

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 1 of 17

Application Note
Cortex-M33 Dual Core Lockstep

Version 1.0

Non-Confidential - Published

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 2 of 17

Cortex-M33 Dual Core Lockstep

Copyright © 2017 ARM or its affiliates. All rights reserved.

Release Information

The following changes have been made to this Application Note.

Document History

Date Issue Confidentiality Change

June 2017 A Non-Confidential - Published First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of ARM. No
license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in
reference to ARM’s customers is not intended to create or refer to any partnership relationship with any other
company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU
and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-
usage-guidelines.php

Copyright © 2017 , ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com/about/trademark-usage-guidelines.php

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 3 of 17

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

http://www.arm.com/

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 4 of 17

Contents

Cortex-M33 Dual Core Lockstep

1 Conventions and Feedback ... 5

2 Preface ... 7

2.1 References ... 7

2.2 Terms and abbreviations ... 7

3 Introduction ... 8

3.1 Document purpose ... 8

3.2 Document scope ... 8

4 Why DCLS is good for reliability and how it works ... 9

4.1 High reliability system ... 9

4.2 Why DCLS is good for reliability .. 10

4.3 How DCLS works .. 10

5 Typical considerations for DCLS .. 11

5.1 Reset all registers ... 11

5.2 Avoid common mode failures .. 11

5.3 Optimize the cost .. 12

6 DCLS Example with Cortex-M33 processor ... 13

6.1 Considerations before designing DCLS with the Cortex-M33 processor............. 13

6.2 RTL design ... 14

6.3 DCLS controller and comparators ... 15

6.4 Verification methodology ... 16

6.5 External logic requirements ... 17

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 5 of 17

1 Conventions and Feedback

The following describes the typographical conventions and how to give feedback:

Typographical conventions

The following typographical conventions are used:

monospace denotes text that can be entered at the keyboard, such as

commands, file and program names, and source code.

monospace denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or option

name.

monospace italic

denotes arguments to commands and functions where the argument

is to be replaced by a specific value.

monospace bold

denotes language keywords when used outside example code.

italic highlights important notes, introduces special terminology, denotes

internal cross-references, and citations.

bold highlights interface elements, such as menu names. Also used for

emphasis in descriptive lists, where appropriate, and for ARM®

processor signal names.

Feedback on this product

If you have any comments and suggestions about this product, contact your supplier and

give:

• Your name and company.

• The serial number of the product.

• Details of the release you are using.

• Details of the platform you are using, such as the hardware platform, operating

system type and version.

• A small standalone sample of code that reproduces the problem.

• A clear explanation of what you expected to happen, and what actually happened.

• The commands you used, including any command-line options.

• Sample output illustrating the problem.

• The version string of the tools, including the version number and build numbers.

Feedback on documentation

If you have comments on the documentation, e-mail errata@arm.com. Give:

• The title.

• The number, ARM-ECM-0690721, A.

• If viewing online, the topic names to which your comments apply.

• If viewing a PDF version of a document, the page numbers to which your comments

apply.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 6 of 17

• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM

Information Center, together with knowledge articles and Frequently Asked Questions

(FAQs).

Other information

• ARM Information Center, http://infocenter.arm.com/help/index.jsp.

• ARM Technical Support Knowledge Articles,

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html.

• ARM Support and Maintenance, http://www.arm.com/support/services/support-

maintenance.php.

• ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html
http://www.arm.com/support/services/support-maintenance.php
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 7 of 17

2 Preface

This Application Note is indented for developers who deploy hardware for Dual-redundant

Core Lock-step with the Cortex-M33 processor.

These topics support the following chapters:

2.1 References

[1] Design of SoC for High Reliability Systems with Embedded Processors (doc

number)

[2] ARM® Cortex®-M33 Processor Integration and Implementation Manual (100323)

[3] ARM® Cortex®-M33 Processor Safety Manual (100601)

2.2 Terms and abbreviations

Abbreviations and terms used in this document are defined here.

DCLS Dual-redundant Core Lock-step

MCU Micro Controller Unit

RAR Reset All Registers

RTL Register Transfer Level

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 8 of 17

3 Introduction

3.1 Document purpose

Reliability is a critical concern in many embedded system applications such as industrial

controller or automobile electronics. Dual-redundant Core Lock-step (DCLS) is one of

many techniques to enhance the reliability of a Micro Controller Unit (MCU).

The purpose of this application note is to help hardware developers use and design a

Cortex-M33 processor with DCLS in a MCU system.

ARM provides a:

• DCLS example, which is the instantiation of two Cortex-M33 processor instances

that execute identical code in tandem

• Method to check equivalence of outputs. A mismatch in any output from either

core must then be appropriately handled in system logic.

Knowledge of detailed hardware design in the processor is not required for reading this

application note.

.

3.2 Document scope

This application note introduces the background knowledge for understanding DCLS,

which covers:

• Why DCLS is good for reliability and how it .

• Typical considerations for DCLS.

• DCLS Example with Cortex-M33 processor.

The DCLS example is designed and verified on Register Transfer Level (RTL) logic.

Some design considerations and implementation techniques of DCLS introduced in this

application note might not be present in the example.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 9 of 17

4 Why DCLS is good for reliability and how it works

This chapter introduces background knowledge related to DCLS.

It contains the following topics:

• High reliability system page 9.

• Why DCLS is good for reliability on page 10.

• How DCLS works on page 10.

4.1 High reliability system

4.1.1 Requirements for a high reliability system

DCLS is a common technique for developing a high reliability system. It is helpful to

understand the requirements for a high reliability system before we dive into DCLS. In [1],

Joseph Yiu generalized the technical requirements for high reliability system into four

areas as following:

• Reducing the possibility of failures.

• Detection of failures.

• Correction of failures.

• Robustness – single point failure could not lead to a complete system failure.

Note that some of them might be optional depending on the application and the property

of potential failures.

4.1.2 Sources of failures

It is also crucial to look at what can cause failures at the processor level. As introduced in

[1], these failures are categorized into the following:

• Memory: There is an accidental trigger that changes the memory state in the
system. Common scenarios include a hit by a radiation particle, interference from
RF transmitter, for example.

• Logic: A hardware failure exists in system internal logic. This category of failures
can usually be detected by a scan test.

• Software: Mistakes from the software such as programming bugs. Incorrect
setup for memory, for example, lead to unexpected system failures.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 10 of 17

4.2 Why DCLS is good for reliability

A DCLS helps the system detect logic failures. When logic failures are detected the

system chooses the appropriate action to take.

For example, aviation electronics usually have higher risk of being affected by alpha

particles or cosmic rays. Failure detection and correction mechanisms are essential

features for high reliability in such systems. DCLS is a common technique applied to the

systems because of its failure detection capability.

4.3 How DCLS works

As revealed in its name, a system with DCLS deploys two identical processor cores inside.

Two cores are initialized (reset) in the same states and fed with identical inputs. As a

result, identical outputs from two cores should always be observed. A logic failure

reaching the output in one of the cores can be detected by comparing the outputs of the

two cores. After the detection of a failure, the system can choose various approaches to

handle it depending on the application requirement.

Generally, one of cores is referred to as the main core, while the other one is referred to

as the redundant core. The redundant core confirms the correctness of outputs from the

main core but does not enhance the system performance since it takes identical

instructions and data from the main core

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 11 of 17

5 Typical considerations for DCLS

This chapter introduces typical considerations for design a DCLS system.

It contains the following topics:

• Reset all registers on page 11.

• Avoid common mode failures on page 11.

• Optimize the cost on page 12.

5.1 Reset all registers

A crucial requirement for DCLS is that both cores need to be initialized with the same

state. In other words, all registers (flip-flops) in the processor should be reset to

guarantee the same initial state.

In many processor designs, the hardware designer may deliberately keep the state of

some registers, such as architectural registers, from reset to reduce the power

consumption and silicon area. In DCLS, however, non-initialized values from non-reset

registers might potentially propagate to outputs, causing false mismatch. To allow DCLS

functioning correctly, resetting all registers in the processor by either hardware or

software scheme is usually needed.

The Cortex-M33 processor provides RAR (Reset all register) configuration [2] that must

be selected before implementation to ensure all registers are properly reset.

5.2 Avoid common mode failures

DCLS cannot detect potential failures that can occur at the same point in both cores since

the failures do not cause any difference between their outputs. These failures are referred

to as common mode failures, which cause false match in the DCLS system.

Several techniques have been proposed to address common mode failures. One of them

is providing temporal diversity to two cores. A common approach to this is delaying the

redundant core for few cycles by inserting shift registers into the inputs. With a temporal

diversity of even a few cycles, it is less likely that an erroneous trigger occurs at the same

point of two cores. Note that this approach requires resynchronization of outputs from two

cores before comparisons.

Another technique to avoid common mode failures is implementing two cores in different

ways. Hardware designers may choose different types of arithmetic logic units (ALU),

block implementations or physical designs to implement the redundant core. This keeps

the same functionality of two cores but reduce the risk of failures caused by the same

erroneous transient pulse from power or signal interface.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 12 of 17

5.3 Optimize the cost

For a DCLS processor, the timing on the redundant core can be relaxed because of the

following reasons:

 The outputs of the processor are driven only by the main core. The redundant core

usually does not directly connect to the system.

 Inputs to the redundant core are usually delayed by flip-flops to introduce temporal

diversity between cores (See 5.2). These flip-flops can act as a method of pipelining

to avoid critical paths that originate at core inputs.

Hardware designers may take advantage of the relaxed timing on the redundant core

interface to optimize the cost in the redundant core.

On the other hand, it is recommended that two instances of comparator logic are

implemented, and output mismatches from one or both qualify as a failure. This prevents

a single stuck-at-fault in comparator logic from disabling the DCLS functionality.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 13 of 17

6 DCLS Example with Cortex-M33 processor

This chapter introduces a DCLS example with the Cortex-M33 processor.

It contains the following topics:

• Considerations before designing DCLS with the Cortex-M33 processor on page 13.

• RTL design on page 14.

• DCLS controller and comparators on page 15.

• Verification methodology on page 16.

• External logic requirements on page 17.

6.1 Considerations before designing DCLS with the Cortex-M33 processor

Before designing DCLS with the Cortex-M33 processor, it is helpful to consider the

following features from Cortex-M33 processor on the processor level [2]:

 Reset all registers (RAR) is an available configuration parameter.

 There is no internal memory (SRAM) inside.

 Debug Access Port (DAP) and Trace Port Interface Unit (TPIU) with asynchronous

clock boundaries are already excluded from the processor level.

 There is a single clock source CLKIN for all internal logic.

 There are two reset signals, nPORESET and nSYSRESET, used for power-on reset

(cold reset) and system reset (warm reset) respectively.

By these considerations, the RTL design of DCLS with Cortex-M33 processor can be very

straightforward. We introduce the details in 6.2.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 14 of 17

6.2 RTL design

ARM recommends that a new level of module on top of two cores and the DCLS logic

should be added for the integration. Figure 6-1 shows an example Cortex-M33-based

DCLS processor subsystem.

Figure 6-1 Cortex-M33-based DCLS processor

This DCLS processor subsystem (the TEALLOCKSTEP module) contains these sub-

modules:

 TEAL: a single Cortex-M33 processor instance

 tealdcctl: the DCLS controller module and resynchronization flip-flops

 tealdccm: the comparator logic inside the DCLS controller

 tealdcreg: the redundant core input delay flip-flops

Important notes of the example are summarized as the followings:

 All logic of the M33 processor (TEAL) is duplicated, and no changes are required

inside the M33 processor.

 All logic of the DCLS processor (TEALLOCKSTEP) shares the same external clock

source CLKIN.

 All outputs from the DCLS processor subsystem are driven by the main core, and all

inputs to the DCLS processor subsystem are input to the main core directly.

 All inputs are wired to the main core directly, and same signals are wired to the

redundant core with two stages of back-to-back flip-flops except the CLKIN. This

offers the DCLS processor temporal diversity, which reduces the risk of common

mode failures.

 Before a comparison of outputs from two cores, they are resynchronized by the 3

stages and 1-stage flip-flops respectively. These flop banks also serve to isolate any

critical output paths from the comparator logic.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 15 of 17

 The comparator logic is instantiated twice to prevent a single stuck-at-fault in the

comparator logic from disabling the fault detecting functionality.

 The pins DCCMOUT[0] and DCCMOUT2[0] are fault indicator signals from the main

comparator and redundant comparator respectively. Each of them indicates that

faults have been detected from the corresponding comparator when it is asserted.

The following items must be guaranteed when implementing the example:

 Both processor cores are configured with the RAR parameter set to 1. This can be

done by overriding RAR parameter for both instantiations of M33. For example:

TEAL # (.RAR (1)) main_core (…

TEAL # (.RAR (1)) redundant_core (…

 The external reset signals nPORESET and nSYSRESET are synchronized to

CLKIN.

6.3 DCLS controller and comparators

The DCLS controller passes output signals from two cores to the comparators, and

controls the qualification signal to the fault indicator signals. Fault indicator signals are

sticky, which means only the power-on reset or signals from the DCLS controller can

clear them.

The DCLS controller provides the interface to access the comparators. The fault indicator

signals drive the controller pins DCCMOUT[0] and DCCMOUT2[0] that can be cleared by

de-asserting the controller pins DCCMINP[0] and DCCMINP2[0] (clear fault indicator

signals on negative).

Every time DCLS exits from the power-on reset, there are three cycles of bogus data from

the re-alignment flip-flops sent to the comparators. To avoid false detection of failures

caused by the bogus data, the DCLS controller uses a qualification signal to guarantee

that the comparators never fire in first three cycles after the power-on reset.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 16 of 17

6.4 Verification methodology

Customers may select to validate the DCLS logic with the combination of methodologies

(simulation and formal) that meets their requirements. ARM recommends that if

properties are used, the following three properties should be written to ensure the DCLS

logic is functionally correct:

1. The DCCMOUT[0] should never be asserted unless we insert a fault deliberately.

2. Any fault causing output difference between two cores should cause

corresponding DCCMOUT[0] asserted.

3. Once DCCMOUT[0] is asserted, it should remain asserted until power-on reset

or DCCMINP[0] is de-asserted.

ARM recommends that customers add fault injection logic similar to the example shown

within the dotted line of Figure 6-2 into the original RTL design.

Figure 6-2 DCLS processor with fault injection logic

The validation environment can invert any bits of the redundant core outputs by setting

sva_inject_fault_enable (fault injection qualifier) and any bit of sva_inject_fault[1118:0]

(fault bits selection) to emulate faults that have reached the redundant core outputs.

Injecting faults on the outputs instead of the internal register state provides better

controllability of fault injection, as it is not always possible to figure out when an injected

fault of the internal memory will cause difference to the outputs.

Document Number: ARM-ECM-0690721 ARM Non-Confidential

Version: 1.0 Page 17 of 17

6.5 External logic requirements

The reaction to any failures is not implemented in this example. It is an integration

decision on how to recover the system from failure upon fault detection for IP integrators.

This application note only demonstrates the DCLS example on Register Transfer Level

(RTL). However, you might want to apply other implementation techniques after the RTL

design stage. For example, you might want to use different types of ALU or floorplans to

implement the redundant logic to reduce the risk of common mode failures.

It is also feasible to incorporate DCLS with other fault detection mechanisms to further

increase the fault detection rate. Several configurable features of the Cortex-M33

processor at synthesis time are applicable to fault detection. For more details, please

refer to [3].

