 12 June 2024)). The Copernicus DEM is provided by ESA (https://spacedata.coperni-

cus.eu/de/collections/copernicus-digital-elevation-model (accessed on 12 June 2024)). 

Acknowledgments: We kindly thank Florian Fichtner and Marc Wieland for their advice during the 

development of the reference dataset and model. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; 

Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. https://doi.org/10.1126/science.1163886. 

2. Lam, S.S.; Waugh, C.; Peng, W.; Sonne, C. Wildfire Puts Koalas at Risk of Extinction. Science 2020, 367, 750. 

https://doi.org/10.1126/SCIENCE.ABA8372. 

3. Wang, D.; Guan, D.; Zhu, S.; Kinnon, M.M.; Geng, G.; Zhang, Q.; Zheng, H.; Lei, T.; Shao, S.; Gong, P.; et al. Economic Footprint 

of California Wildfires in 2018. Nat. Sustain. 2021, 4, 252–260. https://doi.org/10.1038/s41893-020-00646-7. 

4. Haque, M.K.; Azad, M.A.K.; Hossain, M.Y.; Ahmed, T.; Uddin, M.; Hossain, M.M. Wildfire in Australia during 2019-2020, Its 

Impact on Health, Biodiversity and Environment with Some Proposals for Risk Management: A Review. J. Environ. Prot. 2021, 

12, 391–414. https://doi.org/10.4236/JEP.2021.126024. 

5. Haynes, K.; Short, K.; Xanthopoulos, G.; Viegas, D.; Ribeiro, L.M.; Blanchi, R. Wildfires and WUI Fire Fatalities. In Encyclopedia 

of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer International Publishing: Berlin/Heidelberg, 

Germany, 2020; pp. 1–16. 

6. Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; Werf, 

G.R. van der; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, 

e2020RG000726. https://doi.org/10.1029/2020RG000726. 

7. Ruffault, J.; Curt, T.; Moron, V.; Trigo, R.M.; Mouillot, F.; Koutsias, N.; Pimont, F.; Martin-StPaul, N.; Barbero, R.; Dupuy, J.L.; 

et al. Increased Likelihood of Heat-Induced Large Wildfires in the Mediterranean Basin. Sci. Rep. 2020, 10, 1–9. 

https://doi.org/10.1038/s41598-020-70069-z. 

8. Turco, M.; Llasat, M.C.; von Hardenberg, J.; Provenzale, A. Climate Change Impacts on Wildfires in a Mediterranean Environ-

ment. Clim. Change 2014, 125, 369–380. https://doi.org/10.1007/s10584-014-1183-3. 

9. Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Solomun, M.K.; Atanassova, I.; Glushkova, M.; 

Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil 

Water Res. 2021, 14, 11786221211028185. https://doi.org/10.1177/11786221211028185. 

10. Perry, G.L.W. Current Approaches to Modelling the Spread of Wildland Fire: A Review. Prog. Phys. Geogr. Earth Environ. 1998, 

22, 222–245. https://doi.org/10.1177/030913339802200204. 

11. Cardil, A.; Monedero, S.; Schag, G.; de-Miguel, S.; Tapia, M.; Stoof, C.R.; Silva, C.A.; Mohan, M.; Cardil, A.; Ramirez, J. Fire 

Behavior Modeling for Operational Decision-Making. Curr. Opin. Environ. Sci. Health 2021, 23, 100291. 

https://doi.org/10.1016/J.COESH.2021.100291. 

12. Sullivan, A.L. Inside the Inferno: Fundamental Processes of Wildland Fire Behaviour: Part 1: Combustion Chemistry and Heat 

Release. Curr. For. Rep. 2017, 3, 132–149. https://doi.org/10.1007/s40725-017-0057-0. 

13. Sullivan, A.L. Inside the Inferno: Fundamental Processes of Wildland Fire Behaviour: Part 2: Heat Transfer and Interactions. 

Curr. For. Rep. 2017, 3, 150–171. https://doi.org/10.1007/s40725-017-0058-z. 

14. Sullivan, A.L. Wildland Surface Fire Spread Modelling, 1990–2007. 1: Physical and Quasi-Physical Models. Int. J. Wildland Fire 

2009, 18, 349. https://doi.org/10.1071/wf06143. 

15. Sullivan, A.L. Wildland Surface Fire Spread Modelling, 1990–2007. 2: Empirical and Quasi-Empirical Models. Int. J. Wildland 

Fire 2009, 18, 369. https://doi.org/10.1071/wf06142. 

16. Sullivan, A.L. Wildland Surface Fire Spread Modelling, 1990–2007. 3: Simulation and Mathematical Analogue Models. Int. J. 

Wildland Fire 2009, 18, 387. https://doi.org/10.1071/wf06144. 

17. Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Res. Pap. INT-115; U.S. Department of Agricul-

ture, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972. 

18. Alexander, M.E.; Cruz, M.G. Limitations on the Accuracy of Model Predictions of Wildland Fire Behaviour: A State-of-the-

Knowledge Overview. For. Chron. 2013, 89, 370–381. https://doi.org/10.5558/TFC2013-067. 

19. Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applica-

tions in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. https://doi.org/10.1139/ER-2020-0019. 

20. Cruz, M.G.; Alexander, M.E.; Sullivan, A.L.; Gould, J.S.; Kilinc, M. Assessing Improvements in Models Used to Operationally 

Predict Wildland Fire Rate of Spread. Environ. Model. Softw. 2018, 105, 54–63. https://doi.org/10.1016/J.ENVSOFT.2018.03.027. 



Fire 2024, 7, 207 25 of 26 
 

 

21. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural 

Netw. Learn. Syst. 2021, 32, 4–24. https://doi.org/10.1109/TNNLS.2020.2978386. 

22. Qiao, Y.; Jiang, W.; Su, G.; Jiang, J.; Li, X.; Wang, F. A Transformer-Based Neural Network for Ignition Location Prediction from 

the Final Wildfire Perimeter. Environ. Model. Softw. 2024, 172, 105915. https://doi.org/10.1016/j.envsoft.2023.105915. 

23. Hodges, J.L.; Lattimer, B.Y. Wildland Fire Spread Modeling Using Convolutional Neural Networks. Fire Technol. 2019, 55, 2115–

2142. https://doi.org/10.1007/s10694-019-00846-4. 

24. Radke, D.; Hessler, A.; Ellsworth, D. FireCast: Leveraging Deep Learning to Predict Wildfire Spread. In Proceedings of the 

Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, Macao, 10–16 August 2019; pp. 4575–4581. 

25. Huot, F.; Hu, R.L.; Goyal, N.; Sankar, T.; Ihme, M.; Chen, Y.F. Next Day Wildfire Spread: A Machine Learning Dataset to Predict 

Wildfire Spreading from Remote-Sensing Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4412513. 

https://doi.org/10.1109/TGRS.2022.3192974. 

26. Liang, H.; Zhang, M.; Wang, H. A Neural Network Model for Wildfire Scale Prediction Using Meteorological Factors. IEEE 

Access 2019, 7, 176746–176755. https://doi.org/10.1109/ACCESS.2019.2957837. 

27. Perumal, R.; Zyl, T.L.V. Comparison of Recurrent Neural Network Architectures for Wildfire Spread Modelling. In Proceedings 

of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020; Institute of 

Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020. 

28. Li, X.; Zhang, M.; Zhang, S.; Liu, J.; Sun, S.; Hu, T.; Sun, L. Simulating Forest Fire Spread with Cellular Automation Driven by a 

LSTM Based Speed Model. Fire 2022, 5, 13. https://doi.org/10.3390/FIRE5010013. 

29. Li, Z.; Huang, Y.; Li, X.; Xu, L. Wildland Fire Burned Areas Prediction Using Long Short-Term Memory Neural Network with 

Attention Mechanism. Fire Technol. 2021, 57, 1–23. https://doi.org/10.1007/S10694-020-01028-3. 

30. Burge, J.; Bonanni, M.R.; Hu, R.L.; Ihme, M. Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved 

Wildfire Spread Behavior. Fire Technol. 2023, 59, 3327–3354. https://doi.org/10.1007/s10694-023-01469-6. 

31. Jiang, W.; Wang, F.; Su, G.; Li, X.; Wang, G.; Zheng, X.; Wang, T.; Meng, Q. Modeling Wildfire Spread with an Irregular Graph 

Network. Fire 2022, 5, 185. https://doi.org/10.3390/FIRE5060185. 

32. Yemshanov, D.; Liu, N.; Thompson, D.K.; Parisien, M.A.; Barber, Q.E.; Koch, F.H.; Reimer, J. Detecting Critical Nodes in Forest 

Landscape Networks to Reduce Wildfire Spread. PLoS ONE 2021, 16, e0258060. https://doi.org/10.1371/JOUR-

NAL.PONE.0258060. 

33. Ge, X.; Yang, Y.; Peng, L.; Chen, L.; Li, W.; Zhang, W.; Chen, J. Spatio-Temporal Knowledge Graph Based Forest Fire Prediction 

with Multi Source Heterogeneous Data. Remote Sens. 2022, 14, 3496. https://doi.org/10.3390/RS14143496. 

34. Chen, J.; Yang, Y.; Peng, L.; Chen, L.; Ge, X. Knowledge Graph Representation Learning-Based Forest Fire Prediction. Remote 

Sens. 2022, 14, 4391. https://doi.org/10.3390/RS14174391. 

35. Bui, K.H.N.; Cho, J.; Yi, H. Spatial-Temporal Graph Neural Network for Traffic Forecasting: An Overview and Open Research 

Issues. Appl. Intell. 2022, 52, 2763–2774. https://doi.org/10.1007/S10489-021-02587-W. 

36. Zhao, J.; Wang, Y.; Dou, X.; Wang, X.; Guo, M.; Zhang, R.; Li, H. Advances in Spatiotemporal Graph Neural Network Prediction 

Research. Int. J. Digit. Earth 2023, 16, 2034–2066. https://doi.org/10.1080/17538947.2023.2220610. 

37. Farahmand, H.; Xu, Y.; Mostafavi, A. A Spatial–Temporal Graph Deep Learning Model for Urban Flood Nowcasting Leveraging 

Heterogeneous Community Features. Sci. Rep. 2023, 13, 6768. https://doi.org/10.1038/s41598-023-32548-x. 

38. Zhou, J.; Xiang, J.; Huang, S. Classification and Prediction of Typhoon Levels by Satellite Cloud Pictures through GC–LSTM 

Deep Learning Model. Sensors 2020, 20, 5132. https://doi.org/10.3390/s20185132. 

39. Zhang, X.; Reichard-Flynn, W.; Zhang, M.; Hirn, M.; Lin, Y. Spatiotemporal Graph Convolutional Networks for Earthquake 

Source Characterization. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024401. https://doi.org/10.1029/2022JB024401. 

40. Nolde, M.; Plank, S.; Riedlinger, T. An Adaptive and Extensible System for Satellite-Based, Large Scale Burnt Area Monitoring 

in Near-Real Time. Remote Sens. 2020, 12, 2162. https://doi.org/10.3390/RS12132162. 

41. Brodsky and Contributors H3—Hexagonal Hierarchical Geospatial Indexing System 2018. Available online: https://h3geo.org/ 

(accessed on 12 June 2024). 

42. Sahr, K. Hexagonal Discrete Global Grid Systems for Geospatial Computing. Arch. Photogramm. Cartogr. Remote Sens. 2011, 22, 

363–376. 

43. Hernández Encinas, L.; Hoya White, S.; Martín del Rey, A.; Rodríguez Sánchez, G. Modelling Forest Fire Spread Using Hexag-

onal Cellular Automata. Appl. Math. Model. 2007, 31, 1213–1227. https://doi.org/10.1016/J.APM.2006.04.001. 

44. Flannigan, M.; Stocks, B.; Weber, M. Fire Regimes and Climatic Change in Canadian Forests. In Fire and Climatic Change in 

Temperate Ecosystems of the Western Americas; Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W., Eds.; Springer: Ber-

lin/Heidelberg, Germany, 2003; Volume 160, pp. 97–119. 

45. Hernandez, C.; Drobinski, P.; Turquety, S.; Dupuy, J.L. Size of Wildfires in the Euro-Mediterranean Region: Observations and 

Theoretical Analysis. Nat. Hazards Earth Syst. Sci. 2015, 15, 1331–1341. https://doi.org/10.5194/NHESS-15-1331-2015. 

46. Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and Regional Analysis of Climate and Human Drivers of Wildfire. Sci. Total 

Environ. 2011, 409, 3472–3481. https://doi.org/10.1016/J.SCITOTENV.2011.05.032. 

47. Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, 

S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 

2021, 13, 4349–4383. https://doi.org/10.5194/ESSD-13-4349-2021. 



Fire 2024, 7, 207 26 of 26 
 

 

48. Vitolo, C.; Giuseppe, F.D.; Barnard, C.; Coughlan, R.; San-Miguel-Ayanz, J.; Libertá, G.; Krzeminski, B. ERA5-Based Global 

Meteorological Wildfire Danger Maps. Sci. Data 2020, 7, 1–11. https://doi.org/10.1038/s41597-020-0554-z. 

49. Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.E.V.; McAlpine, R.S.; Lynham, T.J.; Dubé, D.E. The Canadian Forest Fire 

Danger Rating System: An Overview. For. Chron. 1989, 65, 450–457. https://doi.org/10.5558/TFC65450-6. 

50. Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product: Algorithm Descrip-

tion and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. https://doi.org/10.1016/J.RSE.2013.12.008. 

51. Pettinari, M.L.; Chuvieco, E. Generation of a Global Fuel Data Set Using the Fuel Characteristic Classification System. Biogeosci-

ences 2016, 13, 2061–2076. https://doi.org/10.5194/BG-13-2061-2016. 

52. Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; 

et al. Landscape—Wildfire Interactions in Southern Europe: Implications for Landscape Management. J. Environ. Manag. 2011, 

92, 2389–2402. https://doi.org/10.1016/J.JENVMAN.2011.06.028. 

53. European Environmental Agency (EEA) CORINE Land Cover (CLC) 2018. Available online: https://land.copernicus.eu/en/prod-

ucts/corine-land-cover/clc2018 (accessed on 12 June 2024). https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac. 

54. European Space Agency (ESA) Copernicus DEM—Global and European Digital Elevation Model (COP-DEM) 2023. Available 

online: https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model (accessed on 12 June 2024). 

https://doi.org/10.5270/ESA-c5d3d65. 

55. Cruz, M.G.; Alexander, M.E. Modelling the Rate of Fire Spread and Uncertainty Associated with the Onset and Propagation of 

Crown Fires in Conifer Forest Stands. Int. J. Wildland Fire 2017, 26, 413–426. https://doi.org/10.1071/WF16218. 

56. San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta, G.; Jacome Felix Oom, D.; Branco, A.; De Rigo, D.; Suarez-

Moreno, M.; Ferrari, D.; et al. Forest Fires in Europe, Middle East and North Africa 2022; EU Publications: Luxembourg, 2023. 

https://doi.org/10.2760/348120. 

57. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate 

Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 1–12. https://doi.org/10.1038/sdata.2018.214. 

58. Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for 

Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3848–3858. https://doi.org/10.1109/TITS.2019.2935152. 

59. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks 2017. Preprint. arXiv 2017, 

arXiv:1609.02907. https://doi.org/10.48550/arXiv.1609.02907. 

60. Cho, K.; Merriënboer, B.V.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations 

Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the EMNLP 2014—2014 Conference on 

Empirical Methods in Natural Language Processing, Proceedings of the Conference; Association for Computational Linguistics 

(ACL), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. 

61. Rozemberczki, B.; Scherer, P.; He, Y.; Panagopoulos, G.; Riedel, A.; Astefanoaei, M.; Kiss, O.; Beres, F.; López, G.; Collignon, N.; 

et al. PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models. In Proceedings 

of the International Conference on Information and Knowledge Management, Proceedings, Online, 1–5 November 2021; pp. 

4564–4573. https://doi.org/10.1145/3459637.3482014. 

62. Cruz, M.G.; Alexander, M.E. Uncertainty Associated with Model Predictions of Surface and Crown Fire Rates of Spread. Envi-

ron. Model. Softw. 2013, 47, 16–28. https://doi.org/10.1016/J.ENVSOFT.2013.04.004. 

63. Podur, J.; Wotton, B.M. Defining Fire Spread Event Days for Fire-Growth Modelling. Int. J. Wildland Fire 2011, 20, 497–507. 

https://doi.org/10.1071/WF09001. 

64. Artés, T.; Oom, D.; Rigo, D.d.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A Global Wildfire Dataset for the 

Analysis of Fire Regimes and Fire Behaviour. Sci. Data 2019, 6, 1–11. https://doi.org/10.1038/s41597-019-0312-2. 

65. Xanthopoulos, G.; Caballero, D.; Galante, M.; Alexandrian, D.; Rigolot, E.; Marzano, R. Forest Fuels Management in Europe. In 

Proceedings of the Fuels Management—How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 

2006. 

66. Mateus, P.; Fernandes, P.M. Forest Fires in Portugal: Dynamics, Causes and Policies. In Forest Context and Policies in Portugal: 

Present and Future Challenges; Reboredo, F., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 97–115. 

67. Rodrigues, M.; Jiménez-Ruano, A.; Riva, J. de la Fire Regime Dynamics in Mainland Spain. Part 1: Drivers of Change. Sci. Total 

Environ. 2020, 721, 135841. https://doi.org/10.1016/J.SCITOTENV.2019.135841. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 

https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model

