
First 5G deployment of Distributed Artificial
Intelligence

Orestis Kanaris
Delft University of Technology

Delft, Netherlands
O.Kanaris@student.tudelft.nl

Johan Pouwelse (MSc Supervisor)
Delft University of Technology

Delft, Netherlands
J.A.Pouwelse@tudelft.nl

Abstract—
Index Terms—NAT, CGNAT, 5G, Distributed Machine Learn-

ing, Mobile Machine Learning

I. INTRODUCTION

II. PROBLEM DESCRIPTION

A. Background

In recent years, the proliferation of mobile devices has
reached unprecedented levels, with smartphones becoming an
integral part of everyday life. These devices have increas-
ingly powerful hardware, making them suitable candidates
for running complex machine-learning models [1], [2]. Ma-
chine learning on mobile devices holds excellent potential
for many applications, from personalized recommendations
to democratizing big tech. One can imagine a world where
every smartphone (or personal computer) holder holds their
own portion of ”Google’s” database (and computation), having
all smartphones intercommunication and share information to
complete a search result, leading to a democratized distributed
peer-to-peer search engine, cleansed from the big tech influ-
ence and hidden agendas [3].

However, deploying machine learning models on mobile
devices presents numerous challenges, including limited com-
putational resources, memory constraints, and the need for
efficient communication between devices. The main struggle
this paper focuses on is connectivity between devices since the
communication in the context of this research will be handled
by the IPv81. IPv8 is a networking layer which offers identities
and communication with some robustness and provides hooks
for higher layers.

Personal devices, specifically smartphones, communicate
through home Wi-Fi and mobile networks like 4/5G. Using
these networks, the devices usually end up behind a home
NAT or a Carrier-Grade NAT (CGNAT). The existence of
these NATs makes it harder for the devices to communicate
with each other since they lock their discoverability by hiding
the devices behind the NAT’s private network, forcing the
“NATed“ device to initiate the connection first. This is not
a particularly impossible problem if one of the two peers has
a static IP address and is discoverable. It is particularly bad

Identify applicable funding agency here. If none, delete this.
1https://github.com/Tribler/py-ipv8

when both peers are behind NATs (even worse when it is
the same NAT, a problem common with CGNATs [4]), then
both need to initiate the connection first, but none of them is
“visible“ to the other.

The STUN protocol (RFC3489 [5]) outlines four types of
NATs: Full-cone NAT, Restricted-cone NAT, Port-restricted
cone NAT, and Symmetric NAT. These categories are further
classified in RFC4787 [4] as “easy“ NATs, which employ
Endpoint-Independent Mapping (EIM), and “hard“ NATs,
which utilize Endpoint-Dependent Mapping (EDM). EIM en-
sures consistency in the external address and port pair if the
request originates from the same internal port.

As per V. Paulsamy et al. [6], the specifications for these
NAT types are as follows:

• Full-cone NAT: This EIM NAT maps all requests from
the same internal IP:Port pair to a corresponding public
IP:Port pair. Moreover, any internet host can communi-
cate with a LAN host by directing packets to the mapped
public IP address and port.

• Restricted-cone NAT: Similar to Full-cone NAT, this
EIM NAT maps an internal IP:Port pair to an external
IP:Port pair. However, communication from an internet
host to a machine behind the NAT is only allowed if
initiated by that machine.

• Port-restricted cone NAT: Also an EIM NAT, similar to
Restricted-cone NAT but with additional restrictions on
port numbers.

• Symmetric NAT: This EDM NAT maps requests from
the same internal IP:Port pair to a specific public IP:Port
pair. However, it considers the packet’s destination as
well. Consequently, requests from the same internal pair
but to different external hosts result in different mappings.

Symmetric NAT is the most “problematic“ in the sense that
it is the hardest one to establish a connection with if both peers
are behind a NAT. Symmetric NATs behave very similar to a
hard firewall; that is, they only allow incoming packets from
a specific IP:Port pair only if an outgoing packet went to that
destination first. The reason that one might use a symmetric
NAT is when the administrator does not want to consume a
single IP address per user since they theoretically allow up
to 65535 simultaneous users. Symmetric NATs also give the
fallacy of security, as in being behind a firewall since they

https://github.com/Tribler/py-ipv8


never expose the user to the whole Internet, only to hosts
that the user specifically “opted-in“ to communicate with. The
reason for this need for security is that the Internet lacks any
security model. Anybody can freely send you an unlimited
amount of data, spam, and malware [7]. A Symmetric NAT,
to the average user, will not be an obstacle to their everyday
browsing, but it becomes a big problem with peer-to-peer
protocols, i.e. BitTorrent —In their 2008 study on fairness for
BitTorrent users, J.J.D. Mol et al. [8] discovered that peers
behind firewalls encounter greater challenges in achieving
equitable sharing ratios. Consequently, they advocated for
either puncturing NAT or employing static IP addresses to
enhance network performance.

B. Research problem

The central problem of this thesis revolves around the dis-
tribution of Machine Learning on 4/5G Networks. To achieve
this, one must connect efficiently to other peers through the
cellular network.

Specifically, this project introduces the functionality lacking
in IPv8 where they have an overlay network and APIs to
connect more or less any peer devices, except when a peer
is behind a Symmetric NAT. IPv8, as it stands, cannot add in
the network peers behind this kind of NAT [9].

To overcome this limitation, this paper introduces a library
to improve the proposal of D. Anderson’s Birthday Attack
blog post [10]. According to that blog post, if both peers
send simultaneously ≈ 170000 connection-request packets,
they have ≈ 99.9% probability of connecting. This is not
entirely accurate since it doesn’t consider the size of the
NAT’s HashTable nor the timeout time of the NAT. This
paper proposes an improvement using data gathered from
each provider’s cellular data NAT, which is then analyzed to
bias the attack to increase its success rate and avoid sending
unnecessary packets that would, in turn, sabotage the attack.

The solution is a standalone open-source Kotlin library
introduced in the following sections. It is evaluated both as a
standalone library and also as part of IPv8, where the machine
learning workload of TensorFlow Lite [11] will be distributed
on Android mobile phones using the IPv8’s ecosystem.

C. Objectives

The primary objectives of this thesis are as follows:

1) Address the NAT puncturing problem to enable seamless
connectivity among devices, even when behind NATs
or firewalls, by developing a NAT puncturing library in
Kotlin.

2) Evaluate the proposed framework’s performance, scala-
bility, and resource utilization through experimental val-
idation and benchmarking on Android devices obtained
from the Tribler lab2.

2https://www.tribler.org/about.html

III. METHODOLOGY

The first step in having peer-to-peer distributed AI ap-
plications run on mobile phones using a cellular network
is establishing a connection between two (or more) mobile
phones. To achieve that communication, the communication
parameters need to be known, i.e. the type of NAT used,
timeouts and the maximum data that can be transmitted.
These parameters are extremely useful in maintaining the
communication channel and choosing connectivity strategies,
but the cellular providers do not make them available to the
public. The algorithms used to estimate these parameters are
in the first three sections of this chapter.

In order to have peer-to-peer distributed AI applications run
on mobile phones using a cellular network, one needs to first
“connect“ these mobile phones. This part builds on top of the
approach proposed by D. Anderson [10], which was analysed
further in a previous study by the same authors of this study
[9], which suggests a method for peer-to-peer communication
through the randomized exchange of packets until a successful
”match” is achieved.

Anderson’s approach of performing a Birthday attack to
reduce the number of packet exchanges performed yielded an
underwhelming success rate on the Dutch cellular providers as
discussed in section ??; thus, an analysis of the inner workings
of the NATs used by the cellular providers was performed to
utilize that knowledge and potentially increase the connectivity
(success) rate.

The implementation of all algorithms found in these chap-
ters are available in GitHub [12]

A. NAT Types

As already mentioned, Symmetric NAT can severely restrict
P2P connectivity, which is the main NAT type that requires
an alternative connectivity method. All other NAT types can
get away with having some “middle-man“ (another peer in the
case of full distribution) to keep track of the NAT mapping
(of the new peer) and communicate it to the peers wanting to
connect to them. Connecting to a NAT by trying all possible
combinations of ports is a very costly operation and thus
should be avoided whenever necessary (no peer is behind a
Symmetric NAT). A problem arises when there are no other
peers to relay information; thus, the NAT needs to be attacked
for a connection to be established.

The NAT types, determined from algorithm 1 are particu-
larly useful in the case that there is a network already establish
and information about peers can be passed around.

Algorithm 1 is based on RFC3489 [5] where the client (in
this case the mobile phone) sends a Binding Request —over
UDP— to a STUN server in order to determine the bindings
allocated by the NATs. The STUN server will respond with
a message containing the IP address and port that the request
came from. The client will then send more Binding Requests
to different ports and different STUN servers.

With the responses of these requests the client can then
determine the NAT type that they are behind by analysing
how the responses of the STUN servers changed.

https://www.tribler.org/about.html


Algorithm 1 STUN Test, NAT Type Detection, and Getting
IP Information

1: function STUNTEST(sock, host, port, sendData)
2: Initialize response data structure
3: Convert sendData to hex byte array with headers
4: Send byte array to (host, port)
5: Receive and decode response packet
6: if response matches and transaction ID correct then
7: Parse attributes like Mapped Address, Source Ad-

dress, etc.
8: end if
9: return response

10: end function
11: function GETNATTYPE(s, sourceIp, stunHost, stunPort)
12: Attempt STUN test with provided or default server
13: if initial test fails then
14: for all server in STUN SERVERS do
15: Attempt STUN test with server
16: end for
17: end if
18: Determine NAT type based on test results
19: Perform additional tests for refining NAT type
20: return NAT type
21: end function
22: function GETIPINFO(sourceIp, sourcePort, stunHost, stunPort)
23: Create socket with specified source IP and port
24: Determine NAT type using GETNATTYPE
25: Close socket
26: return NAT type, external IP, and external port
27: end function

The type of NAT used by the cellular providers tested are
shown in table III.

B. Determining NAT Timeouts

To get a clear idea of how the NAT mappings over UDP
work, one can imagine the first outgoing packet as both a
regular packet and a connection initiation message. When
this first packet is sent, the NAT that the packet was sent
from starts a timer as soon as the packet leaves. That timer
waits for a response from the receiving client, meaning that
the packet was received/accepted, and regular communication
will follow. This timer will be referred to as connection
initiation timeout throughout this section. Knowing
this parameter is very useful for the case of a fully collabora-
tive distributed network since the connection initiation timeout
is the time that the peers have to collaborate and connect the
new joiner based on the NAT mapping that the new joiner
advertised.

The second type of timeout is called session timeout,
meaning how long will the mapping remain active while there
are no outgoing or incoming packet flows? Knowing how long
the session can remain active while idle is used to determine
how often “connection maintenance“ packets need to be sent
to keep the connection alive. Once a connection is established,

it is preferred to be maintained since maintaining a connection
is much “cheaper“ than re-establishing one.

The reason that the two are separated is because usually the
connection initiation timeout is much smaller than the session
timeout.

Starting with determining the connection initiation timeout,
initially, algorithm 2 establishes a lower and an upper bound
on the time that the mapping will remain active while waiting
for a response. This is achieved by sending a packet to the
server, which the server waits a fixed amount of time before
sending a response. The time the server waits is incremented
by a fixed number after each packet is received. When no
response is received by the mobile phone —meaning that the
NAT mapping disappeared— the time that the server waited
to send the response is the upper bound of the timeout. The
wait time of the last received packet will be the lower bound.

When the bounds are established, a binary search (algorithm
3 is performed on those bounds to find the precise —down to
the second— timeout of the NAT.

Algorithm 2 Function to find the connection initiation timeout
upper and lower bounds

1: function CONNECTIONINITIATIONTIMEOUTBOUNDS
2: delay ← 0
3: INC ← IncrementationConstant
4: create UDP Socket
5: do
6: delay ← delay + INC
7: sendUDPPacket(delay)
8: while timeoutMsgRcvr(delay) is true
9: ConnectionInitTimeBinary(delay − INC, delay)

10: end function

Algorithm 3 Binary search on the timeout interval to get
accuracy to the second

1: function CONNECTIONINITTIMEBINARY(l, r)
2: while l ≤ r do
3: delay ← (l + r)/2
4: sendUDPPacket(delay)
5: responseRcvd← timeoutMsgRcvr(delay)
6: if responseRcvd then
7: l← delay + 1
8: else
9: r ← delay − 1

10: end if
11: end while
12: return l, r
13: end function

The algorithm for determining the session timeout, is very
similar to the one for connection initiation timeout; Initially,
algorithm 4 establishes a lower and upper bound on the
idleness time of a connection. The algorithm works as follows:
The client sends a packet to the server, and the server responds
with the port number from which the client sends it. Then,



the client waits a fixed amount of time until it sends the next
packet. The wait time is incremented by a fixed number after
each packet is sent. The client compares the port in the body of
the server’s response i.e. the port that server believes that the
client sent the message from. If the port in the latest response
is not the same with the the one in the previous means that
the mapping timed out and a new one was created.

When the bounds are determined, a binary search is run
within those bounds to precisely determine the expiration time
down to the second as shown in algorithm 5.

Algorithm 4 Function to find how the lower and upper bound
of how long a NAT mapping is active while there is no
incoming or outgoing packets

1: function SESSIONTIMEOUTBOUNDS
2: delay ← 0
3: INC ← IncrementationConstant
4: create UDP Socket
5: prev port← null
6: do
7: wait(delay × 1000)
8: sendUDPPacket(”TIMEOUT − TEST”)
9: resp← timeoutMsgRcvr()

10: port← extract port(resp)
11: if prev port = null then
12: prev port← port
13: end if
14: delay ← delay + INC
15: while prev port = port
16: l← delay − (2× INC)
17: r ← delay − INC
18: SessionTimeoutBinary(l, r)
19: end function

The results of multiple runs of these algorithms on different
cellular providers can be seen in section VI-C.

C. Maximum Transmission Unit

The maximum transmission unit (MTU) denotes the maxi-
mum size of a single data unit that can be sent in a network
layer transaction. MTU is related to the maximum frame size
at the data link layer (such as an Ethernet frame).

A larger MTU is linked with reduced overhead, allowing
more data to be transmitted in each packet. Conversely, smaller
MTU values can help decrease network delay by facilitating
quicker processing and transmission of smaller packets.The
determination of the appropriate MTU often hinges on the
capabilities of the underlying network and may require manual
or automatic adjustment to ensure that outgoing packets don’t
exceed these capabilities.

A jumbo frame is an Ethernet frame with a payload greater
than the standard maximum transmission unit (MTU) of 1,500
bytes.

Algorithm 6 is used to determine the MTU of each provider
by running this algorithm each time with different sim cards
from different providers. The algorithm is a binary search

Algorithm 5 Function to find exactly how long a NAT
mapping is active while there are no incoming or outgoing
packets

1: function SESSIONTIMEOUTBINARY(l, r)
2: sendUDPPacket(”TIMEOUT-TEST”)
3: response← timeoutMessageReceiver()
4: latestPort← extract port(response)
5: while l ≤ r do
6: midpoint← floor((l + r)/2)
7: delay(midpoint ∗ 1000)
8: sendUDPPacket(”TIMEOUT-TEST”)
9: response← timeoutMessageReceiver()

10: port← extract port(response)
11: if latestPort = port then
12: l← midpoint+ 1
13: else
14: r ← midpoint− 1
15: latestPort← port
16: end if
17: end while
18: return r, l
19: end function

Algorithm 6 Function to find the Maximum transmission unit
of a provider

1: function FINDMTU
2: icmp← new Icmp4a()
3: left← 0
4: right← 65507
5: while left < right do
6: midPoint← floor((left+ right)/2)
7: result← icmp.ping(packetSize = midPoint)
8: switch result do
9: case Success

10: left← midPoint+ 1

11: case Failed
12: right← midPoint− 1

13: end while
14: return right
15: end function

which tries to find the precise number of bytes, where one
more byte will cause the packet to be split into two. Table V
shows the MTU of the different providers tested and whether
they support Jumbo frames.

D. Simple Birthday Attack

The rule for communicating in a NATed network is that the
person behind the NAT must initiate communication first. The
assumption is that the Internet works mainly in a Client-Server
fashion where the Server is discoverable (has a Public Static
IP address). This assumption breaks in the case of peer-to-
peer communication between two clients behind a NAT since
none are discoverable, no one can initiate the communication.



Algorithm 7 Simple Birthday Attack

Require: On packet received, send an ACK
Require: On packet received, ack rcvd← True
Require: On packet received, store senders port

ack rcvd← False
open UDP socket
msgs sent← 0
UUID ← generate UUID()
packet← create packet(UUID)
while msgs sent < 243587 and no ack rcvd do

port← getrandomport()
send packet(port, packet)

end while
if ack rcvd then

maintain connection(IP, port no)
else

Birthday Attack was unsuccessful
end if

A solution to this is as explained in [9], [10]. Both peers
should send packets to random ports until a ”match” is
achieved. A match is when peer A sends a packet from port
X to port Y, and peer B sends a packet from port Y to port
X in a timeframe smaller than their NAT’s timeout. One can
understand that the probability of this match is 1

655352 , which
is almost impossible to achieve given restrictions that will
be imposed by the providers when a huge amount of rapid
requests will be fired towards the NAT, let alone it will take
a lot of time.

This can be improved using a Birthday Attack, which is an
attack built on the Birthday Paradox [13], a counterintuitive
probability theory concept that states that in a group of just 23
people, there’s a better than 50% chance that two people share
the same birthday. This might seem surprising, as intuition
might lead one to think that with 365 days in a year, it would
require many more people to have such a high probability of
a shared birthday. The paradox arises because we’re not just
looking for a specific birthday match but any pair of people
with matching birthdays. The probability of any two people
not sharing a birthday decreases as more people are added to
the group, and the opposite, the probability of at least one pair
sharing a birthday increases rapidly.

The birthday paradox can be used to reduce the number
of combinations of sender port, receiver port while main-
taining a satisfactory match probability. From the Birthday
Paradox calculator [14], one can get a 50% success rate of a
match after sending 77162 packets, and for a 99.9% success
rate, 243587 packets are needed. Due to the nature of NATs
(timeouts and a limited number of mapping maintained), these
probabilities are unlikely to occur, but this would be the case
even if all combinations are attempted.

Using the numbers above, an Android application [12] was
developed to attempt to connect two mobile peers using 4/5G
(which is by default using a NAT) using algorithm 7.

The results of the evaluation of 10 runs per provider are

shown in table I. A green S signifies that sometime during the
Birthday Attack (a set of 243587 random requests), one went
through, and communication was established. An F means
no attempt went through; thus, the birthday attack failed.
The evaluation of the simple birthday attack did not show
auspicious results. The first conclusion that can be derived
is that whether the attack will lead to a connection is very
dependent on the cellular provider pair. As one can see, when
Vodaphone was one of the peers, there was always a successful
attack. Another fascinating result is that only the Vodaphone
connected with itself, i.e., two peers using the same provider
achieved connection, which was also the trial with the most
successful connections.

These aside, a very small part of the trials resulted in at
least one successful connection, although many of the provider
combinations never succeeded. Even once they manage to
eventually succeed at connecting, it is not satisfactory since
one successful attempt out of ten makes this protocol costly
in terms of cellular data used and time inefficient since
coordinating two users to start attacking at the same time is
already hard and error-prone on its own, doing it multiple
times to achieve a single connection will deem the algorithm
not very useful.

E. Improving the Birthday Attack

Given the complexity and the cost of cellular data and time,
the success rate of the simple birthday attack, as shown in
table I, is unsatisfactory; after multiple hypotheses on how
to improve the connectivity based on time of connection,
area, etc. The most prominent idea that the research team
came up with is to understand the inner workings of each
NAT, i.e., discover how the mapping works, whether there
are any consistent patterns followed, etc. and then use that to
predict what will be the next ports that each NAT will map
the requests to. So instead of trying to connect to random
ports of the peer, make a prediction —partially based on the
NAT’s inner workings, partially random, to enable exploration
and exploitation— of what port the peer’s NAT will map to
and attempt that. The peer will do the same, thus potentially
increasing the probability of connecting. This will still be
attempted based on the Birthday Paradox 99.9% probability
of success, i.e. 243587 attempts.

To understand the inner workings of the NATs, it was first
assumed that no provider uses the same NAT (in terms of
configuration) since it was observed from different experi-
ments, i.e. NAT timeouts, that even though there are some
standards on how a NAT should be configured such as RFC
2663 and 4787 [4], [15] it is not necessarily followed; thus
an Android mobile client and a Kotlin server were developed
[16] to gather data on each provider that a SIM card could
be easily acquired by visiting the country, buying SIM cards
and gathering data on their local network. The mobile client
sends packets containing a UUID3 to the server from random
mobile ports to random server ports. The UUID, a timestamp,

3https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html



Odido Lebara LycaMobile VodaFone KPN
Odido F,F,F,F,F,F,F,F,F,F - - - -
Lebara F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F - - -
LycaMobile F,F,F,F,S,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F - -
VodaFone F,F,F,S,F,S,F,F,F,F F,F,F,F,S,F,F,F,F,F F,F,F,F,F,F,S,F,F,F F,F,F,S,S,F,F,S,F,S -
KPN F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F

TABLE I: Results of 10 consecutive simple Birthday Attacks for each pair of cellular providers (F= No connection, S =
Successful connection sometime during the attack)

and the source and destination ports are saved in a CSV file for
each packet sent. The server, which lies behind an unrestricted
network having its own static IP address, does the same; once
a packet is received, it stores the UUID (which is in the body
of the packet), the port that the mobile sent it from (NAT
mapping), and the port that the server received it from together
with a timestamp on when the packet was received. The two
CSVs are then inner-joined on the UUID column, resulting in
two crucial columns: the port the mobile believes it sent the
packet from and the port the packet came from, i.e. the exact
NAT mapping.

To figure out the algorithm behind each mapping, i.e. what
drives the decision-making on which port maps to which and
when, a manual Exploratory Data Analysis (EDA) [17] is
performed [18] to uncover the hidden inner workings of each
NAT. The questions that the EDA aims to answer are:

1) Is the first port mapping completely random?
2) Is the mapping following some pattern?
3) Does the pattern, if it exists, depend on the port choices,

sender or receiver? Is it time-based?
4) For how long is the pattern being followed, and if it

changes at some point, why?
To answer these, different tests are performed while trying
to make sense by visualizing the data or analysing time
or population-based windows. The results of this EDA are
explained in section VI-A.

Using the findings of the EDA, a new connectivity library
was developed. The algorithm is very similar to algorithm 7
used for the simple birthday attack, with two major differences.
First, instead of choosing a random port to send to, it chooses
the port based on the peer’s port-choosing algorithm shown
in table II. This means that to have a higher probability of
connecting to some peer, one needs to know the provider
from which the peer is connected. The second difference is
that the phone opens one hundred random ports and listens to
all of them simultaneously —this, though, has the side effect
of sometimes overloading the phone’s CPU and using a lot
of memory. Thus, some experiments ended in no connection
since the CPU threw an exception).

IV. SYSTEM DESIGN

V. IMPLEMENTATION

VI. EVALUATION

A. Inner workings of NATs

This chapter presents the inner workings of cellular data
NATs across various cellular providers, emphasising the five

main Dutch cellular providers: KPN, Vodafone, LycaMobile,
Lebara, and Odido (ex-T-Mobile Netherlands). This chapter
presents the unique mechanisms each NAT employs through
reverse engineering of the mappings and the behaviours of
those NATs, as explained in the previous section. It is shown
that each provider uses a different algorithm for the mapping
and has different parameters in terms of timeouts and MTUs.
By analysing these behaviours, they can be utilised to achieve
the goal of a successful connection between different peers on
5G from different networks without having any middleman
assisting the connectivity. The steps taken to analyse the
mappings are freely available on GitHub [18] and presented
in table II.

This chapter first presents and analyses the mapping algo-
rithms of the leading Dutch cellular providers, followed by the
timeouts and the MTU of all the tested carriers. It continues
with a section explaining some problems encountered because
of roaming, resulting in the abandonment of this project’s
ambitious goal, which measured the time it would take to
connect from any provider tested to any other. Finally, the new
library for connectivity was tested. The results are analysed
to determine whether the new approach for connectivity that
utilises the knowledge of the inner workings of the NATs
indeed improved the success rate of connecting each Dutch
carrier compared to the success rate of the simple birthday
attack presented in section III-D.

1) Lebara Netherlands: When analysing Lebara, the initial
observation was that many sender ports (the server sees them
as return addresses) seemed to follow a linear pattern. Initially,
some random port was chosen, then the next port would be
the adjacent, and so on, until a condition was met that would
cause it to choose a new random port to start with and then
get the consecutive ones, and so on.

It was also observed that the initial random ports were often
reused multiple times in the same session, making the first port
very significant since it would be observed the most during
the connection attempt. Still, those specific numbers were not
common across runs. For example, if the first port open were
port 12800, that and the next x ports would be seen multiple
times across the attempt. It is the same with the second, third,
random, and consecutive ports, but not as frequently.

One can see from figure 1 that the port mapping follows
a pattern. It starts from the 3625 region —region since it is
not the actual starting port—, stays in that region for a bit
(incrementing the port numbers by 1), chooses other random
regions and then goes back to the 3625 region. One can also
notice that the intervals between NAT defaults back to the



Fig. 1: Port mapping through time on a single Lebara run of
≈ 128 minutes

3625 region are more or less constant.
Another observation was when observing the length of the

linear increases. During low traffic hours, what was strongly
observed (more than peak network traffic hours) was that the
initial “random“ port’s number was a multiple of 256 (28),
then the next 255 consecutive ports will be used, and then
another random starting port (again multiple of 256) will be
used and so on as can be seen in figure 2.

This NAT behaviour is consistent with the findings of
Microsoft in 2011 [19] but builds on top of it, discovering
that address blocks in the case of Lebara (and KPN, as is
explained later) are also usage-based and not only time-based.
This means that a user will remain on that port block until
either the port timeout or the user consumes all the ports
available in the block, including the whole block, in low-traffic
hours.

The assumption is that consecutive ports are grouped in
groups of size 256. The number of groups cannot be inferred
since not all ports were observed, but it seems to span the
whole space of 65535 ports. Thus, it is assumed that there are
256 groups of 256 ports. The ports are probably grouped in
queues, and users are assigned to queues. They consume port
mappings until the queue runs out of available ports; then,
they are assigned to another queue. When the ports are freed
or timed out, they return to their queue.

The strategy of who is assigned to which block cannot yet
be inferred. The two theories are based on the number of
consumers in the block or based on the number of free ports
(not currently used) in the block. Both of these strategies are
reasonable because the same ranges are consumed repeatedly
since they time out, and the block gets full again, and no one
has been using it since it was empty.

Both strategies are also validated throughout the day. On
low traffic hours, the test phone was assigned a full block,
which may be either because of the number of free ports in

Fig. 2: Frequency of consecutive port numbers used by Lebara

the block or because no one else was consuming —since the
test was performed in the morning hours, in a residential area.
For example, the phone can often get many consecutive ports
during peak traffic hours on the university campus. This means
there is some strategy on the NAT to give the user access to
as many ports as possible in case they need it, again, either
through the number of consumers on the specific block or
based on the number of available ports on that block. No
theory can be ruled out or verified since the number of users
in each tower and their mapping behaviour are unknown. A
future test to get a definite answer is presented in section VII-A

By the end of the data gathering and analysis of the NAT
parameters of Lebara’s NAT, the SIM used was deprovisioned
with no warnings. After trying to use the SIM card a week later
(which also had some credit left), and after multiple attempts
on different days, it could not find the Lebara network to
connect to, and attempts to connect to any other network, such
as KPN’s, were rejected. Attempting to call service numbers
or run USSD codes led to a message saying the card was not
activated. Attempts to reactivate the SIM card led to errors.

2) KPN: KPN behaves exactly like Lebara in that ports
are grouped in groups of 256 with consecutive port numbers.
The main difference between KPN and Lebara is that KPN
has more infrastructure than Lebara —since Lebara is renting
infrastructure from KPN with the model of mobile virtual
network operator (MVNO)— thus, as one can see in figure
3, the test phone managed to consume much more groups of
256 consecutive ports in its entirety than on Lebara. This is
likely because of the difference in the number of users per IP
address.

The number of subscribers on a single KPN hardware/
IP address makes KPN significantly more predictable than
Lebara. During the testing period, the test phone consumed
a port group in its entirety 32.3% of the time. On top of
that 36.9% of the time, the phone got assigned to a group
where the initial port was available (the port number was



Fig. 3: Frequency of consecutive port numbers used by KPN

divisible by 256). This observation gives birth to a strategy of
trying port numbers divisible by 256. This may significantly
increase the probability of a collision since in the time needed
for the phone to attempt all 256 port numbers divisible by
256, if no interruption occurs, all mappings will remain active
simultaneously.

3) LycaMobile Netherlands: LycaMobile, although utiliz-
ing the KPN network, employs a different strategy for its
address mapping than KPN. After analyzing ≈ 288000 map-
pings, the mapping algorithm is estimated to be random. The
smallest port number used was 2048, and the biggest was
65535; hence, it uses the whole available space, with the
first 2048 being reserved. Out of the 288000 mappings, there
were ≈ 51000 unique mappings. Most of the time, the same
port number was opened 22 times across 3 different runs.
Analysing the frequency of when the port appeared again
showed no consistency since the intervals in which the port
was reopened ranged from 85 seconds (the earliest) to 5980
seconds (the latest), meaning no mapping or port number
was algorithmically reused. This lack of consistency and no
linear incrementation on the mappings shows that the address
mapping strategy of the NATs of LycaMobile Netherlands is
First Come, First Serve on available ports.

Another interesting finding is that the port was reopened
after 85 seconds, which is not consistent with Lyca’s port
timeout, as explained in the following section. This behaviour
hints that a port can timeout earlier if there is a need for
it, either because of a lack of available ports or because the
subscriber utilised more ports than what their share is.

The analysis showed that LycaMobile employs a pool of all
available ports that all network subscribers subscribe to and
“consume“ free ports in the [2048, 65535]. When a port is
freed, it returns to the pool. There is no indication of the port
numbers being sorted, or eventually sorted in that pool, since
consecutive ports were rarely consumed, even on low traffic
hours, making it a coincidence.

4) Vodafone Netherlands: For Vodaphone, more than 900
thousand mappings were collected and analysed. It is shown
that Vodaphone is not following the KPN, Lebara model of
dividing ports into blocks of 256, and it was not similar to
LycaMobile, which assigns the user a random port.

This led to a series of tests since the graph of fre-
quency mappings resembled a normal distribution. Performing
a Shapiro-Wilk test [20] showed that it is not a normal
distribution; further examination determined that it could fit
a beta distribution. One can see in figure 4 how well the
beta distribution (orange) fits on the frequency of mappings
of Vodafone (blue).

Fig. 4: Beta Distribution fitting on Vodafone’s mappings

The beta distribution is a continuous probability distribution
defined on the interval [0, 1]. Two shape parameters character-
ize the distribution, typically denoted as α, β; these parameters
control the shape of the distribution. Alpha influences the
shape of the distribution towards higher values, and beta
influences the shape of the distribution towards lower values
[21]. Two more parameters can be used, which in this case
were very useful, i.e. the location parameter, which specifies
the location or shift of the distribution along the x-axis and the
scale, which determines the scale or spread of the distribution
along the x-axis.

The empirical Beta distribution derived is:
Y ∼ B(α, β, loc, scale) = B(2.242, 5.008, 4630, 13937)

5) Odido: Odido’s NAT randomly selects the port to map
to. The unique property of Odido’s mapping is that after
analysing 493982 mappings, only 9920 ports were used by
the NAT. The problem is that these mappings are scattered
around the possible ports space, contrary to Vodafone only
using consecutive ports. The histogram of the mappings of
Odido is shown in figure 5.

Analyzing the hits of Odido, an algorithm suggestion for
penetrating Odido’s NAT is first to merge consecutive bins
with a frequency of more than 30 (which is in the middle of
the frequencies). Merging is performed to increase the space
and not over-specify the algorithm since many results are time-



Fig. 5: Histogram of the output of Odido’s mapping strategy

dependent. After merging the bins and creating the ranges, an
exploitation exploration strategy will be used where, based on
some weights —Odido demonstrated good results with a 40-
60 weight allocation— the next port will be chosen 40% of
the time, the weight will come from those established ranges
and 60% of the time it will be a random port from the range
[2048, 65535]4. It was tested once it was decided that the next
port should come from one of the bins and whether it was
better to choose a bin based on its frequency on the histogram.
This strategy gave worse results due to added delay because
of the number of bins or because the algorithm is over-fitted;
thus, the decision to allow the bin choice to be random.

A high-level description of the inner workings of each NAT
analysed in a mathematical notation can be seen in table II

B. Nat Types

Knowing the NAT type of the carrier one is using, and
the one of the peer they want to connect to allows one to
adapt their connectivity strategy to increase the chance of
connecting. Different strategies should be adopted based on
the types, i.e. a Symmetric NAT requires a Birthday Attack to
connect. In contrast, one can easily connect with a peer behind
a Full-Cone NAT using a STUN server or some peer acting as
a middleman relaying information to the rest of the network.
The types of the NATs of various carriers are presented in
table III.

C. Timeout of NATs

Analyzing the NAT timeouts showed two crucial things.
First, roaming highly influences the timeout, as seen from
the results of the Norwegian cellular carriers and Belgium’s
LycaMobile. Second, the timeouts are multiples of a minute,
a behaviour that is to be expected. Still, it also shows that
designers did not optimize the timeouts to the full extent since

4The bins and the full implementation of the algorithm can be found in the
library presented section VI-F

it is highly unlikely that the optimal timeout is nicely rounded
to the minute.

Table IV can be interpreted as LB being a lower bound
and UB being an upper bound. Bounds are used since, due
to network delays, it is hard to know which of the two
is the actual timeout. On the left side is the timeout for
how long the mapping will remain active when the recipient
does not receive an initial response. On the right side is
the communication timeout, i.e., communication is established
(initial response is received) but is currently idle. The timeouts
of each cellular provider don’t differ significantly except for
the two extremes, which are Lyca of Belgium being unable
to establish a connection while roaming and CytaMobile of
Cyprus having an enormous session timeout of half an hour.

D. Maximum Transmission Unit

Knowing a carrier network’s Maximum Transmission Unit
(MTU) offers several advantages. Firstly, it helps optimize net-
work performance by determining the largest packet size that
can be transmitted without fragmentation, reducing overhead
and latency. Additionally, understanding the MTU enables
efficient bandwidth utilisation, as smaller packets may lead
to increased overhead and decreased throughput.

As for jumbo frames, their presence further enhances
network efficiency by supporting larger packet sizes than
standard MTU, thereby reducing the overhead of transmitting
data. However, it’s important to ensure compatibility with
all devices and networks involved to leverage jumbo frames’
benefits fully.

The MTU of various carriers and whether their network
supports jumbo frames is presented in table V. Notable
findings are the Dutch Lebara and the Norwegians Telia and
MyCall, which have an MTU of 65507, a big difference from
other providers, even if they support jumbo frames. Findings
regarding MTU across cellular providers show no consistency
across carriers, especially those who chose to allow Jumbo
Frames, since the three who happen to have the same jumbo
frames (65507, which is also the maximum possible PING
payload), the ones who do not allow Jumbo Frames are
arbitrarily close to the threshold of 1500 bytes.

E. Roaming

Roaming is significantly hindering the success of a connec-
tion attempt between two peers. No definite reason is derived
on why roaming hinders connectivity since many parameters
of the NATs change when roaming. Some observations of
behavioural and parameter changes are:

1) Telia and MyCall Norway: Telia and MyCall of
Norway both had a 120-second timeout for connec-
tion initiation —measured in the Oslo airport. When
measured in Delft, Netherlands (both tunnelling through
LycaMobile), the timeout fell to 5 seconds and 19
seconds, respectively, showing that roaming changes the
timeout configuration.

2) LycaMobile Belgium: LycaMobile Belgium’s connec-
tion initiation timeout measurement failed when mea-



Country Name Algorithm Infrastructure Owner ID Required

Netherlands KPN

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]fori = 0, 1, . . . , 255

The user is randomly assigned to a block Bi, which has available port numbers
When Bi has no more available ports, the user is assigned to Bj , etc.

✓ ✓

Netherlands Lebara

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]fori = 0, 1, . . . , 255

The user is randomly assigned to a block Bi, which has available port numbers
When Bi has no more available ports, the user is assigned to Bj , etc.

KPN ×

Netherlands LycaMobile Random Sampling from the block [2048, 65535] KPN ×

Netherlands Vodafone Beta Distribution:
Y ∼ B(α, β, loc, scale) = B(2.242, 5.008, 4630, 13937)

✓ ×

Netherlands Odido Semi-Random Sampling from the block [2048, 65535]
Sampling strategy is analysed in VI-A5 ✓ ×

France Orange Random Sampling from the block [1, 65500] ✓ ✓
France SFR Random Sampling from the block [1025, 65535] ✓ ✓

Belgium Orange ✓ ✓
Belgium LycaMobile TeleNet ✓
Norway Telia ✓ ✓
Norway MyCall Telia ✓
Cyprus Epic ✓ ×
Cyprus Cyta ✓ ×
Cyprus Primetel ✓
Cyprus Cablenet ✓

TABLE II: The algorithm each carrier uses, in mathematical notation, and the ease of obtaining a SIM card from them.

Provider Type Area
Odido NL 4G Symmetric Echo Tu Delft NL
LycaMobile NL 4G Full Cone Echo Tu Delft NL
LycaMobile NL 5g Full Cone Echo Tu Delft NL
Vodaphone NL 4G Restrict Echo Tu Delft NL
Vodaphone NL 5G Restrict Echo Tu Delft NL
KPN NL 4G Symmetric Echo Tu Delft NL
Lebara NL 4G Restrict Echo Tu Delft NL
Orange BG 4G Symmetric Schaarbeek Brussels BG
LycaMobile BG 4G Restrict Schaarbeek Brussels BG
MyCall NO 4G Full Cone Oslo Airport NO
Telia NO 5G Restrict Oslo Airport NO
Telia NO 4G Restrict Oslo Airport NO
Cyta CY 4G Restrict Aglantzia, CY
Epic CY 4G Symmetric Aglantzia, CY

TABLE III: Nat Types of all the carriers tested and the location
of the test

sured in Delft, Netherlands, since no response reached
the phone. After multiple attempts on different days to
measure the timeout with no success, it’s concluded that
the timeout is so small that even the slightest network
delay will lead to a timeout. This does not make sense to
be the standard behaviour since it can lead to a very bad
user experience. Also, since no provider tested in their
local network has such a tiny delay, it is concluded that
some providers’ timeout changes when roaming.

3) Vodaphone Netherlands: A birthday attack between
two phones on the Vodaphone NL network where each
phone is choosing random ports (each attack was com-
prised of 170000 attempts) led to a success rate of
4 out of 10 attempts (an attempt is a full birthday
attack, all 243587 requests and a success means that in
those 243587 packets sent, at least one was received).
Upon attempting to re-measure this from Cyprus (thus,
the two phones would be roaming to the Vodaphone

NL network through Cyprus’ CytaMobile-Vodaphone
network) using the same code at a low traffic hour,
there were zero successful birthday attacks in ≈ 4 hours
worth of attempts (each attempt takes between one and
two minutes). This is a total decrease in the success
rate of connection initiation. Such a decrease shows that
although on the surface, when roaming, everything looks
the same, in actuality, there are significant differences.
Note that when Vodaphone was tested while roaming,
the timeout and NAT types remained the same.

An initial vision of this project was to derive and present a
matrix showing how much time is required for each European
cellular provider tested to connect. As soon as at least one
phone is roaming, the success rate of a birthday attack falls
almost to zero. There was no successful connection between
roaming peers, although theoretically possible.

Multiple attempts were made (with proven working soft-
ware), with various roaming provider combinations, including
one of the two phones running on WiFi with no one leading to
a successful connection. However, instant successful attempts
exist when both phones are on local networks.

These experiments ran for ≈ 1 week, leading to no success-
ful connection between roaming cellular providers, showing
that some roaming feature(s) hinder entirely the connectivity.
No conclusion is made on whether the connectivity is impos-
sible, but it is not possible with the current implementation
in a reasonable timeframe; thus, the vision of a cross-cellular-
provider time-to-connect matrix is postponed.

1) Roaming makes birthday attack-based connectivity al-
most impossible: This section quantifies the difference in
time needed to connect two peers roaming versus two peers
on the local Telia network in Norway. Starting with the
roaming case, assume the best-case scenario in which the
person roaming is the only one using the roaming tower for



Connection Initiation Timeout Session Timeout
Provider LB(s) UB(s) Server Port Location Tunnel LB(s) UB(s) Server Port Location Tunnel

Lebara NL 120 121 2000 Echo TuD - 240 241 2000 Echo TuD -
Lyca NL 120 121 2000 Echo TuD - 120 121 2000 Echo TuD -

Odido NL 120 121 2000 Echo TuD - 119 120 2000 Echo TuD -
Vodaphone NL 302 303 2000 Echo TuD - 299 300 2000 Echo TuD -

KPN NL 120 121 2000 Echo TuD - 239 240 2000 Echo TuD -
Orange BG 58 59 2000 Echo TuD Odido 60 61 2000 Echo TuD Odido
Orange BG 59 60 2000 Echo TuD Lyca NL 57 58 2000 Echo TuD Lyca NL

Lyca BG F F 2000 Echo TuD Lyca NL F F 2000 Echo TuD Lyca NL
Telia NO 120 121 2000 Oslo Airport - - - - - -
Telia NO 5 6 2000 Echo TuD Lyca NL 300 301 2000 Echo TuD Lyca NL

MyCall NO 120 121 2001 Oslo Airport - - - - - -
MyCall NO 19 20 2001 Echo TuD Lyca NL 299 300 2001 Echo TuD Lyca NL

CytaMobile CY 59 60 2000 Aglantzia, CY - 1800 1801 2000 Aglantzia, CY -
Epic CY 239 240 2001 Aglantzia, CY - 240 241 2001 Aglantzia, CY -

TABLE IV: Timeouts of various carriers in seconds. On the left side are timeouts for waiting for communication to be
established.

Provider MTU (BYTES) Allows Jumbo Frames? Area
Odido NL 4G 3972 Yes Echo Tu Delft NL
Lebara NL 4G 65507 Yes Echo Tu Delft NL
LycaMobile NL 4G 1473 No Echo Tu Delft NL
Vodaphone NL 4G 1437 No Echo Tu Delft NL
KPN NL 4G 1445 No Echo Tu Delft NL
Orange BG 4G 1472 No Schaarbeek Brussels BG
LycaMobile BG 4G 42987 Yes Schaarbeek Brussels BG
MyCall NO 4G 65507 Yes Oslo Airport NO
Telia NO 5G 65507 Yes Oslo Airport NO
Telia NO 4G 65507 Yes Oslo Airport NO
Cyta CY 4G 1473 No Aglantzia, CY
Epic CY 4G 4433 Yes Aglantzia, CY

TABLE V: The MTU of various carriers and whether they accept Jumbo frames at the location of testing

the whole duration. The roaming peers are assumed to be in
Cyprus for the experiment using a Samsung Galaxy A53 5G
(SM-A536B/DS).

There are three significant variables, i.e.

• p ≈ 2.98: processing time
• l ≈ 79.20ms: average network latency Limassol to Oslo

[22]
• P = 64511: number of available ports, all ports except

the first 1024 are available

When each phone sends a packet, the NAT each is sub-
scribed to, i.e., NAT A and NAT B, creates a NAT mapping;
let those mappings be XA, XB , respectively. In the case of
roaming Telia, XA, XB have a connection initiation timeout
of 5 seconds.

The algorithm tries different ports of the peer’s NAT by
sending packets to random ports of the peer. The packets are
sent at a rate of one every p milliseconds. Let the ports that
the packets are sent to be YB if the packet is sent to phone
B or YA if the packet is sent to phone A. The algorithm
aims to cause a collision while mappings remain active, i.e.,
attempt (XA, YB) = (YA, XB) in the 5-second window that
the mappings remain active. The probability of such collision
is: P ((Xa, Ya) == (Yb, Xb)) =

1
645112 ≈ 0.00000000024.

As mentioned, each mapping has a time-to-live of 5 seconds
minus the latency. In that 5-second minus latency window,
the phone can attempt Y = 5000

p ≈ 1678 ports. Thus, the

probability of a successful collision in a single window is
P (CollisionInWindowroaming) = Y

645112 = 1678
4161669121 =

0.0000004032. A new window is created every l milliseconds,
meaning that worst case is 1

0.0000004032 = 2480159 windows
are needed, meaning (2480159∗ l) ms which is approximately
54.6hours.

On the contrary, if there was no roaming involved (still with
Telia Norway), this time, peers are assumed to be physically
in Norway, and the three variables become:

• p ≈ 2.98: processing time
• l ≈ 23ms: average network latency of Telia Norge in

Norway [23]
• P = 64511: number of available ports remain the same

The probability of a single collision remains the same, but
the time-to-live of a message is larger (≈ 120 seconds); thus,
more attempts can be made in a single window. In that 120-
second minus latency window, it can attempt Y = 120000

p ≈
40269 ports. The probability of a successful collision in a
window thus is P (CollisionInWindowlocal) = 40269

645112 =
0.00000967616.

In the worst case,≈ 103347 windows are needed, and since
a window is created every ≈ l milliseconds, then the worst
case time needed for a birthday attack on Telia Norge in their
local network in Norway is 103347 ∗ l = 39.6 minutes.

These simplified calculations of two best-case scenarios for
the time needed to penetrate the NAT while on the local



network or roaming demonstrate that roaming requires at least
82× more time than running it on the local network.

F. Cellular Provider Aware NAT Puncturing

After gathering the NAT mapping data from various cellular
providers and converting them into algorithms, they were im-
plemented in Kotlin and integrated into a connectivity library
[24], which has the capability of connecting to multiple peers
at once by continuously sending them CONNECTION-INIT
packages from multiple open ports and waiting for a response
to be received. The connectivity attempts are made asyn-
chronously; thus, it does not block the main frame of the app
that the library will be integrated with, allowing the user to
continue using the app until the connections are established.
If a response is received, the ID, IP address and port of the
connected peer and the source port (where the connection
was established) are returned —again asynchronously. The
app implementing the library can then use it to send any
message, depending on the use case. The library periodically
sends CONNECTION-MAINTENANCE packets based on the
peer’s connection timeout to keep the connection active until
the implementing app uses it. Those maintenance packets
will continue to be sent until the implementing app stops
the functionality if it has some implementation that monitors
and maintains active peer connections. A demo app5 was
developed to test and evaluate the success rate of the new
library compared to a simple random birthday attack. The
evaluation results of 10 runs per Dutch cellular provider using
the provider-aware NAT puncturing are shown in table VI.
From the table, one can deduce that four more combinations
succeeded in at least one successful connection establishment
compared with the random birthday attack: Odido-Odido,
Odido-Lebara, Lebara-Lebara and VodaFone-KPN. Odido-
Vodafone resulted in no successful connections even though
two successful connections were achieved using the random
birthday attack, and VodaFone-VodaFone resulted in one less
successful connection. Although the connectivity rate im-
proved, a hypothesis test was developed for each cellular
provider combination to determine whether the improvements
were statistically significant.

The Hypothesis testing will be performed using Fisher’s
exact test due to the small sample size of connectivity attempts
[25]. The hypotheses are as follows: the null hypothesis will be
that the proportion of successful NAT punctures using cellular
aware NAT puncturing compared to random birthday attack
has not increased H0 = Prandom ≤ PCellularProviderAware.
The alternative hypothesis is that the proportion of success-
ful NAT punctures has increased using the cellular provider
aware method compared to the random birthday attack H1 =
Prandom < PCellularProviderAware. The significance level
that will be used is 0.05. If the p-value derived by Fisher’s
exact test is less than the significance level, the null hypothesis
(H0) is rejected. Otherwise, the alternative hypothesis is
rejected. Table VII shows the p-value results of the Fisher’s

5https://github.com/OrestisKan/bday-demo-app

Exact test, with the four cells highlighted in Green being
the combinations where the alternative hypothesis is accepted,
meaning that the cellular provider aware NAT puncturing per-
formed significantly better compared to the random birthday
attack based NAT puncturing.

The results of cellular provider-aware NAT puncturing,
although a few times showed that it improved the connectivity
rate statistically significantly, did not make it worse. Since the
inverse, Fisher’s exact test (H1 being that random birthday
attack has a higher proportion of successful results) would not
be accepted in any provider combination of the ones tested.

VII. DISCUSSION AND FUTURE WORK

This exploratory study on the inner behaviour of NATs
showed various interesting properties. First of all, no NAT
implementation is exactly the same, although carriers that
operate a mobile virtual network operator (MVNO) model
like Lebara Netherlands, which uses KPN’s network, have
an implementation exactly the same as KPN, hinting that
potentially they allow KPN to handle everything and route the
traffic to them. LycaMobile Netherlands, on the other hand,
implemented a different infrastructure even though they are
also using KPN’s infrastructure.

Birthday attacks are inherently unpredictable; even with
complete knowledge of a carrier’s NAT mapping function,
there is some randomness and outside influences that affect
the success of the attack. For example, attempting a birthday
attack during peak network usage hours will most probably
lead to a lower success rate than during peak hours. This is
due to the carriers experiencing congestion on their network
and employing some fairness protocols to allow all users to
be connected, thus limiting a user that requires high network
usage (one that performs a birthday attack, which constantly
opens up sockets in a “robotic“ way).

Another limiting factor is roaming. Roaming as explained
in section VI-E significantly hindered this research since
for reasons that have not yet been fully identified dims the
connectivity through birthday attack almost impossible.

The main takeaway from this research is that connectivity
through birthday attacks in a fully remote setting is possible in
principle, but very hard to fully quantify the success rate and
its reliability. There are so many factors that may jeopardize
it such as NAT type of carrier, combination of carriers, time
of the day, congestion of the network and roaming.

A. Future Work

VIII. CONCLUSION

APPENDIX

1) Orange Belgium:
2) LycaMobile Belgium:
3) Orange France: Orange France utilizes few reused ports,

with no linear increments, effectively spanning the entire port
space from 1 to 65,500. The distribution of port choices
is highly diverse, with a maximum of 65,407 unique ports.
The most frequent port was used a maximum of 20 times,
with subsequent reuse counts decreasing. The total dataset

https://github.com/OrestisKan/bday-demo-app


Odido Lebara LycaMobile VodaFone KPN
Odido F,F,S,F,F,S,F,S,F,S
Lebara F,F,S,F,S,S,S,S,FS F,F,F,F,F,F,F,F,S,F
LycaMobile F,F,S,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F
VodaFone F,F,F,F,F,F,F,F,F,F S,F,S,S,S,F,S,F,S,F F,F,F,F,F,F,F,F,S,S F,S,S,F,F,F,F,S,F,F
KPN F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,F,F,F,F,F,F,F,F,F F,S,S,F,F,F,S,F,S,F F,F,F,F,F,F,F,F,F,F

TABLE VI: Results of 10 consecutive Birthday Attacks for each pair of carriers, where the port choice is based on the carriers
NAT mapping function (F = No connection, S = Successful connection sometime during the attack)

Odido Lebara LycaMobile VodaFone KPN

Odido
p = 0.0433
p < 0.05

H1 is accepted

Lebara
p = 0.0054
p < 0.05

H1 is accepted

p = 0.5
p > 0.05

H1 is rejected

LycaMobile
p = 0.7632
p > 0.05

H1 is rejected

p = 1.0
p > 0.05

H1 is rejected

p = 1.0
p > 0.05

H1 is rejected

VodaFone
p = 1.0
p > 0.05

H1 is rejected

p = 0.0286
p < 0.05

H1 is accepted

p = 0.5
p > 0.05

H1 is rejected

p = 0.8251
p > 0.05

H1 is rejected

KPN
p = 1.0
p > 0.05

H1 is rejected

p = 1.0
p > 0.05

H1 is rejected

p = 1.0
p > 0.05

H1 is rejected

p=0.0433
p < 0.05

H1 is accepted

p = 1.0
p > 0.05

H1 is rejected

TABLE VII: Results of the hypothesis testing on Random Birthday Attack versus Cellular Provider Aware NAT Puncturing

comprises 433,528 entries, illustrating a broad and varied use
of ports, thus concluding that the NAT mapping is random

4) SFR France: SFR demonstrates minimal reuse of ports,
without any linear increments, covering the entire port space
from 1,025 to 65,535. The distribution of port choices shows
significant diversity, with 64,509 unique ports. The highest
frequency for any single port is 8, occurring only once,
with the reuse count decreasing to 5 for subsequent ports.
The dataset contains 257,913 entries, highlighting a broad
and varied utilization of ports, thus concluding that the NAT
mapping is random.

5) Telia Norway:
6) MyCall Norway:

REFERENCES

[1] M. S. Louis, Z. Azad, L. Delshadtehrani, S. Gupta, P. Warden, V. J.
Reddi, and A. Joshi, “Towards deep learning using tensorflow lite on
risc-v,” in Third Workshop on Computer Architecture Research with
RISC-V (CARRV), vol. 1, 2019, p. 6.

[2] J. Dai, “Real-time and accurate object detection on edge device with
tensorflow lite,” in Journal of Physics: Conference Series, vol. 1651,
no. 1. IOP Publishing, 2020, p. 012114.

[3] Tribler, “msc placeholder: “swarming llm”: decentralised artificial
intelligence · issue 7633 · tribler/tribler.” [Online]. Available:
https://github.com/Tribler/tribler/issues/7633

[4] C. F. Jennings and F. Audet, “Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” RFC 4787, Jan. 2007.
[Online]. Available: https://www.rfc-editor.org/info/rfc4787

[5] J. Rosenberg, C. Huitema, R. Mahy, and J. Weinberger, “STUN
- Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs),” RFC 3489, Mar. 2003. [Online].
Available: https://www.rfc-editor.org/info/rfc3489

[6] V. Paulsamy and S. Chatterjee, “Network convergence and the
nat/firewall problems,” 2003.

[7] M. Zolotykh, “Comprehensive classification of internet background
noise,” 2020.

[8] J. Mol, J. Pouwelse, D. Epema, and H. Sips, “Free-riding, fairness, and
firewalls in p2p file-sharing,” 2008.

[9] O. Kanaris and J. Pouwelse, “Mass adoption of nats: Survey and
experiments on carrier-grade nats,” 2023.

[10] D. Anderson, “How nat traversal works - nat notes for nerds,”
Apr 2022. [Online]. Available: https://blog.apnic.net/2022/04/26/
how-nat-traversal-works-nat-notes-for-nerds/

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[12] O. Kanaris, “NAT measurements gathering with Naive Birthday Attack
for connecting smartphones,” Dec. 2023.

[13] K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota, “Birthday paradox
for multi-collisions,” in Information Security and Cryptology – ICISC
2006, M. S. Rhee and B. Lee, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 29–40.

[14] Fast-Reflexes, “Fast-reflexes/birthdayproblem-python: Implementation
of a solver of the generalized birthday problem in python.” [Online].
Available: https://github.com/fast-reflexes/BirthdayProblem-Python

[15] M. Holdrege and P. Srisuresh, “IP Network Address Translator (NAT)
Terminology and Considerations,” RFC 2663, Aug. 1999. [Online].
Available: https://www.rfc-editor.org/info/rfc2663

[16] O. Kanaris, “NAT Mapping data Gathering and analysing tool,” Feb.
2023.

[17] Oct 2021. [Online]. Available: https://www.ibm.com/topics/
exploratory-data-analysis

[18] O. Kanaris, “Cellular Network NAT Reverse Engineering and
Exploration,” Apr. 2024. [Online]. Available: https://https://github.com/
OrestisKan/telecom-analysis

[19] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of
middleboxes in cellular networks,” Proceedings of the ACM SIGCOMM
2011 conference, Aug 2011.

[20] [Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.shapiro.html

[21] J. B. McDonald and Y. J. Xu, “A generalization of the beta
distribution with applications,” Journal of Econometrics, vol. 66, no. 1,
pp. 133–152, 1995. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0304407694016124

https://github.com/Tribler/tribler/issues/7633
https://www.rfc-editor.org/info/rfc4787
https://www.rfc-editor.org/info/rfc3489
https://blog.apnic.net/2022/04/26/how-nat-traversal-works-nat-notes-for-nerds/
https://blog.apnic.net/2022/04/26/how-nat-traversal-works-nat-notes-for-nerds/
https://www.tensorflow.org/
https://github.com/fast-reflexes/BirthdayProblem-Python
https://www.rfc-editor.org/info/rfc2663
https://www.ibm.com/topics/exploratory-data-analysis
https://www.ibm.com/topics/exploratory-data-analysis
https://https://github.com/OrestisKan/telecom-analysis
https://https://github.com/OrestisKan/telecom-analysis
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://www.sciencedirect.com/science/article/pii/0304407694016124
https://www.sciencedirect.com/science/article/pii/0304407694016124


[22] Jun 2024. [Online]. Available: https://wondernetwork.com/pings/
Limassol

[23] S. Ltd., “Telia norge as speed test,” Jun 2024. [Online]. Avail-
able: https://www.broadbandspeedchecker.co.uk/isp-directory/Norway/
telia-norge-as.html

[24] O. Kanaris, “Birthday-Attack-based smartphone connectivity kotlin li-
brary,” May 2023.

[25] A. Edwards, “Chapter 67 - r.a. fischer, statistical methods for
research workers, first edition (1925),” in Landmark Writings in
Western Mathematics 1640-1940, I. Grattan-Guinness, R. Cooke,
L. Corry, P. Crépel, and N. Guicciardini, Eds. Amsterdam:
Elsevier Science, 2005, pp. 856–870. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780444508713501480

https://wondernetwork.com/pings/Limassol
https://wondernetwork.com/pings/Limassol
https://www.broadbandspeedchecker.co.uk/isp-directory/Norway/telia-norge-as.html
https://www.broadbandspeedchecker.co.uk/isp-directory/Norway/telia-norge-as.html
https://www.sciencedirect.com/science/article/pii/B9780444508713501480
https://www.sciencedirect.com/science/article/pii/B9780444508713501480

	Introduction
	Problem Description
	Background
	Research problem
	Objectives

	Methodology
	NAT Types
	Determining NAT Timeouts
	Maximum Transmission Unit
	Simple Birthday Attack
	Improving the Birthday Attack

	System Design
	Implementation
	Evaluation
	Inner workings of NATs
	Lebara Netherlands
	KPN
	LycaMobile Netherlands
	Vodafone Netherlands
	Odido

	Nat Types
	Timeout of NATs
	Maximum Transmission Unit
	Roaming
	Roaming makes birthday attack-based connectivity almost impossible

	Cellular Provider Aware NAT Puncturing

	Discussion and Future Work
	Future Work

	Conclusion
	Appendix
	Orange Belgium
	LycaMobile Belgium
	Orange France
	SFR France
	Telia Norway
	MyCall Norway


	References

